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Abstract

We investigate deep Bayesian neural networks with Gaussian priors on the weights
and ReLU-like nonlinearities, shedding light on novel distribution properties at
the level of the neural network units. The main thrust of the paper is to establish
that the prior distribution induced on the units before and after activation becomes
increasingly heavier-tailed with depth. We show that first layer units are Gaussian,
second layer units are sub-Exponential, and we introduce sub-Weibull distributions
to characterize the deeper layers units. This result provides new theoretical insight
on deep Bayesian neural networks, underpinning their practical potential. The
workshop paper is based on the original paper Vladimirova et al. (2018).

1 Introduction

Bayesian approaches investigate models by assuming a prior distribution on their parameters.
Bayesian machine learning refers to extending standard machine learning approaches with pos-
terior inference, a line of research pioneered by the works Neal (1992); MacKay (1992) on Bayesian
neural networks. The interest of the Bayesian approach to NNs is at least twofold. First, it offers
a principled approach for modeling uncertainty of the training procedure, which is a limitation
of standard NNs that only provide point estimates. A second main asset of Bayesian models is
that they represent regularized versions of their classical counterparts. For instance, maximum a
posteriori (MAP) estimation of a Bayesian regression model with double exponential (Laplace) prior
is equivalent to Lasso regression (Tibshirani, 1996), while a Gaussian prior leads to ridge regression.
When it comes to neural networks, the regularization mechanism is also appreciated in the literature,
since neural networks traditionally suffer from overparameterization, resulting in overfitting.

Central in the field of regularization techniques is the weight decay penalty (Krogh and Hertz, 1991),
which is equivalent to MAP estimation of a Bayesian neural network with independent Gaussian
priors on the weights. Srivastava et al. (2014) have suggested dropout as a regularization method in
which neurons are randomly turned off. Gal and Ghahramani (2016) proved that the neural network
trained with dropout is equivalent to a probabilistic model, i.e. a deep Gaussian process (Damianou
and Lawrence, 2013). It leads to the consideration of such neural networks as Bayesian models.

This study is devoted to the investigation of hidden units prior distributions in Bayesian neural
networks under assumption of independent Gaussian weights. We first describe a fully connected
neural network architecture as illustrated in Figure 2, Appendix D. Given an input x ∈ RN , the `-th
hidden layer unit activations are defined as

g(`)(x) = W (`)h(`−1)(x), h(`)(x) = φ(g(`)(x)), (1)
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where W (`) is a weight matrix including the bias vector. A nonlinear activation function φ :
R → R is applied element-wise, which is called nonlinearity, g(`) = g(`)(x) is a vector of pre-
nonlinearities, and h(`) = h(`)(x) is a vector of post-nonlinearities. When we refer to either pre- or
post-nonlinearities, we will use the notation U (`).

2 Heavy-tailed result

Definition 2.1 (Sub-Weibull random variable). A random variable X , that satisfies

P(|X| ≥ x) ≤ exp
(
−x1/θ/K

)
for all x ≥ 0.

for K > 0, is called a sub-Weibull random variable with the tail parameter θ > 0, which is denoted
by X ∼ subW(θ).

Informally, the tails of a subW(θ) distribution are dominated by (i.e. decay at least as fast as) the tails
of a Weibull variable with the shape parameter equal to 1/θ (Rinne, 2008). The larger tail parameter θ,
the heavier the tails of the sub-Weibull distribution. We refer to Vladimirova et al. (2018) for more
details about sub-Weibull distribution.

2.1 Assumptions on neural network

Let all weights (including biases) be independent and have zero-mean normal distribution

W
(`)
i,j ∼ N (0, σ2

w), (2)

for all 1 ≤ ` ≤ L, 1 ≤ i ≤ H`−1 and 1 ≤ j ≤ H`. Given some input x, such prior distribution in-
duces by forward propagation (1) a prior distribution on the pre-nonlinearities and post-nonlinearities,
whose tail properties are the focus of this section. To this aim, the nonlinearity φ is required to span at
least half of the real line as follows. We introduce an extended version of the nonlinearity assumption
from Matthews et al. (2018):

Definition 2.2 (Extended envelope property for nonlinearities). A nonlinearity φ : R → R is said
to obey the extended envelope property if there exist c1, c2, d1, d2 ≥ 0 such that the following
inequalities hold

|φ(u)| ≥ c1 + d1|u| for all u ∈ R+ or u ∈ R−,
|φ(u)| ≤ c2 + d2|u| for all u ∈ R. (3)

The interpretation of this property is that φ must shoot to infinity at least in one direction (R+ or R−)
at least linearly (first line of (3)), and also at most linearly (second line of (3)). Compactly supported
nonlinearities such as sigmoid and tanh do not satisfy the extended envelope property but the majority
of other nonlinearities do, including ReLU, ELU, SELU (see Klambauer et al. (2017) for details),
and others.

Lemma 2.1. Let a nonlinearity φ : R → R obey the extended envelope property. Then for any
symmetric random variable X the following asymptotic equivalence3 holds

E[φ(X)k] � E[Xk], for k →∞. (4)

2.2 Main theorem

This section postulates the rigorous result with a proof sketch. In Supplementary material one can find
proofs of intermediate lemmas and a covariance theorem which states the non-negative covariance
between post-nonlinearities.

Theorem 2.1 (Sub-Weibull units). Consider a feed-forward Bayesian neural network with Gaussian
priors (2) with nonlinearity φ satisfying the extended envelope condition of Definition 2.2. Then
conditional on the input x, the marginal prior distribution induced by forward propagation (1) on

3See Definition B.1 for the asymptotic equivalence � definition in Supplementary material.
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any unit (pre- or post-nonlinearity) of the `-th hidden layer is sub-Weibull with optimal tail parameter
θ = `/2. That is for any 1 ≤ ` ≤ L, and for any 1 ≤ m ≤ H`,

U (`)
m ∼ subW(`/2),

where a subW distribution is defined in Definition 2.1, and U (`)
m is either a pre-nonlinearity g(`)m or a

post-nonlinearity h(`)m .

Before proving the result, we illustrate it in Figure 1 which represents the first three hidden layers
pre-nonlinearity marginal distributions (left panel). These densities are obtained as kernel density
estimators from a sample of size 105 from the prior on the pre-nonlinearities, which is itself obtained
by sampling 105 sets of weights W from the Gaussian prior (2) and forward propagation via (1).
The three hidden layers of neural network have H1 = 25, H2 = 24 and H3 = 4 hidden units,
respectively. Being a linear combination involving symmetric weights W , pre-nonlinearities g are
also symmetric, thus we visualize only their positive part. The input vector x ∈ R50 is sampled
from a standard normal distribution once for all at the start. The nonlinearity φ is the ReLU function.
The prior distribution of post-nonlinearities has a Dirac mass at zero with a coefficient of 1/2 and
they are no more symmetric. But the post-nonlinearity prior distribution tails remain the same as of
pre-nonlinearities on R+, and is represented on the right panel of Figure 1.
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Figure 1: Illustration of the first three layers hidden units marginal prior distributions.

Proof of Theorem 2.1. The idea is to prove by induction with respect to hidden layer depth ` that pre-
and post-nonlinearities satisfy the asymptotic moment equivalence ‖g(`)‖k � k`/2 and ‖h(`)‖k �
k`/2. The statement of the theorem then follows by the moment characterization of optimal sub-
Weibull tail coefficient in Proposition A.1.

Base step: the first hidden layer pre-nonlinearity g follows normal distribution, since
g = W T

ix ∼ N (0, σ2
w‖x‖2).

Then, for normal zero-mean variable g from Lemma B.1: ‖g‖k �
√
k. As activation function φ

obeys extended envelope property (Definition 2.2), according to Lemma B.2, nonlinearity moments
are asymptotic equivalent to symmetric variable moments

‖φ(g)‖k � ‖g‖k ∼
√
k.

It implies that first hidden layer post-nonlinearities h is sub-Gaussian or sub-Weibull with tail
parameter θ = 1/2 (Definition 2.1).

Inductive step: let us suppose the post-nonlinearity of (`− 1)-th hidden layer satisfies the moment
condition. Hidden units satisfy the non-negative covariance theorem (Theorem C.1):

Cov
[(
h(`−1)

)s
,
(
h̃(`−1)

)t]
≥ 0, for any s, t ∈ N.

Let the number of hidden units in (` − 1)-th layer equals to H . Then according to Lemma B.3,
under assumption of zero-mean Gaussian weights, pre-nonlinearities of `-th hidden layer g(`) =∑H
j=1W

(`−1)
i,j h

(`−1)
j also satisfy the moment condition, but with θ = `/2

‖g(`)‖k � k`/2.
Using Lemma B.2 from Supplementary material, one can show that post-nonlinearities h(`) satisfy
the same moment condition as pre-nonlinearities g(`). This finishes the proof.
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A Equivalent sub-Weibull distribution properties

Proposition A.1 (Sub-Weibull distribution). Let X be a random variable. Then the following
properties are equivalent; the parameters Ki > 0 appearing in these properties differ from each
other by at most an absolute constant factor.

1. The tails of X satisfy

P(|X| ≥ x) ≤ 2 exp
(
−x1/θ/K1

)
for all x ≥ 0.

2. The moments of X satisfy

‖X‖k =
(
E[|X|k]

)1/k ≤ K2k
θ for all k ≥ 1.

3. The MGF of X1/θ satisfies

E
[
exp

(
λ1/θX1/θ

)]
≤ K2 exp(K

1/θ
3 λ1/θ)

for all λ such that |λ| ≤ 1
K3

.

4. The MGF of X1/θ is bounded at some point, namely

E
[
exp

(
X1/θ/K4

)]
≤ 2.
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Proof. 1⇒ 2. Assume property 1 holds. Applying the integral identity for |X|k, we obtain

E
[
|X|k

]
=

∫ ∞
0

P
(
|X|k > x

)
dx

=

∫ ∞
0

P
(
|X| > x1/k

)
dx

≤
∫ ∞
0

2 exp
(
−x1/(kθ)/K1

)
dx

= 2Kkθ
1 kθ

∫ ∞
0

e−uukθ−1du = 2Kkθ
1 kθ Γ (kθ)

∼ Kkθ
1 kθ (kθ − 1)

kθ−1 ∼ (K1kθ)
kθ
.

Taking the k-th root of the expression above yields property 2

‖X‖k . (K1θ)
θkθ ≤ K2k

θ,

with K2 = (K1θ)
θ.

2⇒ 3. Assume property 2 holds. Recalling the Taylor series expansion of the exponential function,
we obtain

E
[
exp

(
λ1/θX1/θ

)]
= E

[
1 +

∞∑
k=1

(λ1/θ|X|1/θ)k
k!

]

= 1 +

∞∑
k=1

λk/θE[|X|k/θ]
k!

.

Property 2 guarantees that E[|X|k] ≤ K2k
k/θ and E[|X|k/θ] ≤ K2(k/θ)k for some K2. Stirling′s

approximation yields k! ≥ (k/e)k. Substituting these two bounds, we get

E
[
exp

(
λ1/θX1/θ

)]
≤
∞∑
k=1

λk/θK2(k/θ)k

(k/e)k

=

∞∑
k=0

K2(eλ1/θ/θ)k =
K2

1− eλ1/θ/θ ,

provided that eλ1/θ/θ < 1, in which case the geometric series above converges. To bound this
quantity further, we can use the numeric inequality 1

1−x ≤ e2x, which is valid for x ∈ [0, 1/2]. It
follows that

E
[
exp

(
λ1/θX1/θ

)]
≤ K2 exp

(
2eλ1/θ/θ

)
for all λ satisfying |λ| ≤

(
θ
2e

)θ
. This yields property 3 with K3 = (2e/θ)θ.

3⇒ 4. Assume property 3 holds. Take λ = 1/K4, where K4 ≥ K3/(ln 2 − lnK2)θ. This yields
property 4.

4⇒ 1. Assume property 4 holds. We may assume that K4 = 1. Then, by Markov’s inequality and
property 3, we obtain

P
(
|X| > x

)
= P

(
e|X|

1/θ

> ex
1/θ)

≤ E[e|X|
1/θ

]

ex1/θ
≤ 2e−x

1/θ/K1 .

This proves property 1 with K1 = 1.

Remark A.1. The constant 2 that appears in some properties in Proposition A.1 does not have any
special meaning. It is chosen for simplicity and can be replaced by other absolute constants.
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B Intermediate lemmas

Introduce the definition of asymptotic equivalence between numeric sequences:
Definition B.1 (Asymptotic equivalence). Two sequences ak and bk are called asymptotic equivalent
and denoted as ak � bk if there exist constants d > 0 and D > 0 such that

d ≤ ak
bk
≤ D, for all k ∈ N. (5)

Lemma B.1 (Gaussian moments). Let X be a normal random variable such that X ∼ N (0, σ2),
then the following asymptotic equivalence holds

‖X‖k �
√
k.

Proof. The moments of central normal absolute random variable |X| are equal to

E[|X|k] =

∫
R
|x|k p(x) dx = 2

∫ ∞
0

xk p(x) dx =
1√
π
σk2k/2Γ

(
k + 1

2

)
. (6)

We have the expression for the Gamma function

Γ(z) =

√
2π

z

(z
e

)z (
1 +

1

12z
+ o

(
1

z

))
. (7)

Substituting (7) into the central normal absolute moment (6), we obtain

E[|X|k] =
1√
π
σk2k/2

√
4π

k + 1

(
k + 1

2e

)(k+1)/2(
1 +

1

6(k + 1)
+ o

(
1

k

))
=

2σk√
2e

(
k + 1

e

)k/2(
1 +

1

6(k + 1)
+ o

(
1

k

))
.

Then the roots of absolute moments can be written in the form of

‖X‖k =
σ

e1/(2k)

√
k + 1

e

(
1 +

1

6(k + 1)
+ o

(
1

k

))1/k

=
σ

e

√
k + 1

e1/(2k)

(
1 +

1

6(k + 1)k
+ o

(
1

k2

))
=
σ

e
ck
√
k + 1.

Here the coefficient ck denotes

ck =
1

e1/(2k)

(
1 +

1

6(k + 1)k
+ o

(
1

k2

))
→ 1,

with k →∞. Thus, asymptotic equivalence holds

‖X‖k �
√
k + 1 �

√
k.

Lemma B.2 (Nonlinearity moments). Let X be symmetric random variable, φ(x) be nonlinear
function satisfying extended envelope property, then the following asymptotic equivalence holds

‖φ(X)‖k � ‖X‖k.

Proof. According to extended envelope property, E[φ(X)k] � E[Xk]. That means there exist
constants d and D such that for all k ∈ N it holds

d ≤ E[φ(X)k]

E[|X|k]
≤ D.

Observing that

d′ ≤ d1/k ≤ ‖φ(X)‖k
‖X‖k

≤ D1/k ≤ D′,

the bounding constants are d′ = min{1, d}, D′ = max{1, D}. It yields asymptotic equivalence
‖φ(X)‖k � ‖X‖k.

The lemma is proved.
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Lemma B.3 (Multiplication moments). Let W and X be independent random variables such that
W ∼ N (0, σ2) and for some p > 0 it holds

‖X‖k � kp. (8)

Let Wi be independent copies of W , and Xi be copies of X , i = 1, . . . ,H with non-negative
covariance between moments of copies

Cov
[
Xs
i , X

t
j

]
≥ 0, for i 6= j, s, t ∈ N. (9)

Then we have the following asymptotic equivalence∥∥∥ H∑
i=1

WiXi

∥∥∥
k
� kp+1/2. (10)

The statement proof is based on mathematical induction, see Vladimirova et al. (2018).

C Covariance theorem

Theorem C.1 (Non-negative covariance between hidden units). Consider the deep neural network
described in Section 3 with assumptions from Section 3.1. The covariance between hidden units of
the same layer is non-negative. Moreover, for given `-th hidden layer units h(`) and h̃(`), it holds

Cov
[(
h(`)

)s (
h̃(`)

)t]
≥ 0, where s, t ∈ N.

For first hidden layer ` = 1 there is equality for all s and t.

We refer to Vladimirova et al. (2018) for the proof.

D Illustration
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Figure 2: Neural network architecture and characterization of the `-layer units prior distribution as
sub-Weibull distribution with tail parameter `/2 (see Definition 2.1).
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