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Abstract

We investigate deep Bayesian neural net-
works with Gaussian priors on the weights
and ReLU-like nonlinearities, shedding light
on novel sparsity-inducing mechanisms at
the level of the units of the network, both
pre- and post-nonlinearities. The main
thrust of the paper is to establish that the
units prior distribution becomes increasingly
heavy-tailed with depth. We show that
first layer units are Gaussian, second layer
units are sub-Exponential, and we introduce
sub-Weibull distributions to characterize the
deeper layers units. Bayesian neural net-
works with Gaussian priors are well known
to induce the weight decay penalty on the
weights. In contrast, our result indicates
a more elaborate regularization scheme at
the level of the units, ranging from convex
penalties for the first two layers — weight
decay for the first and Lasso for the sec-
ond — to non convex penalties for deeper
layers. Thus, despite weight decay does not
allow for the weights to be set exactly to
zero, sparse solutions tend to be selected
for the units from the second layer onward.
This result provides new theoretical insight
on deep Bayesian neural networks, underpin-
ning their natural shrinkage properties and
practical potential.

1Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP,
LJK, 38000 Grenoble, France

1 Introduction

Neural networks (NNs) (Bishop, 1995), and their deep
extensions (Goodfellow et al., 2016), have largely been
used in many research areas such as image analysis
(Krizhevsky et al., 2012), signal processing (Graves
et al., 2013), or reinforcement learning (Silver et al.,
2016), just to name a few. These performances have
greatly strengthened the line of research that aims at
better understanding the driving mechanisms behind
the effectiveness of deep neural networks. One impor-
tant aspect of this analysis that has recently gained
much attention is the study of distributional proper-
ties of the NNs through Bayesian inference.

Bayesian approaches investigate models by assuming a
prior distribution on their parameters. Bayesian ma-
chine learning refers to extending standard machine
learning approaches with posterior inference, a line of
research pioneered by the works Neal (1992); MacKay
(1992) on Bayesian neural networks which now extends
to a broad class of models, including Bayesian GAN
(Saatci and Wilson, 2017). See Polson and Sokolov
(2017) for a review. The interest of the Bayesian ap-
proach to NNs is at least twofold. First, it offers a
principled approach for modeling uncertainty of the
training procedure, which is a limitation of standard
NNs which only provide point estimates. A second
main asset of Bayesian models is that they repre-
sent regularized versions of their classical counterparts.
For instance, mode a posteriori (MAP) estimation of
a Bayesian regression model with double exponential
(Laplace) prior is equivalent to Lasso regression (Tib-
shirani, 1996), while a Gaussian prior leads to ridge
regression. When it comes to neural networks, the
regularization mechanism is also well appreciated in
the literature, since neural networks traditionally suf-
fer from overparameterization, resulting in overfitting.

Central in the field of regularization techniques is
the weight decay penalty (Krogh and Hertz, 1991),
which is equivalent to MAP estimation of a Bayesian
neural network with independent Gaussian priors on
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the weights. Srivastava et al. (2014) have suggested
dropout as a regularization method in which neurons
are randomly turned off. Gal and Ghahramani (2016)
proved that the neural network trained with dropout
is equivalent to a probabilistic model, i.e. a deep
Gaussian process (Damianou and Lawrence, 2013). It
leads to the consideration of such neural networks as
Bayesian models.

This study is devoted to the investigation of hidden
units prior distributions in Bayesian neural networks
under assumption of independent Gaussian weights.
We first describe a fully connected neural network ar-
chitecture as illustrated in Figure 1. Given an input
x ∈ RN , the `-th hidden layer unit activations are
defined as

g(`)(x) = W (`)h(`−1)(x), h(`)(x) = φ(g(`)(x)),
(1)

where W (`) is a weight matrix including the bias vec-
tor. A nonlinear activation function φ : R → R
is applied element-wise, which is called nonlinearity,
g(`) = g(`)(x) is a vector of pre-nonlinearities, and

h(`) = h(`)(x) is a vector of post-nonlinearities. When
we refer to either pre- or post-nonlinearities, we will
use the notation U (`).

...

...
...

...

...

...

...

...

x
h(1) h(2) h(3) h(`)

input
layer

1st hid.
layer

2nd hid.
layer

3rd hid.
layer

`th hid.
layer

subW( 1
2 ) subW(1) subW( 3

2 ) subW( `2 )

Figure 1: Neural network architecture and character-
ization of the `-layer units prior distribution as sub-
Weibull distribution with tail parameter `/2 (see Def-
inition 4.1).

1.1 Contributions

In this paper, we extend the theoretical understand-
ing of feedforward fully connected neural networks by
studying prior distributions at the units level, un-
der the assumption of independent and normally dis-
tributed weights. Our contributions are threefold:

(i) We define the notion of sub-Weibull distributions

(Definition 4.1), which are characterized by tails
lighter than (or equally light as) Weibull distri-
butions; in the same way as sub-Gaussian or sub-
Exponential distributions correspond to distribu-
tions with tails lighter than Gaussian and Expo-
nential distributions, respectively. Sub-Weibull
distributions are parameterized by a positive tail
index θ and equivalent to sub-Gaussian for θ =
1/2 and sub-Exponential for θ = 1. We provide
a moments characterization of the sub-Weibull
property in Proposition 4.1.

(ii) As our main contribution, we prove in Theo-
rem 3.1 that under some conditions on the non-
linear function φ, a Gaussian prior on the weights
induces a sub-Weibull distribution on the units
(both pre- and post-nonlinearities) with optimal
tail parameter θ = `/2 (see Figure 1). The condi-
tion on φ essentially imposes that φ strikes to +∞
or −∞ for large absolute values of the argument,
as ReLU does. In the case of bounded support
φ, like sigmoid or tanh, the units are bounded,
making them de facto sub-Gaussian2.

(iii) Lastly, we offer an interpretation of the main re-
sult from a sparsity-inducing viewpoint in Sec-
tion 2. Heavy-tailed priors are known to induce a
sparse model representation, such as the Lasso in
a regression problem. We extrapolate this finding
to the setting of a deep Bayesian neural network
(BNN), showing that the units tend to be more
sparsely represented as layers become deeper.

1.2 Related work

Studying the distributional behaviour of feedforward
networks has been a fruitful avenue for understanding
these models, as pioneered by the works of Radford
Neal (Neal, 1992, 1996) and David MacKay (MacKay,
1992). The first results in the field addressed the lim-
iting setting when the number of units per layer tends
to infinity, also called the wide regime. Neal (1996)
proved that a single hidden layer neural network with
normally distributed weights tends in distribution in
the wide limit either to a Gaussian process (Rasmussen
and Williams, 2006) or to an α-stable process, de-
pending on how the prior variance on the weights is
rescaled. In recent works, Matthews et al. (2018a),
or its extended version Matthews et al. (2018b), and
Lee et al. (2018) extend the result of Neal to more-
than-one-layer neural networks: when the number of
hidden units grows to infinity, deep neural networks
(DNNs) also tend in distribution to the Gaussian pro-
cess, under the assumption of Gaussian weights for

2A trivial version of our main result holds.
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properly rescaled prior variances. For the rectified lin-
ear unit (ReLU) activation function, the Gaussian pro-
cess covariance function is obtained analytically (Cho
and Saul, 2009). For other nonlinear activation func-
tions, Lee et al. (2018) use a numerical approximation
algorithm.

Various distributional properties are also studied in
neural networks regularization methods. The dropout
technique (Srivastava et al., 2014) was reinterpreted
as a form of approximate Bayesian variational in-
ference (Kingma et al., 2015; Gal and Ghahramani,
2016). Gal and Ghahramani (2016) built a connection
between dropout and the Gaussian process. Kingma
et al. (2015) proposed a way to interpret Gaussian
dropout. They suggested variational dropout where
each weight of a model has its individual dropout
rate. Sparse variational dropout from Molchanov et al.
(2017) extends variational dropout to all possible val-
ues of dropout rates and leads to a sparse solution.
The approximate posterior is chosen to factorize ei-
ther over rows or individual entries of the weight ma-
trices. The prior usually factorizes in the same way.
The choice of the prior and its interaction with the
approximating posterior family are studied in Hron
et al. (2018). Performing dropout can be used as a
Bayesian approximation. However, as noted by Duve-
naud et al. (2014), dropout has no regularization effect
on infinitely-wide hidden layers.

The recent work by Bibi et al. (2018) provides the ex-
pression of the first two moments of the output units
of a one layer neural network. Obtaining the moments
is a first step to characterizing a whole distribution,
however the methodology of Bibi et al. (2018) is lim-
ited to the first two moments and to one layer neural
networks, while we address the problem in more gen-
erality for deep neural networks.

In the remainder of the paper, we present our three
main contributions in reverse but perhaps more ped-
agogical order, that is starting with intuitions and in-
terpretation (iii), then moving to theoretical results
(ii) and ending up with the necessary statistical back-
ground and definitions (i). More specifically, Section 2
illustrates shrinkage and penalization techniques, pro-
viding an interpretation for our main contribution,
Theorem 3.1, that is stated in Section 3. Section 4 in-
troduces the sub-Weibull distribution family based on
its tail behavior and proves a moment-based character-
ization. Conclusions and future work are reported in
Section 5, while proofs and additional technical results
are deferred to the Supplementary material.

2 Sparsity-inducing prior on the units

2.1 Short digest on penalized estimation

Our main theoretical contribution, Theorem 3.1, char-
acterizes the marginal prior distribution of the network
units as follows: when the depth increases, the distri-
bution becomes more heavy-tailed, as will be precised
in the next section. First, in this section, we provide
an interpretation of the result in terms of sparsity-
inducing mechanism at the level of the units. To this
aim, a short reminder about shrinkage methods and
penalization is presented.

The shrinkage idea is probably best illustrated on
the simple linear regression model, where the aim of
shrinkage is to improve prediction accuracy by shrink-
ing, or even putting exactly to zero, some coefficients
in the regression. Under these circumstances, infer-
ence is also more interpretable since, by reducing the
number of coefficients effectively used in the model, it
is possible to grasp its salient features. Shrinking is
performed by imposing a penalty on the size of the
coefficients, which is equivalent to allowing for a given
budget on their size. Denote the regression parame-
ter by β ∈ Rp, the regression sum-of-squares by R(β),
and the penalty by λL(β), where L is some norm on
Rp and λ some positive tuning parameter. Then, the
two formulations of the regularized problem

min
β∈Rp

R(β) + λL(β), and

min
β∈Rp

R(β) subject to L(β) ≤ t,

are equivalent, with some one-to-one correspondence
between λ and t, and are respectively termed the
penalty and the constraint formulation. This lat-
ter formulation provides an interesting geometrical in-
tuition of the shrinkage mechanism: the constraint
L(β) ≤ t reads as imposing a total budget of t for
the parameter size in terms of the norm L. If the or-
dinary least squares estimator β̂ols lives in the L-ball
with surface L(β) = t, then there is no effect on the

estimation. In contrast, when β̂ols is outside the ball,
then the intersection of the lowest level curve of the
sum-of-squares R(β) with the L-ball defines the pe-
nalized estimator.

The choice of the L norm has considerable effects on
the problem, as can be sensed geometrically. Consider
for instance Lq norms, with q ≥ 0. For any q > 1, the
associated Lq norm is differentiable and contours have
a round shape without sharp angles. In that case, the
penalty effect is to shrink the β coefficients towards
0. The most well-known estimator falling in this class
is the ridge regression obtained with q = 2, see Fig-
ure 2 top-left panel. In contrast, for any q ∈ (0, 1], the
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Lq norm has some non differentiable points along the
axis coordinates, see Figure 2 top-right and bottom
panels. Such critical points are more likely to be hit
by the level curves of the sum-of-squares R(β), thus
setting exactly to zero some of the parameters. A very
successful approach in this class is the Lasso obtained
with q = 1. Note that the problem is computationally
much easier in the convex situation which occurs only
for q ≥ 1.

Figure 2: L2/`-norm unit balls (in dimension 2) for
layers ` = 1, 2, 3 and 10.

2.2 MAP on weights W is weight decay

These penalized methods have a simple Bayesian coun-
terpart in the form of the mode a posteriori (MAP)
estimator. In this context, the objective function R is
the negative log-likelihood, while the penalty L is the
negative log-prior. The objective function takes on
the form of sum-of-squared errors for regression under
Gaussian errors, and of cross-entropy for classification.

For neural networks, it is well-known that an indepen-
dent Gaussian prior on the weights

π(W ) =

L∏
`=1

∏
i,j

e−
1
2 (W

(`)
i,j )

2

,

is equivalent to the weight decay penalty, also known
as ridge regression:

L(W ) =

L∑
`=1

∑
i,j

(W
(`)
i,j )2 = ‖W ‖22,

where products and sums involving i and j above are
over 1 ≤ i ≤ H`−1 and 1 ≤ j ≤ H`, H0 and HL repre-
senting respectively the input and output dimensions.

2.3 MAP on units U induces sparsity

Now moving the point of view from weights to units

leads to a radically different shrinkage effect. Let U
(`)
m

denote the m-th unit of the `-th layer (either pre-
or post-nonlinearity). We prove in Theorem 3.1 that
conditional on the input x, a Gaussian prior on the

weights translates into some prior on the units U
(`)
m

that is marginally sub-Weibull with optimal tail index

θ = `/2. This means that the tails of U
(`)
m satisfy

P(|U (`)
m | ≥ u) ≤ exp

(
−u2/`/K1

)
for all u ≥ 0, (2)

for some positive constant K1. The exponent of u in
the exponential term above is optimal in the sense that
Equation (2) is not satisfied with some parameter θ′

smaller than `/2. Thus, the marginal density of U
(`)
m

on R is approximately proportional to

π(`)
m (u) ≈ e−u

2/`/K1 .

The joint prior distribution for all the units U =

(U
(`)
m )1≤`≤L,1≤m≤H` can be expressed from all the

marginal distributions by Sklar’s representation the-
orem as

π(U) =

L∏
`=1

H∏̀
m=1

π(`)
m (U (`)

m )C(F (U)), (3)

where C represents the copula of U (which charac-
terizes all the dependence between the units) while
F denotes its cumulative distribution function. The
penalty incurred by such a prior distribution is ob-
tained as the negative log-prior,

L(U) = −
L∑
`=1

H∑̀
m=1

log π(`)
m (U (`)

m )− logC(F (U)),

≈
L∑
`=1

H∑̀
m=1

|U (`)
m |2/` − logC(F (U)),

≈ ‖U (1)‖22 + ‖U (2)
1 ‖1 + · · ·+ ‖U (L)‖2/L2/L

− logC(F (U)). (4)

The first L terms in (4) indicate that some shrinkage
operates at every layer of the network, with a penalty
term that takes the form of the L2/` norm. Thus, the
deeper the layer, the stronger the sparsity at the level
of the units, as summarized in Table 1.
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Layer Penalty on W Penalty on U

1 ‖W (1)‖22, L2 ‖U (1)‖22 L2 (weight decay)

2 ‖W (2)‖22, L2 ‖U (2)‖ L1 (Lasso)

` ‖W (`)‖22, L2 ‖U (`)‖2/`2/` L2/`

Table 1: Comparison of Bayesian neural network
shrinkage effect on weights W and units U .

3 Bayesian neural networks have
heavy-tailed deep units

The deep learning approach uses stochastic gradient
descent and error back-propagation in order to fit
the network parameters (W(`))1≤`≤L, where ` iterates
over all network layers. In the Bayesian approach, the
parameters are random variables described by proba-
bility distributions.

3.1 Assumptions on neural network

We assume a prior distribution on the model param-
eters, that are the weights W . In particular, let all
weights (including biases) be independent and have
zero-mean normal distribution

W
(`)
i,j ∼ N (0, σ2

w), (5)

for all 1 ≤ ` ≤ L, 1 ≤ i ≤ H`−1 and 1 ≤ j ≤ H`.
Given some input x, such prior distribution induces
by forward propagation 1 a prior distribution on the
pre-nonlinearities and post-nonlinearities, whose tail
properties are the focus of this section. To this aim,
the nonlinearity φ is required to span at least half of
the real line as follows. We introduce an extended
version of the nonlinearity assumption from Matthews
et al. (2018b):

Definition 3.1 (Extended envelope property for non-
linearities). A nonlinearity φ : R → R is said
to obey the extended envelope property if there exist
c1, c2, d1, d2 ≥ 0 such that the following inequalities
hold

|φ(u)| ≥ c1 + d1|u| for all u ∈ R+ or u ∈ R−,
|φ(u)| ≤ c2 + d2|u| for all u ∈ R.

(6)

The interpretation of this property is that φ must
shoot to infinity at least in one direction (R+ or R−,
at least linearly (first line of (6)), and also at most lin-
early (second line of (6)). Of course, compactly sup-
ported nonlinearities such as sigmoid and tanh do not
satisfy the extended envelope property but the major-
ity of other nonlinearities do, including ReLU, ELU,

PReLU, and SeLU.

Lemma 3.1. Let a nonlinearity φ : R → R obey the
extended envelope property. Then for any symmetric
random variable X the following asymptotic equiva-
lence3 holds

E[φ(X)k] � E[Xk], for k →∞. (7)

The proof is deferred to the Supplementary material.

3.2 Main theorem

This section postulates the rigorous result with a
proof sketch. In Supplementary material one can find
proofs of intermediate lemmas and a covariance theo-
rem which states the non-negative covariance between
post-nonlinearities.

Theorem 3.1 (Sub-Weibull units). Consider a feed-
forward Bayesian neural network with Gaussian pri-
ors (5) with nonlinearity φ satisfying the extended en-
velope condition of Definition 3.1. Then conditional
on the input x, the marginal prior distribution induced
by forward propagation (1) on any unit (pre- or post-
nonlinearity) of the `-th hidden layer is sub-Weibull
with optimal tail parameter θ = `/2. That is for any
1 ≤ ` ≤ L, and for any 1 ≤ m ≤ H`,

U (`)
m ∼ subW(`/2),

where a subW distribution is defined in Definition 4.1,

and U
(`)
m is either a pre-nonlinearity g

(`)
m or a post-

nonlinearity h
(`)
m .

Proof. The idea is to prove by induction with re-
spect to hidden layer depth ` that pre- and post-
nonlinearities satisfy the asymptotic moment equiv-
alence

‖g(`)‖k � k`/2 and ‖h(`)‖k � k`/2.

The statement of the theorem then follows by the mo-
ment characterization of optimal sub-Weibull tail co-
efficient in Proposition 4.3.

According to Lemma 4.1, centering does not harm tails
properties, then, for simplicity, we consider zero-mean

distributions W
(`)
i,j ∼ N (0, σ2

w).

Base step: consider the distribution of the first hidden
layer pre-nonlinearity g (` = 1). Since weights Wm

follow normal distribution and x is a feature vector,
then each hidden unit W T

mx follow also normal distri-
bution

g = W T
mx ∼ N (0, σ2

w‖x‖2).

Then, for normal zero-mean variable g, having vari-
ance σ2 = σ2

w‖x‖2, it holds the equality in sub-
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Gaussian property with variance proxy equals to nor-
mal distribution variance and from Lemma B.1:

‖g‖k �
√
k.

As activation function φ obeys extended envelope
property, according to Lemma B.2, nonlinearity mo-
ments are asymptotic equivalent to symmetric variable
moments

‖φ(g)‖k � ‖g‖k ∼
√
k.

It implies that first hidden layer post-nonlinearities
h have sub-Gaussian distribution or sub-Weibull with
tail parameter θ = 1/2 (Definition 4.1).

Inductive step: show that if the statement holds for
`− 1, then it also holds for `.

Suppose the post-nonlinearity of (`−1)-th hidden layer
satisfies the moment condition. Hidden units satisfy
the non-negative covariance theorem (Theorem C.1):

Cov

[(
h(`−1)

)s
,
(
h̃(`−1)

)t]
≥ 0, for any s, t ∈ N.

Let the number of hidden units in (`−1)-th layer equals
to H. Then according to Lemma B.3, under assump-
tion of zero-mean Gaussian weights, pre-nonlinearities

of `-th hidden layer g(`) =
∑H
i=1W

(`−1)
m,i h

(`−1)
i also sat-

isfy the moment condition, but with θ = `/2

‖g(`)‖k � k`/2.

Using Lemma B.2 from Supplementary material, one
can show that post-nonlinearities h(`) satisfy the same
moment condition as pre-nonlinearities g(`). This fin-
ishes the proof.

We illustrate the result of Theorem 3.1 in Figure 3
which represents the first three hidden layers pre-
nonlinearity marginal distributions (top panel). These
densities are obtained as kernel density estimators
from a sample of size 105 from the prior on the pre-
nonlinearities, which is itself obtained by sampling 105

sets of weights W from the Gaussian prior (5) and for-
ward propagation via (1). The three hidden layers of
neural network have H1 = 25, H2 = 24 and H3 = 4
hidden units, respectively. Being a linear combination
involving symmetric weights W , pre-nonlinearities g
are also symmetric, thus we visualize only their posi-
tive part. The input vector x ∈ R50 is sampled from a
standard normal distribution once for all at the start.
The nonlinearity φ is the ReLU function. The prior
distribution of post-nonlinearities has a Dirac mass at
zero with a coefficient of 1/2 and they are no more
symmetric. But the post-nonlinearity prior distribu-
tion tails remain the same as of pre-nonlinearities on
R+, and is represented on the bottom panel of Fig-

ure 3.

Figure 3: Illustration of the first three layers hidden
units marginal prior distributions.

Remark 3.1. If the activation function φ is bounded,
such as the sigmoid, or tanh, then the units are
bounded. As a result, by Hoeffding’s Lemma, they
have a sub-Gaussian distribution.

3.3 Convolutional neural networks

Convolutional neural networks (Goodfellow et al.,
2016) are a particular kind of neural network for pro-
cessing data that has a known grid-like topology, which
allows to encode certain properties into the architec-
ture. These then make the forward function more ef-
ficient to implement and vastly reduce the amount of
parameters in the neural network. Neurons in such
networks are arranged in three dimensions: width,
height and depth. There are three main types of lay-
ers that can be concatenated in CNN architectures:
convolutional layer, pooling layer, and fully-connected
layer (exactly as seen in standard Neural Networks).
Convolutional layer computes dot products between
a region in the inputs and its weights. Therefore,
each region can be considered as a particular case of
fully-connected layer. Pooling layer is performed to
control overfitting and computations in deep architec-
tures. The pooling layer operates independently on
every depth slice of the input and residues it spatially.
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The most commonly functions used in pooling layers
are max pooling and average pooling.

Proposition 3.1. The operations: 1. max pooling
and 2. averaging do not modify the optimal tail param-
eter θ of sub-Weibull family. Consequently, the result
of Theorem 3.1 carries over to Convolutional neural
networks.

Proof. Let Xi ∼ subW(θ) for 1 ≤ i ≤ N be units from
one region where pooling operation is applied. Using
Definition 4.1, for all x ≥ 0 and some constant K > 0
we have

P(|Xi| ≥ x) ≤ exp
(
−x1/θ/K

)
for all i.

1. Max pooling operation takes the maximum ele-
ment in the region. Since Xi, 1 ≤ i ≤ N are the
elements in one region, we want to check if the
tail of max1≤i≤N Xi obeys sub-Weibull property
with optimal tail parameter equals to θ. Using
probability properties, we get

P( max
1≤i≤N

Xi ≥ x) = P( ∪
1≤i≤N

Xi ≥ x)

≤
N∑
i=1

P(Xi ≥ x).

Taking into account that the variables Xi belong
to one sub-Weibull family for all 1 ≤ i ≤ N , the
distribution tail has the following form

P( max
1≤i≤N

Xi ≥ x) ≤ 2N exp
(
−x1/θ/K

)
.

The constant 2 is appeared through distribution
symmetry. Then, for K1 = K/ log(2N), the
proposition for max pooling layer holds.

2. Apply averaging on the unit region:

P

(
1

N

N∑
i=1

Xi ≥ x

)
= ∩

1≤i≤N
P
(
Xi/N ≥ x

)
.

Substituting the sub-Weibull property, we obtain
the same upper bound

P

(
1

N

N∑
i=1

Xi ≥ x

)
≤ exp

(
−x1/θ/K

)
.

Summarizing and division by a constant does not
influence the distribution tail, yielding the propo-
sition result regarding the averaging operation.

Corollary 3.1. Consider a convolutional neural net-
work containing convolutional, pooling and fully-

connected layers under assumptions from Section 3.1.
Then a unit of `-th hidden layer has sub-Weibull dis-
tribution with optimal tail parameter θ = `/2, where
` is the number of convolutional and fully-connected
layers.

Proof. Proposition 3.1 implies that the pooling layer
keeps the tail parameter. From discussion at the be-
ginning of the section, the result of Theorem 3.1 is
also applied to CNNs where the depth is considered as
the number of convolutional and fully-connected lay-
ers.

4 Sub-Weibull distributions

Let X be a random variable. The following proposi-
tion states different equivalent distribution properties,
such as tail decay and the growth of moments. The
proof of this result shows how to transform one type
of information about random variables into another.

Proposition 4.1 (Equivalent properties). Let X be
a random variable. Then the following properties are
equivalent; the parameters Ki > 0 appearing in these
properties differ from each other by at most an absolute
constant factor.

1. The tails of X satisfy

P(|X| ≥ x) ≤ exp
(
−x1/θ/K1

)
for all x ≥ 0.

2. The moments of X satisfy

‖X‖k =
(
E[|X|k]

)1/k ≤ K2k
θ for all k ≥ 1.

It is a short version of Proposition A.1 which states
two additional equivalent properties in terms of the
moment generating function of the random variable
X. Proposition A.1 is deferred to and proved in Sup-
plementary material.

Definition 4.1 (Sub-Weibull random variable). A
random variable X that satisfies one of the equivalent
properties of Proposition 4.1 is called a sub-Weibull
random variable with the tail parameter θ, which is
denoted by X ∼ subW(θ).

Informally, the tails of a subW(θ) distribution are dom-
inated by (i.e. decay at least as fast as) the tails of a
Weibull variable with the shape parameter equal to
1/θ (Rinne, 2008). The larger tail parameter θ, the
heavier the tails of the sub-Weibull distribution.

Sub-Gaussian and sub-Exponential variables, which
are commonly used, are special cases of sub-Weibull
random variables with tail parameter θ = 1/2 and
θ = 1, respectively (see Table 2).
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Distribution Tail Moments

Sub-Gaussian F (x) ≤ e−λx
2 ‖X‖k ≤ C

√
k

Sub-Exponential F (x) ≤ e−λx ‖X‖k ≤ Ck

Sub-Weibull F (x) ≤ e−λx
1/θ ‖X‖k ≤ Ckθ

Table 2: Sub-Gaussian, sub-Exponential and sub-
Weibull distributions comparison in terms of tail
F (x) = P (X ≥ x) and moment condition, with λ and
C some positive constants. The first two are a special
case of the last with θ = 1/2 and θ = 1 respectively.

Proposition 4.2 (Inclusion). Let θ1 and θ2 such that
0 < θ1 < θ2 be tail proxy parameters for some sub-
Weibull distributed variables. Then the following in-
clusion holds

subW(θ1) ⊂ subW(θ2).

Proof. For X ∼ subW(θ1), it holds that ‖X‖k ≤
K2k

θ1 . Since kθ1 ≤ kθ2 for all k ≥ 1, this yields
‖X‖k ≤ K2k

θ2 , which by definition implies X ∼
subW(θ2).

The following proposition is key in establishing that
neural network units of layer ` are subW(`/2), where
`/2 is optimal.

Proposition 4.3 (Optimal sub-Weibull tail coefficient
and moment condition). Let θ > 0 and let X be a ran-
dom variable satisfying the following asymptotic equiv-
alence on moments3

‖X‖k � kθ.

Then X is sub-Weibull distributed with optimal tail
parameter θ, in the sense that for any θ′ < θ, X is not
sub-Weibull with tail parameter θ′.

Proof. SinceX satisfies Condition 2 of Proposition 4.1,
X ∼ subW(θ). Let θ′ < θ. Since ‖X‖k � kθ, there
does not exist any constant K2 such that ‖X‖k ≤
K2k

θ′ , so X is not sub-Weibull with tail proxy pa-
rameter θ′.

It is typically assumed that the random variable X
has zero mean. If this is not the case, we can always
center X by subtracting the mean. Let us prove that
variable centering does not change the tail parameter
of sub-Weibull distribution it follows.

3See Definition B.1 for the asymptotic equivalence �
definition in Supplementary material.

Lemma 4.1 (Centered variables). Centering does not
harm tail properties. In particular, random variables
X and (X−E[X]) belong to the same sub-Weibull fam-
ily, i.e. with the same optimal tail proxy parameter.

The proof can be found in Supplementary material.

5 Conclusion and future work

Despite the ubiquity of deep learning throughout sci-
ence, medicine and engineering, the underlying theory
has not kept pace with applications for deep learning
in general, and for neural networks in particular. In
this paper, we have extended the state of knowledge on
Bayesian neural networks by providing a characteriza-
tion of the marginal prior distribution of the units. We
proved that they are heavier-tailed as depth increases,
and interpreted this result as a sparsity-inducing mech-
anism at the level of the units.

Since initialization and learning dynamics are key in
modern machine learning in order to properly tune
deep learning algorithms, a good implementation prac-
tice requires a proper understanding of the prior dis-
tribution at play and of the regularization it incurs.

We hope that our results will open avenues for further
research. Firstly, Theorem 3.1 regards the marginal
prior distribution of the units, while a full characteri-
zation of the joint distribution of all units U remains
an open question. More specifically, a precise descrip-
tion of the copula defined in Equation (3) would pro-
vide valuable information about the dependence be-
tween the units, and also about the precise geomet-
rical structure of the balls induced by that penalty.
Secondly, the interpretation of our result (Section 2)
is concerned with the mode a posteriori of the units,
which is a point estimator. One of the benefits of the
Bayesian approach to neural networks lies in its ability
to provide a principled approach to uncertainty quan-
tification, so that an interpretation of our result in
terms of the full posterior distribution would be very
appealing. Lastly, the practical potentialities of our
results are many: to delve into Bayesian deep neu-
ral networks distributional properties and better com-
prehend their sparsifying mechanisms will contribute
to design and understand regularization strategies to
avoid overfitting and improve generalization. Future
work will explore these directions.
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A Equivalent sub-Weibull distribution
properties

Proposition A.1 (Sub-Weibull distribution). Let X
be a random variable. Then the following properties
are equivalent; the parameters Ki > 0 appearing in
these properties differ from each other by at most an
absolute constant factor.

1. The tails of X satisfy

P(|X| ≥ x) ≤ 2 exp
(
−x1/θ/K1

)
for all x ≥ 0.

2. The moments of X satisfy

‖X‖k =
(
E[|X|k]

)1/k ≤ K2k
θ for all k ≥ 1.

3. The MGF of X1/θ satisfies

E
[
exp

(
λ1/θX1/θ

)]
≤ K2 exp(K

1/θ
3 λ1/θ)

for all λ such that |λ| ≤ 1
K3

.

4. The MGF of X1/θ is bounded at some point,
namely

E
[
exp

(
X1/θ/K4

)]
≤ 2.

Proof. 1 ⇒ 2. Assume property 1 holds. Applying
the integral identity for |X|k, we obtain

E
[
|X|k

]
=

∫ ∞
0

P
(
|X|k > x

)
dx

=

∫ ∞
0

P
(
|X| > x1/k

)
dx

≤
∫ ∞
0

2 exp
(
−x1/(kθ)/K1

)
dx

= 2Kkθ
1 kθ

∫ ∞
0

e−uukθ−1du = 2Kkθ
1 kθ Γ (kθ)

∼ Kkθ
1 kθ (kθ − 1)

kθ−1 ∼ (K1kθ)
kθ
.

Taking the k-th root of the expression above yields
property 2

‖X‖k . (K1θ)
θkθ ≤ K2k

θ,

with K2 = (K1θ)
θ.

2⇒ 3. Assume property 2 holds. Recalling the Taylor

series expansion of the exponential function, we obtain

E
[
exp

(
λ1/θX1/θ

)]
= E

[
1 +

∞∑
k=1

(λ1/θ|X|1/θ)k

k!

]

= 1 +

∞∑
k=1

λk/θE[|X|k/θ]
k!

.

Property 2 guarantees that E[|X|k] ≤ K2k
k/θ and

E[|X|k/θ] ≤ K2(k/θ)k for some K2. Stirling′s approx-
imation yields k! ≥ (k/e)k. Substituting these two
bounds, we get

E
[
exp

(
λ1/θX1/θ

)]
≤
∞∑
k=1

λk/θK2(k/θ)k

(k/e)k

=

∞∑
k=0

K2(eλ1/θ/θ)k =
K2

1− eλ1/θ/θ
,

provided that eλ1/θ/θ < 1, in which case the geomet-
ric series above converges. To bound this quantity
further, we can use the numeric inequality 1

1−x ≤ e
2x,

which is valid for x ∈ [0, 1/2]. It follows that

E
[
exp

(
λ1/θX1/θ

)]
≤ K2 exp

(
2eλ1/θ/θ

)
for all λ satisfying |λ| ≤

(
θ
2e

)θ
. This yields property 3

with K3 = (2e/θ)θ.

3 ⇒ 4. Assume property 3 holds. Take λ = 1/K4,
where K4 ≥ K3/(ln 2−lnK2)θ. This yields property 4.

4 ⇒ 1. Assume property 4 holds. We may assume
that K4 = 1. Then, by Markov’s inequality and prop-
erty 3, we obtain

P
(
|X| > x

)
= P

(
e|X|

1/θ

> ex
1/θ)

≤ E[e|X|
1/θ

]

ex1/θ
≤ 2e−x

1/θ/K1 .

This proves property 1 with K1 = 1.

Remark A.1. The constant 2 that appears in some
properties in Proposition A.1 does not have any spe-
cial meaning. It is chosen for simplicity and can be
replaced by other absolute constants.

B Intermediate lemmas

Introduce the definition of asymptotic equivalence be-
tween numeric sequences:

Definition B.1 (Asymptotic equivalence). Two se-
quences ak and bk are called asymptotic equivalent and
denoted as ak � bk if there exist constants d > 0 and
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D > 0 such that

d ≤ ak
bk
≤ D, for all k ∈ N. (8)

Lemma B.1 (Gaussian moments). Let X be a nor-
mal random variable such that X ∼ N (0, σ2), then
the following asymptotic equivalence holds

‖X‖k �
√
k.

Proof. The moments of central normal absolute ran-
dom variable |X| are equal to

E[|X|k] =

∫
R
|x|k p(x) dx

= 2

∫ ∞
0

xk p(x) dx

=
1√
π
σk2k/2Γ

(
k + 1

2

)
. (9)

We have the expression for the Gamma function

Γ(z) =

√
2π

z

(z
e

)z (
1 +

1

12z
+ o

(
1

z

))
. (10)

Substituting (10) into the central normal absolute mo-
ment (9), we obtain

E[|X|k] =
1√
π
σk2k/2

√
4π

k + 1

(
k + 1

2e

)(k+1)/2

·
(

1 +
1

6(k + 1)
+ o

(
1

k

))
=

2σk√
2e

(
k + 1

e

)k/2(
1 +

1

6(k + 1)
+ o

(
1

k

))
.

Then the roots of absolute moments can be written in
the form of

‖X‖k =
σ

e1/(2k)

√
k + 1

e

(
1 +

1

6(k + 1)
+ o

(
1

k

))1/k

=
σ

e

√
k + 1

e1/(2k)

(
1 +

1

6(k + 1)k
+ o

(
1

k2

))
=
σ

e
ck
√
k + 1.

Here the coefficient ck denotes

ck =
1

e1/(2k)

(
1 +

1

6(k + 1)k
+ o

(
1

k2

))
→ 1,

with k →∞. Thus, asymptotic equivalence holds

‖X‖k �
√
k + 1 �

√
k.

Lemma B.2 (Nonlinearity moments). Let X be sym-
metric random variable, φ(x) be nonlinear function
satisfying extended envelope property, then the follow-
ing asymptotic equivalence holds

‖φ(X)‖k � ‖X‖k.

Proof. According to extended envelope property,
E[φ(X)k] � E[Xk]. That means there exist constants
d and D such that for all k ∈ N it holds

d ≤ E[φ(X)k]

E[|X|k]
≤ D.

Observing that

d′ ≤ d1/k ≤ ‖φ(X)‖k
‖X‖k

≤ D1/k ≤ D′,

the bounding constants are d′ = min{1, d}, D′ =
max{1, D}. It yields asymptotic equivalence

‖φ(X)‖k � ‖X‖k.

The lemma is proved.

Lemma B.3 (Multiplication moments). Let W and
X be independent random variables such that W ∼
N (0, σ2) and for some p > 0 it holds

‖X‖k � kp. (11)

Let Wi be independent copies of W , and Xi be copies
of X, i = 1, . . . ,H with non-negative covariance be-
tween moments of copies

Cov
[
Xs
i , X

t
j

]
≥ 0, for i 6= j, s, t ∈ N. (12)

Then we have the following asymptotic equivalence

∥∥∥ H∑
i=1

WiXi

∥∥∥
k
� kp+1/2. (13)

Proof. Let us proof the statement, using mathematical
induction.

Base case: show that the statement is true for H = 1.
For independent variables W and X, we have

‖WX‖k =
(
E[|WX|k]

)1/k
=
(
E[|W |k]E[|X|k]

)1/k
= ‖W‖k‖X‖k.

(14)

Since the random variable W follows Gaussian distri-
bution, then Lemma B.1 implies

‖W‖k �
√
k. (15)
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Substituting assumption (11) and weight norm asymp-
totic equivalence (15) into (14) leads to the desired
asymptotic equivalence (13) in case of H = 1.

Inductive step: show that if for H = n−1 the state-
ment holds, then for H = n it also holds.

Suppose for H = n− 1 we have

∥∥∥n−1∑
i=1

WiXi

∥∥∥
k
� kp+1/2. (16)

Then, according to the covariance assumption (12), for
H = n we get

∥∥∥ n∑
i=1

WiXi

∥∥∥k
k

=
∥∥∥n−1∑
i=1

WiXi +WnXn

∥∥∥k
k

(17)

≥
k∑
j=0

Cjk

∥∥∥n−1∑
i=1

WiXi

∥∥∥j
j

∥∥∥WnXn

∥∥∥k−j
k−j

.

(18)

Using the equivalence definition (Def. B.1), from
the induction assumption (16) for all j = 0, . . . , k there
exists absolute constant d1 > 0 such that

∥∥∥n−1∑
i=1

WiXi

∥∥∥j
j
≥
(
d1 j

p+1/2
)j
. (19)

Recalling previous equivalence results in the base case,
there exists constant m2 > 0 such that∥∥∥WnXn

∥∥∥k−j
k−j
≥
(
d2 (k − j)p+1/2

)k−j
. (20)

Substitute obtained bounds (19) and (20) into equa-
tion (17) with denoted d = min{d1, d2}, obtain

∥∥∥ n∑
i=1

WiXi

∥∥∥k
k
≥ dk

k∑
j=0

Cjk
[
jj (k − j)k−j

]p+1/2

= dk kk(p+1/2)
k∑
j=0

Cjk

[( j
k

)j(
1− j

k

)k−j]p+1/2

.

(21)

Notice the lower bound of the following expression

k∑
j=0

Cjk

[( j
k

)j(
1− j

k

)k−j]p+1/2

≥
k∑
j=0

[( j
k

)j(
1− j

k

)k−j]p+1/2

≥ 2. (22)

Substituting found lower bound (22) into (21), get∥∥∥ n∑
i=1

WiXi

∥∥∥k
k
≥ 2 dk kk(p+1/2) > dk kk(p+1/2). (23)

Now prove the upper bound. For random variables Y
and Z the Holder’s inequality holds

‖Y Z‖1 = E [|Y Z|] ≤
(
E
[
|Y |2

]
E
[
|Z|2

])1/2
= ‖Y Z‖2‖Y Z‖2.

Holder’s inequality leads to the inequality for Lk norm

‖Y X‖kk ≤ ‖Y ‖k2k‖Z‖k2k. (24)

Obtain the upper bound of ‖
∑n
i=1WiXi‖

k

k
from

the norm property (24) for the random variables Y =(∑n−1
i=1 WiXi

)k−j
and Z = (WnXn)

j

∥∥∥ n∑
i=1

WiXi

∥∥∥k
k

=
∥∥∥n−1∑
i=1

WiXi +WnXn

∥∥∥k
k

(25)

≤
k∑
j=0

Cjk

∥∥∥n−1∑
i=1

WiXi

∥∥∥j
2j

∥∥∥WnXn

∥∥∥k−j
2(k−j)

.

(26)

From the induction assumption (16) for all j = 0, . . . , k
there exists absolute constant D1 > 0 such that

∥∥∥n−1∑
i=1

WiXi

∥∥∥j
2j
≤
(
D1 (2j)p+1/2

)j
. (27)

Recalling previous equivalence results in the base case,
there exists constant D2 > 0 such that∥∥∥WnXn

∥∥∥k−j
2(k−j)

≤
(
D2

(
2(k − j)

)p+1/2
)k−j

. (28)

Substitute obtained bounds (27) and (28) into equa-
tion (25) with denoted D = max{D1, D2}, obtain

∥∥∥ n∑
i=1

WiXi

∥∥∥k
k
≤ Dk

k∑
j=0

Cjk

[(
2j
)j(

2(k − j)
)k−j]p+1/2

.

Find an upper bound for
[(

1− j
k

)k−j ( j
k

)j]p+1/2

.

Since expressions
(
1− j

k

)
and

(
j
k

)
are less than 1, then[(

1− j
k

)k−j ( j
k

)j]p+1/2

< 1 holds for all natural num-

bers p > 0. For the sum of binomial coefficients it
holds the inequality

∑k
j=0 C

j
k < 2k. So the final upper



Bayesian neural networks increasingly sparsify their units with depth

bound is ∥∥∥ n∑
i=1

WiXi

∥∥∥k
k
≤ 2kDk (2k)k(p+1/2). (29)

Hence, taking the k-th root of (23) and (29), we have
upper and lower bounds which imply the equivalence
for H = n and the truth of inductive step

d′kp+1/2 ≤
∥∥∥ n∑
i=1

WiXi

∥∥∥
k
≤ D′kp+1/2,

where d′ = d and D′ = 2p+3/2D. Since both the base
case and the inductive step have been performed, by
mathematical induction the equivalence holds for all
H ∈ N ∥∥∥ H∑

i=1

WiXi

∥∥∥
k
� kp+1/2.

C Covariance theorem

Theorem C.1 (Non-negative covariance between hid-
den units). Consider the deep neural network described
in Section 3 with assumptions from Section 3.1. The
covariance between hidden units of the same layer is
non-negative. Moreover, for given `-th hidden layer
units h(`) and h̃(`), it holds

Cov

[(
h(`)

)s (
h̃(`)

)t]
≥ 0, where s, t ∈ N.

For first hidden layer ` = 1 there is equality for all s
and t.

Proof. Recall the covariance definition for random
variables X and Y

Cov [X,Y ] = E[XY ]− E[X]E[Y ]. (30)

For Gaussian random variables X and Y , Cov [X,Y ] =
0 means X and Y are independent.

The proof is based on induction with respect to the
hidden layer number.

In the proof let us make notation simplifications:
w`
m = W `

m and w`mi = W `
mi for all minH`. If the

index m is omitted, then w` is some the vectors w`
m,

w`i is i-th element of the vector w`
m.

1. First hidden layer. Consider the first hidden
layer units h(1) and h̃(1). The covariance between units

is equal to zero

Cov
[
h(1), h̃(1)

]
= Cov

[
φ(g(1)), φ(h̃(1))

]
= Cov

[
φ(w(1)x), φ(w̃(1)x)

]
= 0,

since the weights w(1) and w̃(1) are from N (0, σ2
w) and

independent. Thus, the first hidden layer units are
independent and its covariance (30) equals to 0.

Moreover, since h(1) and h̃(1) are independent, then(
h(1)

)s
and

(
h̃(1)

)t
are also independent and it holds

Cov

[(
h(1)

)s (
h̃(1)

)t]
= 0, where s, t ∈ N.

2. Next hidden layers. Assume that (` − 1)-th
hidden layer hasH`−1 hidden units, where ` > 1. Then
`-th hidden layer pre-nonlinearity is equal to

g(`) =

H`−1∑
i=1

w
(`)
i h

(`−1)
i . (31)

We want to prove that the covariance (30) between `-th
hidden layer pre-nonlinearities is non-negative. Let us
show firstly the idea of the proof in the case H`−1 =
1 and then briefly the proof for any finite H`−1 >
1, H`−1 ∈ N.

2.1 One hidden unit. In the case H`−1 = 1, the
covariance (30) can be written in the form of

Cov

[(
w(`)h(`−1)

)s
,
(
w̃(`)h(`−1)

)t]
(32)

= E
[(
w(`)

)s]
E
[(
w̃(`)

)t]
E
[(
h(`−1)

)s+t]
− E

[(
w(`)

)s]
E
[(
w̃(`)

)t]
E
[(
h(`−1)

)s]
E
[(
h(`−1)

)t]
(33)

Regarding that the weighs are zero-mean distributed,
its moments are equal to zero with odd order. When
s (or t) is odd, the weight moment equals to zero

E
[(
w(`)

)s]
= 0 (or of order t) and both terms in equa-

tion (32) are equal to zero. Consider even moment
orders s = 2s1 and t = 2t1, where s1, t1 ∈ N.

For obtaining the non-negative covariance, we need to
prove that

E
[(
h(`−1)

)2(s1+t1)]
≥ E

[(
h(`−1)

)2s1]
E
[(
h(`−1)

)2t1]
.

Since a function f(x1, x2) = x1x2 is convex for x1 ≥ 0
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and x2 ≥ 0, then, taking x1 =
(
h(`−1)

)2s1
and x2 =(

h(`−1)
)2t1

, we have

E[f(x1, x2)] = E
[(
h(`−1)

)2(t1+s1)]
(34)

and

f(E[x1],E[x2]) = E
[(
h(`−1)

)2s1]
E
[(
h(`−1)

)2t1]
.

(35)
According to Jensen’s inequality for convex function
f , the expression (34) is more or equal to the expres-
sion (35) and the condition we need (34) is satisfied.

2.1. H hidden units. Now let us consider the covari-
ance between pre-nonlinearities (31) for H`−1 = H >
1. Raise the sum in the brackets to the power

( H∑
i=1

w
(`)
i h

(`−1)
i

)s
=

=

s∑
nH=0

CnHs

(
w

(`)
H h

(`−1)
H

)nH (H−1∑
i=1

w
(`)
i h

(`−1)
i

)s−nH
= · · · =

=

s∑
nH=0

s−nH∑
nH−1=0

· · ·
s−

∑H
i=2 ni∑

n1=0

Cn1:nH ·

·
H∏
i=2

[(
w

(`)
i h

(`−1)
i

)ni] (
w

(`)
1 h

(`−1)
1

)s−∑H
i=1 ni

=

s∑
nH=0

s−nH∑
nH−1=0

· · ·
s−

∑H
i=2 ni∑

n1=0

Cn1:nHAn1:nH

=
∑
n1:nH

Cn1:nHAn1:nH

where Cn1:nH = CnHs
∏H−1
i=1 Cni

s−
∑H
r=i+1 nr

. And the

same way for the second bracket

( H∑
i=1

w̃
(`)
i h

(`−1)
i

)t
=

=

t∑
mH=0

t−mH∑
mH−1=0

· · ·
t−

∑H
i=2mi∑

m1=0

Cm1:mHBm1:mH =

=
∑

m1:mH

Cm1:mHBm1:mH .

So the covariance in our notations can be written in

the form of

Cov

(H`−1∑
i=1

w
(`)
i h

(`−1)
i

)s
,
(H`−1∑
i=1

w
′(`)
i h

(`−1)
i

)t =

=
∑
n1:nH

∑
m1:mH

Cm1:mHCn1:nHE [An1:nHBm1:mH ]

−
∑
n1:nH

∑
m1:mH

Cm1:mHCn1:nHE [An1:nH ]E [Bm1:mH ] .

For covariance being non-negative it is enough
to show that the difference E [An1:nHBm1:mH ] −
E [An1:nH ]E [Bm1:mH ] is non-negative for all the num-
bers ni and mi. Consider some term with numbers
n1, . . . , nH ,m1, . . . ,mH . Since the weights are Gaus-
sian and independent, we have the following equation,
omitting the superscript for simplicity,

E [An1:nHBm1:mH ] =

= Wn1:nHW̃m1:mH ·E

[
h
k−

∑H
i=1(ni+mi)

1

H∏
i=2

hni+mii

]
,

E [An1:nH ]E [Bm1:mH ] =

= Wn1:nHW̃m1:mH ·

· E

[
h
s−

∑H
i=1 ni

1

H∏
i=2

hnii

]
E

[
h
t−

∑H
i=1mi

1

H∏
i=2

hmii

]
,

where Wn1:nHW̃m1:mH is the product of weights mo-
ments

Wn1:nHW̃m1:mH =

= E
[
w
s−

∑H
i=1 ni

1

]
E
[
w̃
t−

∑H
i=1mi

1

] H∏
i=2

E [wnii ]E [w̃mii ] .

For Wn1:nHW̃m1:mH not equal to zero, all the powers

must be even: 2s1 = s−
∑H
i=1 ni, 2s2 = n2, . . . , 2sH =

nH , 2t1 = t −
∑H
i=1mi, 2t2 = m2, . . . , 2tH = mH .

Now we need to prove

E

[
H∏
i=1

h
2(si+ti)
i

]
≥ E

[
H∏
i=1

h2sii

]
E

[
H∏
i=1

h2tii

]
(36)

Since a function f(x1, x2) = x1x2 is convex for x1 ≥ 0

and x2 ≥ 0, then, taking x1 =
∏H
i=1 h

2si
i and x2 =∏H

i=1 h
2ti
i , we have

E
[
f(x1, x2)

]
= E

[
H∏
i=1

h
2(si+ti)
i

]
(37)
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and

f
(
E[x1],E[x2]

)
= E

[
H∏
i=1

h2sii

]
E

[
H∏
i=1

h2tii

]
. (38)

According to Jensen’s inequality for convex function
f , the expression (37) is more or equal to the expres-
sion (38) and the condition we need (36) is satisfied.

3. Post-nonlinearities.

Let show the proof for the ReLU nonlinearity.

The distribution of the `-th hidden layer pre-
nonlinearity g(`) is the sum of symmetric distributions,
which are products of Gaussian variables w(`) and non-
negative ReLU output, i.e. (`−1)-th hidden layer post-
nonlinearity h(`−1). It leads that g(`) follows symmet-
ric distribution and the following inequality∫ +∞

−∞

∫ +∞

−∞
gg′ p(g, g′) dg dg′ ≥

≥
∫ +∞

−∞
g p(g) dg ·

∫ +∞

−∞
g′ p(g′) dg′

implies the same inequality for positive part∫ +∞

0

∫ +∞

0

gg′ p(g, g′) dg dg′ ≥

≥
∫ +∞

0

g p(g) dg ·
∫ +∞

0

g′ p(g′) dg′.

Notice that the equality above is the ReLU function
output as∫ +∞

−∞
φ(x) p(x) dx =

∫ +∞

0

x p(x) dx.

and for symmetric distribution we have∫ +∞

0

x p(x) dx =
1

2
E [|X|] . (39)

That means if non-negative covariance is proven for
pre-nonlinearities, for post-nonlinearities it is also non-
negative. Omit the proof for the other nonlinearities
with extended envelope property, since instead of pre-
cise equation (39), the asymptotic equivalence for mo-
ments will be used for positive part and for negative
part — precise expectation expression which depends
on certain nonlinearity.
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