
HAL Id: hal-01950656
https://hal.science/hal-01950656

Submitted on 11 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering Milky Way’s Globulars: a Bayesian
Nonparametric Approach

Julyan Arbel

To cite this version:
Julyan Arbel. Clustering Milky Way’s Globulars: a Bayesian Nonparametric Approach. Statistics for
Astrophysics: Bayesian Methodology, pp.113-137, 2018. �hal-01950656�

https://hal.science/hal-01950656
https://hal.archives-ouvertes.fr

Clustering Milky Way’s Globulars: a Bayesian Nonparamet-
ric Approach

Julyan Arbel1,󰂏

1Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France.

Abstract. This chapter presents a Bayesian nonparametric approach to clus-
tering, which is particularly relevant when the number of components in the
clustering is unknown. The approach is illustrated with the Milky Way’s glob-
ulars, that are clouds of stars orbiting in our galaxy. Clustering globulars is key
for better understanding the Milky Way’s history. We define the Dirichlet pro-
cess and illustrate some alternative definitions such as the Chinese restaurant
process, the Pólya Urn, the Ewens sampling formula, the stick-breaking repre-
sentation through some simple R code. The Dirichlet process mixture model is
presented, as well as the R package BNPmix implementing Markov chain Monte
Carlo sampling. Inference for the clustering is done with the variation of infor-
mation loss function.

1 R requirements

The code used during the presentation of the Stat4Astro summer school is available at the url:
https://github.com/jarbel/Stat4Astro-Autrans. Additionally, the code used to generate the
plots of this chapter is displayed in the text. This requires the following R packages: ggplot2,
hexbin, viridis, gridExtra, ggpubr, rgl for graphical tools, reshape2 for operations on
similarity matrices, mcclust and mcclust.ext for clustering estimation.

needed_packages <- c("ggplot2", "hexbin", "viridis", "gridExtra",
"ggpubr", "rgl", "reshape2", "dplyr", "mcclust")

new_packages <- needed_packages[
!(needed_packages %in% installed.packages()[, "Package"])]

if (length(new_packages))
install.packages(new_packages)

lapply(needed_packages, require, character.only = TRUE)

download.file(
url = "http://wrap.warwick.ac.uk/71934/1/mcclust.ext_1.0.tar.gz",
destfile = "mcclust.ext_1.0.tar.gz")

󰂏e-mail: julyan.arbel@inria.fr

https://stat4astro2017.sciencesconf.org/
https://github.com/jarbel/Stat4Astro-Autrans

install.packages("mcclust.ext_1.0.tar.gz", repos = NULL, type = "source")
file.remove("mcclust.ext_1.0.tar.gz")
library("mcclust.ext")

2 Introduction and motivation

Globulars1 are sets of stars orbiting some galactic center. The globular data we are considering
here was studied in the 2015 Edition of the Stat4Astro school by [10] who used phylogenetic
classification. The data are available on GitHub and can be downloaded as follows:

spectra <- read.csv(
"https://github.com/jarbel/Stat4Astro-Autrans/blob/
master/Talk_Arbel/bnp_code/data/GC4c_groups.dat",
sep="")

It lists a total of dim(spectra)[1]=54 globulars for which dim(spectra)[2]=7 variables
are available2: GC stands for the globular identifier; logTe is the logarithm of the maximum
effective temperature on the horizontal branch; FeH denotes the metallicity; MV is the absolute
V magnitude, which relates to both the brightness and the mass of the globular; Age of
the globular; Grp4c and Grp3c are the phylogenetic classifications of [10] obtained by using
respectively the four variables logTe, FeH, MV, Age and the three variables logTe, FeH,
MV.

[1] 54 7

[1] "GC" "logTe" "FeH" "MV" "Age" "Grp4c" "Grp3c"
names(spectra)

[1] "GC" "logTe" "FeH" "MV" "Age" "Grp4c" "Grp3c"

By using the additional spatial coordinates available on the Wikipedia list2, we can obtain
a spatial scatterplot of the globulars. In Figure 1, the globulars present in the study (that is
for which we have measurements for the above mentionned variables) are depicted in purple,
the others in green

The two clusterings Grp4c and Grp3c are of respective size 3 and 4, and the cluster sizes
are obtained with the table command as follows:

table(spectra$Grp3c)

##
1 2 3 4
17 7 21 9

1Globulars are more commonly called globular clusters in the literature, though we shall prefer the phrasing
‘globulars’ to ‘globular clusters’ in order to avoid ambiguous terms like ‘globular clusters clusters’.

2A more comprehensive list of globulars can be accessed at https://en.wikipedia.org/wiki/List_of_
globular_clusters, though it contains information about magnitude and diameter only.

https://en.wikipedia.org/wiki/List_of_globular_clusters

Figure 1: Globular coordinates. Gobulars included in the present study are depicted in purple,
the others in green

table(spectra$Grp4c)

##
1 2 3
25 11 18

From now on, we will focus on the three variables logTe, FeH, MV only. A 2-D repre-
sentation for each pair of variables, as well as a side density plot for each variable can be
obtained by:

col <- plasma(1)
alpha <- .8
spVF <- ggscatter(spectra, x = "MV", y = "FeH", color = col,

size = 3, alpha = alpha)+ border()
spLF <- ggscatter(spectra, x = "logTe", y = "FeH", color = col,

size = 3, alpha = alpha)+ border()
spLV <- ggscatter(spectra, x = "logTe", y = "MV", color = col,

size = 3, alpha = alpha) + border()
Vplot <- ggdensity(spectra, "MV", fill = col)
Lplot <- ggdensity(spectra, "logTe", fill = col)
Fplot <- ggdensity(spectra, "FeH", fill = col) + rotate()
Vplot <- Vplot + clean_theme()
Lplot <- Lplot + clean_theme()
Fplot <- Fplot + clean_theme()
ggarrange(Vplot, Lplot, NULL,

spVF, spLF, Fplot,
NULL, spLV, NULL,
ncol = 3, nrow = 3, align = "hv",
widths = c(2, 2, 1), heights = c(1, 2, 2))

−2.0

−1.5

−1.0

−0.5

−10 −9 −8 −7 −6
MV

Fe
H

−2.0

−1.5

−1.0

−0.5

3.8 4.0 4.2 4.4 4.6
logTe

Fe
H

−10

−9

−8

−7

−6

3.8 4.0 4.2 4.4 4.6
logTe

M
V

These scatter plots hardly identify any clustering structure amongst the globulars. How-
ever, astrophysicists expect several populations of globulars identified by similar time of for-
mation, and similar chemical and physical conditions. The granularity of the populations of
globulars may depend on the size of the considered sample: a small number of observations
would likely lead to little discriminating power, while a large sample size would provide more
evidence for identifying more distinct clusters. This setting where the number of clusters
might grow with the sample size is well suited to a Bayesian nonparametric approach to
clustering, which this chapter aims at introducing.

The rest of the chapter is organised as follows. Model-based clustering and the Dirichlet
process are introduced in Section 3 and Section 4. We conclude with an illustration to the
Globular dataset.

3 Model-based clustering

Mixture models are creating flexible models starting from simple ones. For instance, combin-
ing two unimodal densities p1 and p2 into πp1+(1−π)p2, for π ∈ (0, 1) can create a bimodal
distribution. The aim of mixtures is to increase the modelling capacities by combining simple
distributions into flexible distributions which might display multimodality, skewness, etc. A
mathematical definition of a mixture density is a convex combination of densities. Each den-
sity can be interpreted as a sub-population. Observations are associated to sub-populations
through latent (un-observed) variables called allocation variables, which play a major role in
devising sampling algorithms.

Consider a parametric family of distributions with densities p(·|φ), φ element of some
parameter space Θ, with respect to a common measure. Broadly speaking, mixtures operate
in a discrete way (finite or infinite countable number of classes) or in a continuous way
(infinite uncountable number of classes). As an example of continuous mixtures, a Student
t-distribution can be written as a mixture of Gaussian kernels with fixed mean and variance

averaged over an inverse gamma distribution (playing the role of a mixing distribution). We
will instead focus here on discrete mixtures.

Going back to the simple mixture of two densities, the mixture density takes on the form
πp1(·|φ1) + (1 − π)p2(·|φ2), where the unknown parameters are (π,φ1,φ2). Modelling data
x = (x1, . . . , xN) with such a density can be thought as the following two-step procedure, for
i ∈ {1, . . . , N}:

1. toss a coin, which samples from one of the two classes θi ∈ {φ1,φ2}. In other words,
the class identified with parameter φ1 has probability π, while the φ2 class has the
complement probability 1− π;

2. sample the observation from the corresponding density xi ∼ p(x|θi).

The coin-tossing step can be equally thought of as a throw of dice whose number of facets
equals the number of components in the mixture, and each facet has a probability given by
the component weight. This mixing distribution takes the mathematical form of a convex
combination πδφ1

+ (1− π)δφ2
of Dirac masses at φ1 and φ2, each of which identifies with a

class of the mixture.
We speak about nonparametric (discrete) mixtures when the number of classes is (count-

able) infinite. In which case the dice has an infinite number of facets. We index the classes
by the positive integers, and denote the parameters by φk and weights by πk. Then those
weights must sum up to one, and the mixing measure can be written as

G =

∞󰁛

k=1

πkδφk
,

which is a probability measure. Sampling from the mixture distribution

pG(·) =
∞󰁛

k=1

πkp(·|φk)

can again be done in the sequential way, for i ∈ {1, . . . , N}:

1. throw the infinite dice G: θi ∼ G;

2. sample the observation from the corresponding density xi ∼ p(x|θi).

The mixture density pG has an infinite number of parameters: the vector of weights
(π1,π2, . . .) which is an element of the infinite simplex, and the vector of class parameters
(φ1,φ2, . . .). A Bayesian approach to the problem requires endowing the parameters with
some prior distribution. The Dirichlet process is the most prominent example of such a prior
distribution. It is parametrised by the base measure, denoted by G0, and the precision param-
eter, a positive scalar denoted by α. Figure 2 displays plate representations of a Bayesian and
a non Bayesian (or frequentist) approach to the mixture model. Such a plate representation
makes it clear that a Bayesian approach add a hierarchical layer (that of the prior) to the
non Bayesian set-up.

Choosing the number of components to include in a finite mixture is often a delicate
question, as one rarely knows it a priori. There are mainly three strategies: i) to fit several
finite mixture models with a range of plausible values for the number of components; then
choose the model which maximises some information criterion; ii) consider the number of

(a) Frequentist setting: non random G. (b) Bayesian approach: G ∼ DP(αG0).

Figure 2: Plate representations of a nonparametric mixture with mixing measure G.

components as Bayesian parameter, which is to say endow it with a prior distribution on
positive integers, such as a Poisson distribution. Such a model is termed a mixture of finite
mixtures (MFM) by [15]; or iii) let this number be a priori infinite (or as large as needed)
and select it or estimate it a posteriori. We focus on this last option in the next section.

4 Bayesian nonparametrics around the Dirichlet process

Most of the models described in the previous chapters of this book are parametric: they
can be described by a finite and fixed number of parameters. This number of parameters is
independent of the dataset. Very convenient models in a Bayesian setting include conjugate
models, where the posterior distribution has the same form as the prior distribution. For ex-
ample, normal prior and normal likelihood, or beta prior and binomial likelihood, or gamma
prior and Poisson likelihood. In contrast, we are dealing in this chapter with nonparametric
models. Let us put it straightaway, the nonparametric saying is not the most fortunate, as
nonparametric models do have parameters, many of them. [6] define a Bayesian nonparamet-
ric model as a probability model with infinitely many parameters, also referred to by [16] as
a model with massively many parameters. I think there are three ways this large number of
parameters can be thought of: the number of parameters is infinite, or it is random, or it is
growing with the data sample size.

It goes without saying that parametric models are easier to handle than their nonpara-
metric counterpart, that are computationally and analytically more challenging. It is also
true that interpreting a small and fixed number of parameters is likely to be easier than for,
say, an infinite number of them. However, the computational and analytical extra burden
is the price to pay for flexibility. Nonparametric models are less prone to misspecification
than parametric models, which require a strong belief in the particular structure they imply.
Without such a belief in the parametric assumption, a model might not be reliable. By na-
ture, nonparametric models are well suited to study curves in general, so typical applications
include density estimation and regression estimation. Clustering is also an example which
has historically played a central role within Bayesian nonparametrics.

In this section we provide basic facts about the Dirichlet process, precisely different pos-
sible representations: the definition via the finite dimensional marginal distribution in Def-
inition 4.2, the Chinese restaurant process in Proposition 4.3, the posterior distribution in
Theorem 4.1, the Pólya Urn in Proposition 4.2 and the stick-breaking representation in The-
orem 4.2.

4.1 Definition

The Dirichlet process [9] plays a central role in Bayesian nonparametrics. A Dirichlet process
can be viewed as a random variable where the variable is a probability measure. It has two
parameters: the base measure, denoted by G0, and the precision parameter, a positive scalar
denoted by α.

[9] defines the Dirichlet process by its finite marginal distributions: ie, how does the ran-
dom measure spread its mass in the sample space? The answer is: as a Dirichlet distribution
(which, in passing, explains the name). Recall that the Dirichlet distribution generalises the
Beta distribution to any dimension k ≥ 2. The Dirichlet distribution in Rk is restricted to
the unit simplex, with density parametrised by k positive scalars α1, . . . ,αk and proportional
to

xα1−1
1 · · ·xαk−1

k .

Definition 4.1 (Dirichlet distribution). A Dirichlet distribution on a simplex ∆K is a prob-
ability distribution with parameters αi > 0 and a density function

f(x1, . . . , xK ;α1, . . . ,αK) =
1

B(α)

K󰁜

i=1

xαi−1
i .

It is common to refer to Dirichlet distribution as Dir(x1, . . . , xk). Let us remark that

Remark 4.1. The Dirichlet distribution is conjugate prior for the multinomial distribution.

Consider a finite partition of the space, denoted by (A1, . . . , Ak). The mass allocated by
a Dirichlet process G to each region Aj is a random variable G(Aj), thus giving rise to a
random vector G(A1), . . . , G(Ak) for the whole partition. Then G follows a Dirichlet process
with parameters α and G0 if the random vector G(A1), . . . , G(Ak) is distributed as a Dirichlet
distribution with parameters αG0(A1), . . . ,αG0(Ak).

Definition 4.2 (Dirichlet process, [9]). A random probability measure G follows a Dirichlet
process with parameters α and G0 on some space if for any finite partition (A1, . . . , Ak) of
the space,

(G(A1), . . . , G(Ak)) ∼ Dir(αG0(A1), . . . ,αG0(Ak)).

Note that this definition entails the strong result that such finite dimensional distributions
consistently define a stochastic process. Figure 3 shows different realisations of a Dirichlet
process in R2, with a standard Gaussian base measure G0 and precision parameter equal
to one, and with different partitions. Of course, not all of the sample space R2 can be
represented, but most of the mass is captured in the represented part of the space.

−2

0

2

−2 0 2
x

y

500

1000

count

−2

0

2

−2 0 2
x

y

200

400

600

800
count

−2

0

2

−2 0 2
x

y

0.05

0.10

0.15

0.20
level

−2

0

2

−2 0 2
x

y

250

500

750

1000

1250
count

−2

0

2

−2 0 2
x

y

200

400

600

count

−2

0

2

−2 0 2
x

y

0.05

0.10

0.15

level

−2

0

2

−2 0 2
x

y

500

1000

count

−2

0

2

−2 0 2
x

y

200

400

600

800
count

−2

0

2

−2 0 2
x

y

0.05

0.10

0.15

0.20

level

Figure 3: Dirichlet process realisations in R2, varying in rows. Different partitions of R2 are
used in columns. The base measure G0 is a standard Gaussian and the precision parameter
is equal to one.

4.2 Properties

From Definition 4.2, we see that any measure set A of the space receives mass according to
the following Beta distribution

P (A) ∼ Beta(αG0(A),α(1−G0(A)). (1)

We have the following moments.

Proposition 4.1 (Dirichlet process moments). If G ∼ DP(αG0), then for any measurable
sets A and B

E[G(A)] = G0(A)

Var[G(A)] =
G0(A)(1−G0(A))

1 + α

Cov[G(A), G(B)] =
G0(A ∩B)−G0(A)G0(B)

1 + α

Proof. We will make use of Equation (1). From this we obtain

E(P (A)) =
αP0(A)

α(P0(A) + 1− P0(A))
= P0(A)

and

Var(P (A)) =
α2P0(A)(1− P0(A))

α2(α+ 1)
.

We derive the covariance term in two cases, firstly taking into consideration the one with A∩
B = ∅. In that case the sample space is partitioned into A,B and (A∪B)c, the complementary
set of A∪B, which is equal to (A∪B)c = Ac∩Bc. Therefore we may write a joint probability
vector 󰀃

P (A), P (B), P (Ac ∩Bc)
󰀄
∼ Dir

󰀃
αP0(A),αP0(B),αP0(A

c ∩Bc)
󰀄
,

and hence Cov(P (A), P (B)) = −P0(A)P0(B)/(1 + α). In the more general case one may
decompose

A = (A ∩B) ∪ (A ∩Bc)

B = (B ∩A) ∪ (B ∩Ac),

so that

Cov(P (A), P (B)) = Cov(P (A ∩B) + P (A ∩Bc), P (B ∩A) + P (B ∩Ac))

and so forth using the linearity of covariance.

In passing, this shows that any two measurable parts of the space which are non inter-
secting receive mass from the Dirichlet process with negative correlation. Which makes sense
since the total measure is constrained to be a probability measure, so more mass in some part
of the space means less in the rest of the space.

Another central property is the conjugacy of the Dirichlet process: if some data are
sampled from a Dirichlet process G, then the posterior distribution of G conditional on the
data is still a Dirichlet process.

Theorem 4.1 (Dirichlet process posterior distribution, [9]). Let data X = (X1, . . . , Xn) be
distributed according to the model

P ∼ DP(αG0)

X1, . . . , Xn|G
iid∼ G.

Then the posterior distribution of G is given by

G|X1, . . . , Xn ∼ DP

󰀣
αP0 +

n󰁛

i=1

δi

󰀤
.

Proof. This posterior can be obtained by remarking that for any finite measurable partition
(A1, . . . , Ak), the posterior distribution of P (A1), . . . , P (Ak) depends on the observations only
via their cell counts (this comes from the tail-free property of the DP). Denote Nj = #{1 ≤
i ≤ n : xi ∈ Aj}, i.e. the number of observations in each cell of the partition of (A1, . . . , Ak).
Then we have 󰀃

P (A1), . . . , P (Ak)
󰀄󰀏󰀏X1:n

d
=

󰀃
P (A1), . . . , P (Ak)

󰀄󰀏󰀏N1:k.

Let us use the shorthand notation: α = (α1, . . . ,αk) = (P (A1), . . . , P (Ak)) and N =
(N1, . . . , Nk). Then 󰀝

α ∼ Dirk(αP0(A1), . . . ,αP0(Ak)),
N |P ∼ Multinomk(n,α),

and hence we obtain the prior of the form

p(α) ∝ α
αP0(A1)−1
1 · · ·ααP0(Ak)−1

k ,

while sampling model is
p(N |α) ∝ αN1

1 · · ·αNk

k .

This results in the posterior of form

p(α|N) ∝ α
αP0(A1)+N1−1
1 · · ·ααP0(Ak)+Nk−1

k = Dirk
󰀃
αP0(A1) +N1, . . . ,αP0(Ak) +Nk

󰀄
.

Note that the notational convention adopted for the parameters of the Dirichlet process
is interesting here: it provides the simple ‘product’ parameter αP0 +

󰁓n
i=1 δi, which can also

be decoupled into a posterior precision parameter αn and a posterior base measure Gn given
by

αn = α+ n,

Gn =
α

α+ n
P0 +

1

α+ n

n󰁛

i=1

δXi
.

This posterior conjugacy, in turn, provides a simple form of the predictive distribution,
that is the distribution of a new observation conditional on the data. This predictive is
referred to as the Pólya urn, or Blackwell-MacQueen urn.

Proposition 4.2 (Predictive distribution, Pólya urn, [7]). In the model of Proposition 4.1,
the predictive distribution for a new observation Xn+1 is given by

Xn+1|X1, . . . , Xn ∼ α

α+ n
P0 +

1

α+ n

n󰁛

i=1

δi.

Proof. This property is a result of taking the expected value of the posterior given in Propo-
sition 4.1.

Such a predictive distribution induces ties in the observations with positive probability.
More precisely, n observations sampled from a DP induce a partition of the integers 1, . . . , n.
The distribution of this random partition is called the Chinese restaurant process3. This

3According to [1], the restaurant analogy is due to Jim Pitman and Lester Dubins.

culinary metaphor describes the random partition induced by the DP as follows. Customers
join a populated table with probability nj/(α + n), where nj denotes the number of clients
already sitting around the table or sit at new table with probability α/(α+ n).

Proposition 4.3 (Chinese restaurant process, [2]). A random sample X1:n from a DP with
precision parameter α induces a partition of {1, . . . , n} into k sets of sizes n1, . . . , nk with
probability

p(n1, . . . , nk) = p({n1, . . . , nk}) = αk Γ(α)

Γ(α+ n)

k󰁜

j=1

Γ(nj).

Proof. We will use the Pólya urn schema slightly changed by using n1, . . . , nk

P(Xn+1|X1:n) =
α

α+ n
P0 +

1

α+ n

k󰁛

j=1

njδX∗
j
.

By exchangeability, the distribution of {n1, . . . , nk} does not depend on the order of the
observations. Let’s compute p(n1, . . . , pk) as the probability of one draw where the first table
consists of first n1 observations etc.

To proceed, let us use Pólya urn scheme: we denote n̄j =
󰁓j

i=1 ni and hence n̄k = n,
the total number of observations. We can observe the following pattern: first ball opens new
table, following nj − 1 ones fill in that table and so forth. That quantity can be rewritten as

αk

α(α+ 1) . . . (α+ n− 1)

k󰁜

j=1

(nj − 1)!,

where one can rewrite both terms using Gamma function Γ(x) =
󰁕∞
0

ux−1e−udu:

α(α+ 1) . . . (α+ n− 1) =
Γ(α+ n)

Γ(α)
,

and (nj − 1)! = Γ(nj).
Note that for ordered partitions we have

p̄(n1, . . . , nk) =
p(n1, . . . , nk)

k!
.

The following lines of code sample observations from a Dirichlet process with a base
measure in argument, which is also interpreted as the color distribution in the Pólya urn
scheme.

polya_urn_model <- function(base_measure, N_ball, alpha) {
balls <- c()
for (i in 1:N_ball) {

if (runif(1) < alpha / (alpha + length(balls))) {
Add a new ball color.
new_color <- base_measure()

balls <- c(balls, new_color)
} else {

Pick out a ball from the urn, and add back a
ball of the same color.
ball <- balls[sample(1:length(balls), 1)]
balls <- c(balls, ball)

}
}
balls

}

This is applied to sample 10 observations from a Dirichlet process with a Gaussian N(0, 1)
base measure, which is also interpreted as the color distribution in the Pólya urn scheme, and
precision parameter varying from 1, 10 to 100.

N_ball <- 10
with alpha = 1
polya_sample <- polya_urn_model(function() rnorm(1), N_ball, 1)
rev(sort(table(polya_sample)))

polya_sample
-1.04779556205753 0.353418450483626
8 2

with alpha = 10
polya_sample <- polya_urn_model(function() rnorm(1), N_ball, 10)
rev(sort(table(polya_sample)))

polya_sample
-0.262911838454736 -0.85109415351288 2.01291826160114
2 2 1
1.73642130785405 0.546212584065414 0.264154437076562
1 1 1
0.191324198334465 0.00291702961916057
1 1

with alpha = 100
polya_sample <- polya_urn_model(function() rnorm(1), N_ball, 100)
rev(sort(table(polya_sample)))

polya_sample
0.977248376259983 0.766722814230755 0.597919221042819
1 1 1
0.466119538300814 0.460876928395281 0.304868236499072
1 1 1
0.157307784983287 -0.269715738859888 -0.652901580743433
1 1 1
-1.41731999466404
1

These experiments illustrate that large values of the mass parameter α tend to produce
a larger number of distinct values in a sample of a given size. For instance, the probability
that all n = 10 observations are distinct is equal to

P(X1, . . . , Xn are pairwise distinct) = αn Γ(α)

Γ(α+ n)
,

which is approaching 1 as α grows, for n fixed.
In our case, this probability is respectively equal to 3e-07, 3e-02 and 0.6 for α equal to 1,

10 and 100, for n = 10.

4.3 Stick-breaking representation

The Dirichlet process is a discrete random probability measure which can be represented as
a convex combination of infinitely many Dirac masses,

G =

∞󰁛

k=1

πkδφk
.

The stick-breaking representation, due to [18], provides a constructive way of building the
weights (πk)k of the Dirichlet process. This is done by sequentially breaking a stick of initial
unit length, into pieces whose lengths correspond to the (πk)k. More specifically, we require
independent and identically distributed (iid) random variables Vk ∼ Beta(1,α). The first
weight π1 corresponds to V1. This leaves a piece of length 1 − V1, which is broken at V2

in order to define π2 = V2(1 − V1). And sequentially, the same procedure is applied to the
remaining part, which equals (1 − V1)(1 − V2) at this second step. It is easy to see that
after k steps, one defines πk = Vk(1− V1) · · · (1− Vk−1), and the remaining piece has length
(1 − V1) · · · (1 − Vk). The representation is completed by assuming iid draws from the base
measure G0 for the locations φk, independent from the Vk.

Theorem 4.2 (Stick-breaking representation, [18]). Let V1, V2, . . .
iid∼ Beta(1,α) and

φ1,φ2, . . .
iid∼ G0 be independent random variables. Define

π1 = V1,

πk = Vk(1− V1) · · · (1− Vk−1), for any k ≥ 2.

Then G =
󰁓∞

k=1 πkδφk
∼ DP(αG0).

Proof. We provide a sketch of proof of this result in two steps. First, to show that the
remaining stick length at step k, (1 − V1) · · · (1 − Vk), converges to zero as k → ∞. This
ensures that the weights vector lives in the unit simplex, and in turn that the measure󰁓∞

k=1 πkδφk
is a probability measure. Second, to use the stick-breaking construction to show

that the defined G satisfies the distributional equation

G
d
= V δφ + (1− V)G, (2)

where V ∼ Beta(1,α) and φ ∼ G, independently, whose only solution turns out to be the
Dirichlet process, by properties of the Dirichlet distribution.

The following code implements the sampling of the first num_weights=50 weights of a
DP. These are then plotted in the order they appear in the stick-breaking construction (left)
as well as indexed by their corresponding location (right). Colors indicate the stick-breaking
order of appearance. Note that the weights are not necessarily strictly decreasing, but only
stochastically decreasing. This means they are decreasing in expectation, as can be easily
checked:

E(πk) = E(Vk(1− V1) · · · (1− Vk−1)) = EVkE(1− V1) · · ·E(1− Vk−1) =
1

α+ 1

󰀕
α

α+ 1

󰀖k−1

.

stick_breaking_process = function(num_weights, alpha) {
betas = rbeta(num_weights, 1, alpha)
remaining_stick_lengths = c(1, cumprod(1 - betas))[1:num_weights]
weights = remaining_stick_lengths * betas
weights

}

num_weights <- 50
draw_stick_breaking <- function(alpha) {

labels <- 1:num_weights
locations <- rnorm(num_weights)
SB_weights <- stick_breaking_process(num_weights, alpha)
df <- data.frame(labels, locations, SB_weights)
order_plot <-

ggplot(df, aes(labels, SB_weights, fill = as.factor(labels))) +
geom_bar(stat = "identity") +
theme(legend.position="none")

location_plot <-
ggplot(df, aes(locations, SB_weights, fill = as.factor(labels))) +

geom_bar(stat = "identity", width = .1) +
theme(legend.position="none")

grid.arrange(order_plot, location_plot, ncol = 2)
}

draw_stick_breaking(1)

0.0

0.2

0.4

0.6

0.8

0 10 20 30 40 50
labels

SB
_w

ei
gh
ts

0.0

0.2

0.4

0.6

0.8

−2 0 2
locations

SB
_w

ei
gh
ts

draw_stick_breaking(10)

0.00

0.05

0.10

0.15

0.20

0.25

0 10 20 30 40 50
labels

SB
_w

ei
gh
ts

0.00

0.05

0.10

0.15

0.20

0.25

−2 −1 0 1 2
locations

SB
_w

ei
gh
ts

draw_stick_breaking(100)

0.00

0.01

0.02

0.03

0 10 20 30 40 50
labels

SB
_w

ei
gh
ts

0.00

0.01

0.02

0.03

−2 0 2
locations

SB
_w

ei
gh
ts

4.4 Dirichlet process mixture models

Combining the model-based clustering approach described in Section 3 with the DP, we are
ready to work with nonparametric mixture models, where the Dirichlet process can be used
as a prior distribution on the mixing probability measure [12].

The following code shows densities draws from DP mixture densities with N(0, 1) base
measure, varying mass parameter in {1, 10, 100, 1000}, and centered Gaussian kernel with
varying variance σ2 in {0.2, 0.4, 1}. Enlarging α tends to produce flatter densities, while
reducing σ2 tends to produce more irregular ones.

alpha_vect <- c(1, 10, 100, 1000)
N_urns <- 3
sigma2 <- c(1,.4,.2)
N_draws <- 100
N_xaxis <- 200
x_axis <- seq(-3, 3, length = N_xaxis)
result <- NULL

for (alpha in alpha_vect) {
PU <- polya_urn_model(function() rnorm(1), N_draws, alpha)
for (u in 1:N_urns) {
res <- mapply(function(mean) dnorm(x_axis, rep(mean, N_xaxis),

rep(sigma2[u], N_xaxis)), PU)
res <- apply(res, 1, mean)
new_draw <- cbind(res, x_axis, alpha, sigma2[u])
result <- rbind(result, new_draw)

}
}
result <- as.data.frame(result)
names(result) <- c("density", "x", "alpha", "sigma2")
DP_mixt <- qplot(data = result, y = density, x = x,

geom = c("line", "area")) +
facet_grid(alpha ~ sigma2, labeller =

label_bquote(rows = alpha == .(alpha),
cols = sigma^2 == .(sigma2))) +

aes(color = as.factor(alpha)) +
theme(legend.position = "none")

DP_mixt

σ2 = 0.2 σ2 = 0.4 σ2 = 1

α
=
1

α
=
10

α
=
100

α
=
1000

−2 0 2 −2 0 2 −2 0 2

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

x

de
ns
ity

5 Application to clustering of globulars of our galaxy

In this last section, we show how Dirichlet process mixtures can be applied to perform clus-
tering of globulars of our galaxy.

5.1 Markov chain Monte Carlo sampling

Inference in R for DPM is implemented in packages including DPpackage [11], BNPdensity
[5]. Here we present a recent package called BNPmix [4]. It uses C++ code with the Rcpp
package, which makes the implementation efficient. The package is available on GitHub4 and
can be installed with devtools as follows:

library(devtools)
install_github("rcorradin/BNPmix")

This package uses d-dimensional location-scale Dirichlet process mixture of Gaussians.
This means that it assumes a Gaussian kernel p(X|φ) = Φd(X|µ,Σ), where the component
specific parameter θ is composed of the mean µ and covariance matrix Σ. The base measure
G0 is chosen as an independent product of a Gaussian and an inverse-Wishart distributions

G0(dµ, dΣ;π) = Nd(dµ;m0,B0)× IW (dΣ; ν0,S0), (3)

4At the url: https://github.com/rcorradin/BNPmix.

https://github.com/rcorradin/BNPmix

The hyperparameters (m0,B0, ν0,S0) are typically expressed by an empirical Bayes approach.
See [4] for details. Additionally, the precision parameter α is endowed with a gamma distri-
bution with shape t1 and scale t2.

Posterior inference is carried out by a Markov chain Monte Carlo (MCMC) algorithm.
The function is called DPmixMulti, and it takes the following arguments:

• the data;

• a grid of the sample space, with the same dimension as that of the data, on which the
density is to be evaluated;

• MCMC_param, a list of parameters for the MCMC including number of simulations nsim and
burn-in nburn;

• starting_val, a list containing the initial values for the components;

• params, hyperparameters (m0,B0, ν0,S0) for the base measure G0 of the DPM and (t1, t2)
for the hyperprior on the precision parameter α. When omitted, those parameters are set
in an empirical Bayes way by default.

A grid to evaluate the densities is defined as follows, spanning all data points, plus/minus
10% with respect to the extreme data points.

data <- spectra[, c(2,3,4)]
grid <- expand.grid(seq(range(data[,1])[1]-.1 * diff(range(data[,1])),

range(data[,1])[2]+.1 * diff(range(data[,1])),
length.out = 40),

seq(range(data[,2])[1]-.1 * diff(range(data[,2])),
range(data[,2])[2]+.1 * diff(range(data[,2])),
length.out = 40),

seq(range(data[,3])[1]-.1 * diff(range(data[,3])),
range(data[,3])[2]+.1 * diff(range(data[,3])),
length.out = 40))

We can now run the MCMC function DPmixMulti:

MCMC_param <- list(nsim = 10^4, nburn = 5*10^3)
MCMC_output <- DPmixMulti(data = as.matrix(data),

grid = grid,
MCMC_param = MCMC_param)

The output MCMC_output of this function is a list of three objects:

• distribution the estimated (posterior mean) distribution evaluated on the grid.

• result_cluster a matrix, each row is an iteration, each column an observation, each entry
is a latent component, thus this contains clusterings for each iteration of the chain.

• result_theta a vector, the value of DP precision parameter α over the iterations.

The posterior clustering information is enclosed in the second object listed above, that we
can save in a matrix MCMC_clustering:

MCMC_clustering <- MCMC_output[[2]]

5.2 Clustering estimation

It should be noted that a DPM assumes a priori an infinite number of components in the
mixture (see for instance the stick-breaking representation). As such, it is a misspecified
model in essence when it comes to estimating a fixed clustering, that is a clustering which is
not deemed to grow as the sampled data grows. However, in the spirit of the famous quote
by George Box “All models are wrong but some are useful”, misspecified models can be used
as long as they provide insightful results.

Clustering with DPM can be done in different ways. Indeed, the MCMC output we have
obtained so far essentially consists in many different clusterings of the data, among which one
needs to choose a ‘best’ clustering for some decision rule.

A first approach consists in looking at the number of components, an estimator of which
can be obtained with the mode a posterior (MAP) for instance. However, the posterior
distribution of the number of components in a DPM turns out to be inconsistent under
some model specifications [14]. Posterior consistency is a theoretical property of a posterior
distribution: when more and more data are collected from some fixed data distribution, we
say that the posterior distribution of some parameter is consistent if it converges to a point
mass at the true fixed value of this parameter. The inconsistency property provided by [14] is
as follows. Assume a DPM model with standard Gaussian base measure, precision parameter
equal to one, and standard Gaussian kernel. Suppose data are generated from a standard
Gaussian. This means that the data are sampled from a very simple mixture which admits
a single component. [14] study the posterior distribution of the number of clusters in this
situation, and they prove that it does not concentrate to a point mass at one, thus proving
posterior inconsistency.

Let us plot the histogram of the number of clusters:

MCMC_number_cluster = apply(X = MCMC_clustering, MARGIN = 1, FUN = max)
df_cluster <- data.frame(nb = MCMC_number_cluster)
c <- ggplot(df_cluster, aes(nb,..density..))
c + geom_histogram(breaks=(0:max(df_cluster)),

aes(fill=..density..)
,
col="white",
alpha = .9
) +

scale_fill_viridis(option = "inferno") +
labs(title="Histogram for number of clusters") +
labs(x="Number of clusters", y="Density")

0.00

0.05

0.10

0.15

0 5 10 15
Number of clusters

D
en

si
ty

0.00

0.05

0.10

0.15

density

Histogram for number of clusters

The MAP estimator for the number of clusters is three, obtained as:

which.max(table(MCMC_number_cluster))

3
3

Note that the above histogram is also quite in agreement with an estimate of four clusters.
Stepping back, recall that a Bayes estimator is obtained from a formal decision theory

rule: given a loss function, a Bayes estimator minimizes the posterior expected loss. For
instance, with Euclidean parameter spaces,

• the L2, squared loss provides the posterior mean,

• the L1, absolute loss provides the posterior median,

• the 0− 1 loss provides the mode a posteriori (MAP).

We focus now on a loss function L on clusterings. The posterior expected loss of clustering
c′, denoted by L(c′), is obtained by averaging the loss with respect to posterior distribution,
over the set of all partitions of the integers 1, . . . , n denoted by An

L(c′) =
󰁛

c∈An

L(c, c′)p(c|x),

and the decision is taken by choosing the best partition

ĉ = arg min
c′∈An

󰁛

c∈An

L(c, c′)p(c|x).

Several losses have been considered in the literature:

• 0-1 loss [17],

• Binder loss [8],

• Variation of information (VI) [19].

The 0-1 loss gives rise to the MAP estimator:

L0−1(c
′) =

󰁛

c∈An

L0−1(c, c
′)p(c|x) =

󰁛

c∈An, c ∕=c′

p(c|x) = 1− p(c′|x)

which is to say that the expected loss of c′ is all the posterior mass except that of c′. So that
it is easily minimized at the value c′ which has maximum posterior weight:

ĉ = arg min
c′∈An

L0−1(c
′) = arg max

c′∈An

p(c′|x) := MAP.

Negative results by [17] show that the mode a posteriori (MAP) is inconsistent.
Instead of the 0-1 loss, one can resort to the Variation of information (VI) which was

devised by [13] for clustering comparison. It stems from information theory, and compares
information (in terms of Shannon entropy H) in two clusterings with information shared
between the two clusterings (I), see [13] for details:

VI(c,󰁥c) = H(c) +H(󰁥c)− 2I(c,󰁥c).

Estimation under the Variation of information loss function was recently studied by [19],
with the interesting finding that this loss function tends to reduce the over-estimation of the
number of cluster that is commonly obtained under Binder loss, for instance by [8]. See also
[3] for a further comparison between Binder and VI on varying sample sizes. We implement
the Variation of information approach by using the mcclust.ext R package developed by [19].
This requires to compute the posterior similarity matrix associated to the MCMC output,
that is a matrix whose entries represent the posterior probability that two observations are
clustered together (or rather, a Monte Carlo approximation of it).

posterior_similarity_matrix = comp.psm(MCMC_clustering)

It can be represented as follows, where darker colors depict a higher posterior probability
of shared clustering.

0

20

40

0 20 40

0.25 0.50 0.75 1.00

Posterior
similarity

The next step consists in resolving the minimization problem

ĉ = arg min
c′∈An

󰁛

c∈An

VI(c, c′)p(c|x).

Of course, this optimization is only done approximately by the mcclust.ext R package,
which scans the MCMC output and a neighbouring region of it in order to choose the best
clustering.

clustering_Binder=minbinder.ext(posterior_similarity_matrix, method = "greedy")
table(clustering_Binder$cl)

##
1 2 3 4 5
16 6 29 2 1

clustering_VI=minVI(posterior_similarity_matrix, method = "greedy")
table(clustering_VI$cl)

##
1
54

Thus, the Binder loss produces an estimated clustering with 5 groups, whereas under the
Variation of information, all the observations are gathered into a single cluster of size 54. The
interpretation of these results is that under the conditions of the assumed Dirichlet process
mixture model, data are not deemed heterogeneous enough to justify multiple clusters under
VI loss, whereas they do under Binder loss. The estimated clusterings and the ones obtained
by [10] are represented below in a 3D-like fashion by using the rgl package function plot3d.

subtitle = c("Binder loss, 5 groups", "VI loss, 1 group",
"Fraix-Burnet (2009), 4 groups", "Fraix-Burnet (2009), 3 groups")
clustering = cbind(clustering_Binder$cl,

clustering_VI$cl,
Grp3c,
Grp4c)

for(i in 1:4){
cl = clustering[, i]
plot3d(logTe, FeH, MV,

type="s", size=2, col=plasma(max(cl))[cl],
box = FALSE, sub = subtitle[i])

}

-8
-7

-6

4.6

-0.5 -10
-9

3.8 4 4.2 4.4 4.6

-8
-7

-6

-1

FeH
-1.5

-10
-9
-8

4 4.2 4.4 4.6

-7

-6

-2

3.8

logTe
VI loss, 1 group

-0.5 -10
-9

3.8 4 4.2 4.4

-1

FeH
-1.5
-2

3.8 4 4.2 4.4 4.6

-0.5

-7

-6

-1

FeH

logTe

MV MV

Binder loss, 5 groups

-1.5
-2

Fraix-Burnet (2009), 4 groups

MV -10
-9

-0.5

-8

-1

FeH
-1.5
-2

logTe
Fraix-Burnet (2009), 3 groups

MV

logTe

Acknowledgements

I would like to thank Michał Lewandowski for helping with typing parts of this chapter
and with merging the Globular data by [10] with the Globular table that can be found on
Wikipedia, see Footnote 2.

References

[1] Aldous, D. J. (1985). Exchangeability and related topics. In École d’Été de Probabilités
de Saint-Flour XIII—1983, pages 1–198. Springer.

[2] Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian
nonparametric problems. The Annals of Statistics, pages 1152–1174.

[3] Arbel, J., Corradin, R., and Łewandowski, M. (2018a). Discussion of “Bayesian Cluster
Analysis: Point Estimation and Credible Balls”, by Wade and Ghahramani. Bayesian
Analysis.

[4] Arbel, J., Corradin, R., and Nipoti, B. (2018b). Dirichlet process mixtures under affine
transformations of the data. Submitted.

[5] Barrios, E., Lijoi, A., Nieto-Barajas, L. E., and Prünster, I. (2013). Modeling with nor-
malized random measure mixture models. Statistical Science, 28(3):313–334.

[6] Bernardo, J. M. and Smith, A. F. (2009). Bayesian theory, volume 405. Wiley.
[7] Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via Pólya urn schemes.

The Annals of Statistics, pages 353–355.
[8] Dahl, D. B. (2006). Model-based clustering for expression data via a Dirichlet process

mixture model. Bayesian inference for gene expression and proteomics, pages 201–218.
[9] Ferguson, T. (1973). A Bayesian analysis of some nonparametric problems. The Annals

of Statistics, 1(2):209–230.
[10] Fraix-Burnet, D., Davoust, E., and Charbonnel, C. (2009). The environment of formation

as a second parameter for globular cluster classification. Monthly Notices of the Royal
Astronomical Society, 398:1706–1714. To appear in MNRAS.

[11] Jara, A., Hanson, T., Quintana, F., Müller, P., and Rosner, G. (2011). DPpackage:
Bayesian non-and semi-parametric modelling in R. Journal of statistical software, 40(5):1.

[12] Lo, A. (1984). On a class of Bayesian nonparametric estimates: I. Density estimates.
The Annals of Statistics, 12(1):351–357.

[13] Meilă, M. (2007). Comparing clusterings—an information based distance. Journal of
Multivariate Analysis, 98(5):873–895.

[14] Miller, J. W. and Harrison, M. T. (2013). A simple example of Dirichlet process mixture
inconsistency for the number of components. In Advances in neural information processing
systems, pages 199–206.

[15] Miller, J. W. and Harrison, M. T. (2017). Mixture models with a prior on the number
of components. Journal of the American Statistical Association, pages 1–17.

[16] Müller, P. and Mitra, R. (2013). Bayesian nonparametric inference–why and how.
Bayesian Analysis, 8(2).

[17] Rajkowski, Ł. (2016). Analysis of MAP in CRP Normal-Normal model. arXiv preprint
arXiv:1606.03275.

[18] Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica,
4:639–650.

[19] Wade, S. and Ghahramani, Z. (2018). Bayesian cluster analysis: Point estimation and
credible balls. Bayesian Analysis.

