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A simple proof of Pitman-Yor's Chinese restaurant process from its stick-breaking representation

For a long time, the Dirichlet process has been the gold standard discrete random measure in Bayesian nonparametrics. The Pitman-Yor process provides a simple and mathematically tractable generalization, allowing for a very flexible control of the clustering behaviour. Two commonly used representations of the Pitman-Yor process are the stick-breaking process and the Chinese restaurant process. The former is a constructive representation of the process which turns out very handy for practical implementation, while the latter describes the partition distribution induced. Obtaining one from the other is usually done indirectly with use of measure theory. In contrast, we provide here an elementary proof of Pitman-Yor's Chinese Restaurant process from its stick-breaking representation.

Introduction

The Pitman-Yor process defines a rich and flexible class of random probability measures which was developed by [START_REF] Perman | Size-biased sampling of Poisson point processes and excursions[END_REF] and further investigated by [START_REF] Pitman | Exchangeable and partially exchangeable random partitions[END_REF], [START_REF] Pitman | The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator[END_REF]. It is a simple generalization of the Dirichlet process [START_REF] Ferguson | A Bayesian analysis of some nonparametric problems[END_REF], whose mathematical tractability contributed to its popularity in machine learning theory [START_REF] Caron | Generalized Pólya Urn for Time-Varying Pitman-Yor Processes[END_REF], probabilistic models for linguistic applications [START_REF] Teh | A hierarchical Bayesian language model based on Pitman-Yor processes[END_REF][START_REF] Wood | The sequence memoizer[END_REF], excursion theory [START_REF] Perman | Size-biased sampling of Poisson point processes and excursions[END_REF][START_REF] Pitman | The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator[END_REF], measurevalued diffusions in population genetics (Petrov, 2009, Feng and[START_REF] Feng | Some diffusion processes associated with two parameter Poisson-Dirichlet distribution and Dirichlet process[END_REF], combinatorics [START_REF] Vershik | On the Markov-Krein identity and quasiinvariance of the gamma process[END_REF][START_REF] Kerov | Coherent random allocations, and the Ewens-Pitman formula[END_REF] and statistical physics [START_REF] Derrida | Random-energy model: An exactly solvable model of disordered systems[END_REF].

Its most prominent role is perhaps in Bayesian nonparametric statistics where it is used as a prior distribution, following the work of [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF]. Applications in this setting embrace a variety of inferential problems, including species sampling [START_REF] Favaro | Bayesian non-parametric inference for species variety with a two-parameter Poisson-Dirichlet process prior[END_REF][START_REF] Navarrete | Some issues in nonparametric Bayesian modeling using species sampling models[END_REF][START_REF] Arbel | Bayesian nonparametric inference for discovery probabilities: credible intervals and large sample asymptotics[END_REF], survival analysis and graphical models in genetics [START_REF] Jara | Bayesian semiparametric inference for multivariate doubly-interval-censored data[END_REF][START_REF] Ni | Heterogeneous reciprocal graphical models[END_REF], image segmentation [START_REF] Sudderth | Shared segmentation of natural scenes using dependent Pitman-Yor processes[END_REF], curve estimation [START_REF] Canale | On the Pitman-Yor process with spike and slab base measure[END_REF], exchangeable feature allocations [START_REF] Battiston | A characterization of product-form exchangeable feature probability functions[END_REF] and time-series and econometrics [START_REF] Caron | Generalized Pólya Urn for Time-Varying Pitman-Yor Processes[END_REF][START_REF] Bassetti | Beta-product dependent Pitman-Yor processes for Bayesian inference[END_REF].

Last but not least, the Pitman-Yor process is also employed in the context of nonparametric mixture modeling, thus generalizing the celebrated Dirichlet process mixture model of [START_REF] Lo | On a class of Bayesian nonparametric estimates: I. Density estimates[END_REF]. Nonparametric mixture models based on the Pitman-Yor process are characterized by a more flexible parameterization than the Dirichlet process mixture model, thus allowing for a better control of the clustering behaviour [START_REF] De Blasi | Are Gibbs-type priors the most natural generalization of the Dirichlet process? Pattern Analysis and Machine Intelligence[END_REF]. In addition, see [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF], [START_REF] Favaro | Slice sampling σ-stable Poisson-Kingman mixture models[END_REF], [START_REF] Arbel | Stochastic approximations to the Pitman-Yor process[END_REF] for posterior sampling algorithms, Scricciolo et al. (2014), Miller and[START_REF] Miller | Inconsistency of Pitman-Yor process mixtures for the number of components[END_REF] for asymptotic properties, and [START_REF] Scarpa | Bayesian hierarchical functional data analysis via contaminated informative priors[END_REF], [START_REF] Canale | On the Pitman-Yor process with spike and slab base measure[END_REF] for spike-and-slab extensions.

The Pitman-Yor process has the following stick-breaking representation: 

if v i ind ∼ Beta(1- d, α + id) for i = 1, 2, . . . with d ∈ (0, 1) and α > -d, if π j = v j j-1 i=1 (1 -v i ) for j = 1,
P(C = C) = d |C| (α) (n) α d (|C|) c∈C (1 -d) (|c|-1) , (2) 
where the multiplicative factor before the product in ( 2) is also commonly (and equivalently) written as ( |C|-1 i=1 α + id)/(α) (n-1) in the literature. When the discount parameter d is set to zero, the Pitman-Yor process reduces to the Dirichlet process and the partition distribution (2) boils down to the celebrated Chinese Restaurant process (CRP, see [START_REF] Antoniak | Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems[END_REF]. By abuse of language, we call the partition distribution (2) the Pitman-Yor's CRP. Under the latter partition distribution, the number of parts in a partition C of n elements, k n = |C|, grows to infinity as a power-law of the sample size, n d (see Pitman, 2003, for details). This Pitman-Yor power-law growth is more in tune with most of empirical data [START_REF] Clauset | Power-law distributions in empirical data[END_REF] than the logarithmic growth induced by the Dirichlet process CRP, α log n.

The purpose of this note is to provide a simple proof of Pitman-Yor's CRP (2) from its stick-breaking representation (1) (Theorem 2.1). This generalizes the derivation by [START_REF] Miller | An elementary derivation of the Chinese restaurant process from Sethuraman's stick-breaking process[END_REF] who obtained the Dirichlet process CRP [START_REF] Antoniak | Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems[END_REF]) from Sethuraman's stickbreaking representation [START_REF] Sethuraman | A constructive definition of Dirichlet priors[END_REF]. In doing so, we also provide the marginal distribution of the allocation variables vector (3) in Proposition 2.2.

Partition distribution from stick-breaking

Suppose we make n observations, z 1 , . . . , z n . We denote the set {1, . . . , n} by [n]. Our observations induce a partition of [n], denoted C = {c 1 , . . . , c kn } where c 1 , . . . , c kn are disjoint sets and kn i=1 c i = [n], in such a way that z i and z j belong to the same partition if and only if z i = z j . We denote the number of parts in the partition C by k n = |C| and we denote the number of elements in partition j by |c j |. We use bold font to represent random variables.

We write (x) (n) = n-1 j=0 (x + j) to denote the rising factorial.

Theorem 2.1. Suppose

v i ind ∼ Beta(1 -d, α + id) for i = 1, 2, . . . , π j = v j j-1 i=1 (1 -v i ) for j = 1, 2, . . .

Let allocation variables be defined by

z 1 , . . . , z n |π = π iid ∼ π, meaning, P(z i = j | π) = π j , (3) 
and C denote the random partition of [n] induced by z 1 , . . . , z n . Then

P(C = C) = d |C| (α) (n) α d (|C|) c∈C (1 -d) (|c|-1) .
The proof of Theorem 2.1 follows the lines of Miller ( 2018)'s derivation. We need the next two technical results, which we will prove in Section 3. Let C z denote the partition [n] induced by z for any z ∈ N n . Let k n be the number of parts in the partition. We define m(z) = max {z 1 , . . . , z n }, and g j (z) = #{i : z i ≥ j}.

Proposition 2.2. For any z ∈ N n , the marginal distribution of the allocation variables vector z = (z 1 , . . . , z n ) is given by

P(z = z) = 1 (α) (n) c∈Cz Γ(|c| + 1 -d) Γ(1 -d) m(z) j=1 α + (j -1)d g j (z) + α + (j -1)d . Lemma 2.3. For any partition C of [n], z∈N n 1(C z = C) m(z) j=1 α + (j -1)d g j (z) + α + (j -1)d = d |C| c∈C (|c| -d) α d (|C|) .
Proof of Theorem 2.1.

P(C = C) = z∈N n P(C = C|z = z)P(z = z) (a) = z∈N n 1(C z = C) 1 (α) (n) c∈Cz Γ(|c| + 1 -d) Γ(1 -d) m(z) j=1 α + (j -1)d g j (z) + α + (j -1)d = 1 (α) (n) c∈C Γ(|c| + 1 -d) Γ(1 -d) z∈N n 1(C z = C) m(z) j=1 α + (j -1)d g j (z) + α + (j -1)d (b) = 1 (α) (n) c∈C Γ(|c| + 1 -d) Γ(1 -d) d |C| c∈C (|c| -d) α d (|C|) (c) = 1 (α) (n) c∈C (1 -d) (|c|-1) c∈C (|c| -d) d |C| c∈C (|c| -d) α d (|C|) = d |C| (α) (n) α d (|C|) c∈C (1 -d) (|c|-1) ,
where (a) is by Proposition 2.2, (b) is by Lemma 2.3, and (c) is since Γ

(|c| + 1 -d) = (|c| -d)Γ(|c -d|).
3 Proofs of the technical results

Additional lemmas

We require the following additional lemmas.

Lemma 3.1. For a + c > 0, and b

+ d > 0, if y ∼ Beta(a, b), then E[y c (1 -y) d ] = B(a+c,b+d) B(a,b)
where B denotes the beta function.

Proof.

E[y c (1 -y) d ] = 1 0 y c (1 -y) d 1 B(a, b) y a-1 (1 -y) b-1 dy = 1 B(a, b) 1 0 y a+c-1 (1 -y) b+d-1 dy = B(a + c, b + d) B(a, b) .
Let S kn denote the set of k n ! permutations of [k n ]. The following lemma is key for proving Lemma 2.3. Lemma 3.2. For any n 1 , . . . , n kn ∈ N,

σ∈S kn kn i=1 1 a i (σ) -(k n -i + 1)d = 1 kn i=1 (n i -d)
where

a i (σ) = n σ i + n σ i+1 + • • • + n σ kn .
Proof. Consider the process of sampling without replacement k n times from an urn containing k n balls. The balls have sizes n 1 -d, . . . , n kn -d, and the probability of drawing ball i is proportional to its size n i -d. Thus for any permutation σ ∈ S kn we have that

p(σ 1 ) = n σ 1 -d n -td = n σ 1 -d a 1 (σ) -td , p(σ 2 |σ 1 ) = n σ 2 -d n -n σ 1 -(k n -1)d = n σ 2 -d a 2 (σ) -(k n -1)d , p(σ i |σ 1 , . . . , σ i-1 ) = n σ i -d n -n σ 1 -• • • -n σ i-1 -(k n -i + 1)d = n σ i -d a i (σ) -(k n -i + 1)d . Therefore, p(σ) = p(σ 1 )p(σ 2 |σ 1 ) • • • p(σ kn |σ 1 , . . . , σ kn-1 ) = kn i=1 n σ i -d a i (σ) -(k n -i + 1)d . (4) 
This way, we construct a distribution on S kn . We know that σ∈S kn p(σ) = 1. Applying this to Equation ( 4) and dividing both sides by (n

σ 1 -d) • • • (n σ kn -d) = (n 1 -d) • • • (n kn -d)
gives the result.

Lemma 3.3. Let b i ∈ N for i ∈ {1, . . . , k n } and let b 0 = 0. We define bi = b 0 + b 1 + • • • + b i . Then kn i=1 b i ∈N ( α d + bi-1 ) (b i ) ( a i +α d + bi-1 ) (b i ) = ( α d ) (kn) kn i=1 ( a i d -(k n + 1 -i))
.

Proof. Let A j denote the intermediate sum

A j = kn i=j b i ∈N ( α d + bi-1 ) (b i ) ( a i +α d + bi-1 ) (b i )
. We show by induction decreasing from j = k n to j = 0 that

A j = ( α d + bj-1 ) (kn-j+1) kn i=j ( a i d -(k n + 1 -i))
.

(5)

When j = k n we have

A kn = b kn ∈N ( α d + bkn-1 ) (b kn ) ( a kn +α d + bkn-1 ) (b kn ) = b kn ∈N E[X b kn ] where X ∼ Beta( α d + bkn-1 , a kn d ). We have that b kn ∈N E[X b kn ] = E b kn ∈N X b kn = E X 1 -X = α + d bkn-1 a kn -d ,
due to Lemma 3.1, which proves the initialization for (5).

We now consider the case of an arbitrary j, greater than 0 and less than k n . By the induction hypothesis, we have that Equation (5) holds for j + 1, that is

A j+1 = ( α d + bj ) (kn-j) kn i=j+1 ( a i d -(k n + 1 -i))
.

Therefore,

A j = b j ∈N ( α d + bj-1 ) (b j ) ( a j +α d + bj-1 ) (b j ) kn i=j+1 b i ∈N ( α d + bi-1 ) (b i ) ( a i +α d + bi-1 ) (b i ) = b j ∈N ( α d + bj-1 ) (b j ) ( a j d + α d + bj-1 ) (b j ) ( α d + bj ) (kn-j) kn i=j+1 ( a i d -(k n + 1 -i))
Rearranging the rising factorials in the numerator, we can write

α d + bj-1 (b j ) α d + bj (kn-j) = α d + bj-1 (b j ) α d + bj-1 + b j (kn-j) = α d + bj-1 (b j +kn-j) = α d + bj-1 (kn-j) α d + bj-1 + k n -j (b j )
and thus factorize the terms independent of b j in order to obtain

A j = ( α d + bj-1 ) (kn-j) kn i=j+1 ( a i d -(k n + 1 -i)) b j ∈N ( α d + bj-1 + k n -j) (b j ) ( a j d + α d + bj-1 ) (b j )
.

The sum above can be rewritten, using

X ∼ Beta( α d + bj-1 + (k n -j), a j d -(k n -j)), as b j ∈N E[X b j ] = E X 1 -X = α d + bj-1 + (k n -j) a j d -(k n + 1 -j)
.

Putting this all together,

A j = ( α d + bj-1 + (k n -j)) a j d -(k n + 1 -j) ( α d + bj-1 ) (kn-j) kn i=j+1 ( a i d -(k n + 1 -i)) = ( α d + bj-1 ) (kn-j+1) kn i=j ( a i d -(k n + 1 -i))
which proves the desired result for j. By induction, this result is true for all j ∈ {1, . . . , k n }.

Letting j = 1 gives the result stated in the lemma, since b0 = b 0 = 0.

3.2 Proof of Proposition 2.2 and Lemma 2.3

Proof of Proposition 2.2. For simplicity, we fix the allocation variable vector to a value z and denote m(z) by m and g j (z) by g j . We have

P(z = z|π 1 , . . . , π m ) = n i=1 π z i = m j=1 π e j j
where e j = #{i : z i = j}. Thus,

P(z = z|v 1 , . . . , v m ) = m j=1 v j j-1 i=1 (1 -v i ) e j = m j=1 v e j j (1 -v j ) f j
where f j = #{i : z i > j}. Therefore,

P(z = z) = P(z = z|v 1 , . . . , v m )p(v 1 , . . . , v m )dv 1 • • • dv m = m j=1 v e j j (1 -v j ) f j p 1 (v 1 ) • • • p m (v m )dv 1 • • • dv m = m j=1 v e j j (1 -v j ) f j p j (v j )dv j (a) = m j=1 B(e j + 1 -d, f j + α + jd) B(1 -d, α + jd) = m j=1 Γ(e j + 1 -d)Γ(f j + α + jd)Γ(α + (j -1)d) + 1 Γ(e j + f j + α + (j -1)d) + 1)Γ(1 -d)Γ(α + jd) (b) = m j=1 Γ(e j + 1 -d) Γ(1 -d) m j=1 Γ(g j+1 + α + jd) Γ(g j + α + (j -1)d + 1) m j=1 Γ(α + (j -1)d + 1) Γ(α + jd) (c) = m j=1 Γ(e j + 1 -d) Γ(1 -d) m j=1 α + (j -1)d g j + α + (j -1)d Γ(g m+1 + α + md)Γ(α) Γ(g 1 + α)Γ(α + md) (d) = Γ(α) Γ(n + α) c∈Cz Γ(|c| + 1 -d) Γ(1 -d) m j=1 α + (j -1)d g j + α + (j -1)d
where step (a) follows from Lemma 3.1, step (b) since f j = g j+1 and g j = e j + f j , step (c) since Γ(x + 1) = xΓ(x), and step (d) since g 1 = n and g m+1 = 0.

Proof of Lemma 2.3. As before, we denote the parts of C by c 1 , . . . , c kn , and we let k n = |C|. We denote the distinct values taken on by z 1 , . . . , z n by j 1 < • • • < j kn . We define 

j 0 = b 0 = 0, b i = j i -j i-1 , and bi = b 0 + • • • + b i for i ∈ {1, . . . , k n }. We use the notation a i (σ) = n σ i + • • • + n σ kn ,

  where σ is the permutation of [k n ] such that c σ i = {ℓ :z ℓ = j i }. Then for any z ∈ N n such that C z = C, -1 ) (b i ) ( α+a i (σ) d + bi-1 ) (b i ) , because g j (z) = a i (σ) for bi-1 < j ≤ bi . Itfollows from the definition of b = (b 1 , ..., b kn ) and σ that there is a one-to-one correspondence between {z ∈ N n : C z = C} and {(σ, b) : σ ∈ S kn , b ∈ N kn }. Therefore, σ) -(k n -i + 1)d a) follows from Lemma 3.3 and step (b) follows from Lemma 3.2.

  2, . . ., and if θ 1 , θ 2 , . . . , and C is the partition of the first n integers {1, . . . , n} induced by data, then

	iid ∼ H, then the discrete random probability measure	
	∞		
	P =	π j δ θ j	(1)
	j=1		
	is distributed according to the Pitman-Yor process, PY(α, d, H), with concentration param-
	eter α, discount parameter d, and base distribution H.	
	The Pitman-Yor process induces the following partition distribution: if P ∼ PY(α, d, H),
	for some nonatomic probability distribution H, we observe data x 1 , . . . , x n |P	

iid ∼ P
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