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We are interested in the phenomenon of the essential spectrum instability for a class of unbounded (block) Jacobi matrices. We give a series of sufficient conditions for the matrices from certain classes to have a discrete spectrum on a half-axis of a real line. An extensive list of examples showing the sharpness of obtained results is provided.

Introduction

Being given a self-adjoint operator on a Hilbert space, the spectral structure of its "relatively small" (i.e., relatively compact, relatively trace class, etc.) perturbations is nowdays well understood, see Kato [START_REF] Kato | Perturbation theory for linear operators[END_REF], Reed-Simon [START_REF] Reed | Methods of modern mathematical physics. I. Functional analysis[END_REF], and Birman-Solomyak [START_REF] Birman | Spectral theory of selfadjoint operators in Hilbert space[END_REF]. For instance, accordingly to Weyl theorem, any compact perturbation of a bounded self-adjoint Jacobi matrix preserves its essential spectrum, see Kato [START_REF] Kato | Perturbation theory for linear operators[END_REF]Thm. 5.35]. When the perturbation is of trace class, the absolutely continuous spectrum of the Jacobi matrix is also preserved, see Kato [START_REF] Kato | Perturbation theory for linear operators[END_REF]Thm. 4.4].

The main subject of this article are unbounded (block) Jacobi matrices. The peculiarity of this class of operators is that one is often interested in spectral properties of a perturbation of a model Jacobi matrix, and the perturbation is not "relatively small" in the sense of the previous paragraph. Still, it is frequently "reasonably small" from the point of view of various applications. To illustrate this, consider Jacobi matrices J α = J({n α }, {0}), J α,β = J({n α }, {n β }), where 0 < α ≤ 1, 0 < β < α, see (1.2) for definitions. Despite the fact that the diagonal elements of J α,β are small, or even negligible, as compared to off-diagonal elements on the power scale, it is easy to see that J α,β is neither relatively compact nor relatively bounded perturbation of J α , see Subsection 5.1 for a sketch of a proof.

Hence, the study of the spectral problems of the above type leads to results on different types of spectral instability or spectral phase transition, see Damanik-Naboko [START_REF] Damanik | Unbounded Jacobi matrices at critical coupling[END_REF], Janas-Naboko [START_REF] Janas | Multithreshold spectral phase transitions for a class of Jacobi matrices[END_REF]- [START_REF] Janas | On the point spectrum of periodic Jacobi matrices with matrix entries: elementary approach[END_REF], Janas-Naboko-Stolz [START_REF] Janas | Spectral theory for a class of periodically perturbed unbounded Jacobi matrices: elementary methods[END_REF], Naboko-Pchelintseva-Silva [START_REF] Naboko | Discrete spectrum in a critical coupling case of Jacobi matrices with spectral phase transitions by uniform asymptotic analysis[END_REF], Naboko-Simonov [START_REF] Naboko | Spectral analysis of a class of Hermitian Jacobi matrices in a critical (double root) hyperbolic case[END_REF].

In the present article, we study the problem of the essential spectrum instability with respect to perturbations of unbounded block Jacobi matrices, including the perturbations with slowly growing entries as compared to the entries of the unperturbed Jacobi matrix. Leaving aside the above cases of "relatively small" perturbations of a Jacobi matrix, we prove that "straightforward" counterparts of classical results are not valid anymore in this situation.

We introduce some notation to formulate our theorems. A block Jacobi matrix (or, a Jacobi matrix with matrix entries) J : 2 (N; , where A j , B j ∈ M d,d (C) are d × d complex matrices. We assume that B j = B * j and A j is invertible for all j. The zero and the identity operators on C d are denoted by 0 d and I d , respectively. When d = 1, we say that J is a scalar-valued Jacobi matrix, or just a Jacobi matrix to be short, i.e., (1.2) Theorem A (= a short version of Theorem 3.1). Let J be a block Jacobi matrix (1.1). Suppose that:

C d ) → 2 (N; C d ), d ≥ 1, is defined as (1.1) J = J({A n }, {B n }) =        B 1 A 1 0 . . . A * 1 B 2 A 2 . . .
J = J({a n }, {b n }) =        b 1 a 1 0 . . .
(1) for some fixed c ∈ R, there is a number N 0 such that B 2n ≤ cI d for n ≥ N 0 .

(2) we have

lim n→∞ B 2n-1 = +∞.
Then the spectrum of J (denoting an arbitrary self-adjoint extension of J min , see (2.1)) is discrete in (c, +∞), and it accumulates to +∞ only.

The proof of the above theorem uses, besides all, an elementary spectral variational principle applied to an appropriate increasing family of subspaces, see Weidmann [START_REF] Weidmann | Lineare Operatoren in Hilberträumen. Teil 1[END_REF]Satz 8.28,8.29].

Several remarks are in order. First, the above theorem trivially holds true if one permutes the rôles of {B 2n } and {B 2n-1 }. Second, the theorem does not depend on the behavior of the sequence {A n }, and, third, it imposes rather mild conditions on the growth of the diagonal subsequence {B 2n-1 }. In particular, there is no condition on the rate of growth of matrix entries B 2n-1 to +∞. It follows that an arbitrary small growth of the entries of a diagonal perturbation {B 2n-1 } can change dramatically the essential spectrum of the matrix. For instance, an unbounded self-adjoint Jacobi matrix J({A n }, {0 d }) can have the essential spectrum filling in the whole real line. At the same time, its diagonal self-adjoint perturbation J({A n }, {B n }), with blocks B 2n-1 growing arbitrarily slowly at infinity, can change the essential spectrum on a half-line to the purely discrete spectrum. In particular, we see that even the absolutely continuous spectrum is completely unstable with respect to diagonal perturbations of the above type; see examples given in Section 5 for more details.

The next theorem addresses the same effect, but it allows one to have a certain interaction between diagonal and off-diagonal components of the block Jacobi matrix. For a

B ∈ M d,d (C), B * = B, let (1.4) (B -1 ) ⊕ = (B + ) -1 , on Im (B + ), 0 , on Im (B + ) ⊥ ,
where B + stands for the positive part of B, see the discussion before Theorem 4.1.

Theorem B (= Theorem 4.2). Let J be the Jacobi matrix defined by (1.1). Assume that:

(1)

lim k→∞ B 2k-1 = +∞, ( 2 
) lim k→+∞ (B -1 2k ) ⊕ = 0, (3) moreover, one has lim sup n→+∞ ||(B -1/2 2n ) ⊕ A * 2n-1 B -1/2 2n-1 || + lim sup n→+∞ ||(B -1/2 2n-2 ) ⊕ A 2n-2 B -1/2 2n-1 || < 1.
Then the part of the spectrum σ(J) ∩ (0, +∞) is discrete.

In other words, condition (2) of the theorem says that either lim k→∞

(B 2k ) + Im ((B 2k )+) = +∞,
or (B 2k ) + = 0. Among other techniques, the proof of this theorem uses a generalized version of Schur-Frobenius lemma, see Subsection 2.4. Theorems A and B are new even in the case of scalar-valued Jacobi matrices. Note also that an explicit special case of the phenomenon described in the above theorems, was studied in Damanik-Naboko [START_REF] Damanik | Unbounded Jacobi matrices at critical coupling[END_REF], see Example 1, Subsection 5.2. The class of Jacobi matrices from [START_REF] Damanik | Unbounded Jacobi matrices at critical coupling[END_REF] illustrated the so-called spectral phase transition phenomenon of the second kind, see also Janas-Naboko [START_REF] Janas | Multithreshold spectral phase transitions for a class of Jacobi matrices[END_REF]- [START_REF] Janas | Spectral analysis of selfadjoint Jacobi matrices with periodically modulated entries[END_REF]. Hence, one can consider the present theorems as generalizations of results from the above mentioned articles.

The paper is organized as follows. In Section 2, we introduce the notation and give a brief list of facts on Jacobi and block Jacobi matrices we shall use in the paper. It contains some basic facts on self-adjoint Jacobi matrices, Gilbert-Pearson subordinacy theory in the Jacobi matrix case [START_REF] Gilbert | On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators[END_REF][START_REF] Khan | Subordinacy and spectral theory for infinite matrices[END_REF], Levinson's type asymptotic results [START_REF] Janas | Spectral properties of Jacobi matrices by asymptotic analysis[END_REF][START_REF] Janas | Spectral analysis of unbounded Jacobi operators with oscillating entries[END_REF], and a special version of classical Schur-Frobenius lemma [START_REF] Tretter | Spectral theory of block operator matrices and applications[END_REF]Sect. 1.6]. Theorem A along with its corollaries is proved in Section 3. Theorem B is given in Section 4. Section 5 presents a series of examples illustrating the sharpness of obtained results as well as counter-examples to certain attempts of their generalizations.

Concluding the introduction, we say a few more words on the notation. For a separable Hilbert space H, the zero and the identity operators are denoted by 0 H and I H , respectively. As explained above, for H = C d , we write 0 d and I d , correspondingly. When the spaces we work on is clear from the context the subindex (.) H is dropped. The writing M d,d (C) stays for the algebra of d × d complex matrices.

Preliminaries

2.1. Notation and generalities on (block) Jacobi matrices. Recall the definitions of a block and a scalar-valued Jacobi matrices given in (1.1) and (1.2), respectively. In general, we prove our results for block Jacobi matrices, specializing, if needed, to the scalar-valued case.

To keep the notation simple, the space 2 (N; C d ) is denoted 2 d ; of course, we write 2 for 2 1 . Sometimes, we have to indicate precisely the space C d , corresponding to the j-th "component" of a vector u = {u j } ∈ 2 d . We shall write it as (C d ) j so that u j ∈ (C d ) j . We set P j : 2 d → (C d ) j to be the corresponding orthoprojector, i.e., P j u = u j ∈ (C d ) j .

We shall use also orthoprojectors on "odd" and "even" subspaces of 2 d . That is, for a u = {u j } ∈ 2 d , we represent it as a sum of vectors u o , u e defined as

u o = P o u = 0 d , j = 2k, u j , j = 2k -1, u e = P e u = u j , j = 2k, 0 d , j = 2k -1,
where k ∈ N = {1, 2, . . . }. Furthermore, . We now remind some basic facts on self-adjoint extensions of Jacobi matrices (1.1). Self-adjoint extensions of scalar-valued Jacobi matrices are discussed in Teschl [25,Sect. 2.6]. The case of block Jacobi matrices is in Berezanskii [3, Sect. VII.2], see also Damanik-Pushnitskii-Simon [START_REF] Damanik | The analytic theory of matrix orthogonal polynomials[END_REF] in this connection. For the general theory of self-adjoint operators, see Reed-Simon [START_REF] Reed | Methods of modern mathematical physics. I. Functional analysis[END_REF], Birman-Solomyak [START_REF] Birman | Spectral theory of selfadjoint operators in Hilbert space[END_REF] and Weidmann [START_REF] Weidmann | Linear operators in Hilbert spaces[END_REF].

2 d,o = {v = {v j } j∈N ∈ 2 d : v 2k = 0 d , k ∈ N}, 2 d,e = {v = {v j } j∈N ∈ 2 d : v 2k-1 = 0 d ,
For a given J (1.1), define its minimal and maximal domains

D min = D(J min ) = 2 d,∅ = {u = {u j } ∈ 2 d : u j = 0, j ≥ N u }, (2.1) 
D max = D(J max ) = {u = {u j } ∈ 2 d : Ju ∈ 2 d }. (2.2)
It is easy to see that J min defined on D min is a symmetric operator, and its adjoint is exactly J max defined on D max , see [START_REF] Berezanskii | Expansions in eigenfunctions of selfadjoint operators[END_REF]Ch. VII]. One can show that the defect numbers satisfy the inequality

d ± (J) = dim Ker (J max ∓ zI) ≤ d,
where z ∈ {z : Im z > 0}. We assume for the rest of the paper that the defect numbers d ± (J) are equal, i.e., J admits a family of self-adjoint extensions. If this family consists of a single element, then J max is itself self-adjoint,i.e., d ± (J max ) = 0. Then we say that J is in "limit point case", see [START_REF] Berezanskii | Expansions in eigenfunctions of selfadjoint operators[END_REF][START_REF] Teschl | Jacobi operators and completely integrable nonlinear lattices[END_REF] for more details.

It is well-known that the distributional characteristics of discrete spectra of two distinct self-adjoint extensions of J are the same [START_REF] Birman | Spectral theory of selfadjoint operators in Hilbert space[END_REF]Ch. 3,[START_REF] Birman | Spectral theory of selfadjoint operators in Hilbert space[END_REF]. Consequently, our results on the distribution of discrete spectrum of J do not depend on the choice of a particular self-adjoint extension, and we keep it fixed for the rest of the paper. For the sake of simplicity, this self-adjoint extension of J will be denoted by J as well.

2.2. On Gilbert-Pearson subordinacy theory for Jacobi matrices. We recall certain basic facts from subordinacy theory for scalar-valued Jacobi matrices, see Khan-Pearson [START_REF] Khan | Subordinacy and spectral theory for infinite matrices[END_REF] and the seminal paper Gilbert-Pearson [START_REF] Gilbert | On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators[END_REF].

Let J = J({a n }, {b n }) be a Jacobi matrix (1.2) in the limit point case. Consider the space of generalized eigenvectors corresponding to λ ∈ C, i.e.,

(2.3) (Ju) (λ) = λu (λ),
where u(λ) = {u n (λ)} and u (λ) = {u n (λ)} n>1 . Note that the vector u (λ) is not required to lie in 2 . One says that a solution u s (λ) = {u s,n (λ)} to the above problem is subordinate, if lim

N →+∞ N n=1 |u s,n (λ)| 2 N n=1 |v n (λ)| 2 = 0
for any other solution v(λ) = {v n (λ)} to the problem, which is linearly independent of u s . By spectral theorem, we associate the (scalar-valued) standard spectral measure µ = µ(J) to J. We denote by µ ac , µ s , µ sc and µ d the absolutely continuous, singular, singular continuous, and discrete components of µ, respectively. Let M ac , M s , M sc and M d be the minimal supports of these measures.

The following theorem will be repeatedly used in Section 5.

Theorem 2.1 (Khan-Pearson [START_REF] Khan | Subordinacy and spectral theory for infinite matrices[END_REF]Thm. 3 ]). Let J be the above Jacobi matrix.

The minimal supports M ac , M s , M sc , and M d of µ ac , µ s , µ sc , and µ d are as follows:

• M ac = {x ∈ R : no subordinate solution to (Ju) = xu exists }, • M s = {x ∈ R : a subordinate solution to (Ju) = xu exists and it satisfies boundary condition b 1 u 1 + a 1 u 2 = xu 1 }, • M sc = {x ∈ R : a subordinate solution to (Ju) = xu exists, it satisfies boundary condition b 1 u 1 + a 1 u 2 = xu 1 , but u ∈ 2 }, • M d = {x ∈ R : a subordinate solution to Ju = xu exists, it satisfies boundary condition b 1 u 1 + a 1 u 2 = xu 1 , and u ∈ 2 }.
2.3. Some facts from Levinson theory on Jacobi matrices. In Section 5, we shall have to compute asymptotics of eigenvector equation ( 2.3) for some special Jacobi matrices. An appropriate framework for doing this is the so-called Levinson theory, see Coddington-Levinson [START_REF] Coddington | Theory of ordinary differential equations[END_REF] for the case of differential operators and Benzaid-Lutz [START_REF] Benzaid | Asymptotic representation of solutions of perturbed systems of linear difference equations[END_REF], Elaydi [START_REF] Elaydi | An introduction to difference equations[END_REF] for the case of finite differences.

More concretely, we shall use the following result from Janas-Mosziński [START_REF] Janas | Spectral properties of Jacobi matrices by asymptotic analysis[END_REF]. Let n 0 ∈ N, and {A n } n≥n0 be a uniformly bounded sequence of elements from M d,d (C), i.e., for some M ≥ 0, we have

||A n || ≤ M for n ≥ n 0 . Consider vectors x j = {x j k } k≥n0 ∈ 2 d
, where x j n0 = e j , j = 1, . . . , d, and {e j } is the standard basis of C d . Suppose that (2.4)

x j n+1 = A n x j n , n ≥ n 0 . We want to understand the behavior of x j n , j = 1, . . . , d, as n → +∞. The answer is given by the following theorem. Theorem 2.2 (Janas-Moszyński [9, Thm. 1.5]). In the above notation, let

A n = V n + R n ,
and {λ j (n)} j=1,...,d be the eigenvalues of V n ∈ M d,d (C). Suppose also that:

(1) det

A n = 0, det V n = 0 for n ≥ n 0 , ( 2 
) {R n } ∈ 1 (M d,d (C)), and 
{V n } is of bounded variation, i.e., ||{V n }|| BV := n ||V n+1 -V n || < ∞. (3) the limit V ∞ := lim n→+∞ V n has non-zero distinct eigenvalues {λ j (∞)} j=1,...,d , |λ j (∞)| = |λ k (∞)|, and 
lim n→+∞ λ j (n) = λ j (∞).
The eigenvectors corresponding to {λ j (∞)} j=1,...,d , are denoted by {v j (∞)} j=1,...,d , v j (∞) ∈ C d . Then there is a basis x j = {x j n }, j = 1, . . . , d, for the solutions of (2.4) such that

x j n = n-1 k=n0 λ j (k) v j (∞) + ō(1) , n → +∞.
Similar results for Jacobi matrices in the critical double root case are in Janas-Naboko-Shernova [START_REF] Janas | Asymptotic behavior of generalized eigenvectors of Jacobi matrices in the critical (double root) case[END_REF].

2.4.

A version of Schur-Frobenius lemma. To give a classical version of Schur-Frobenius lemma, we introduce some notation. Let H be a separable Hilbert space, H 1 be its closed subspace, and

H 2 = H ⊥ 1 so that H = H 1 ⊕ H 2 .
Let B(H) denote the algebra of bounded operators on H, and

A ∈ B(H), A * = A. Let (2.5) A = A B B * C : H 1 ⊕ H 2 → H 1 ⊕ H 2
be its block representation with respect to the above orthogonal decomposition of H. In particular, A * = A and C * = C. The orthogonal projectors on H 1 , H 2 are denoted by P H1 , P H2 , respectively.

The following useful proposition is well-known, see Tretter [26, Sect. 1.6] for instance.

Lemma 2.3 (Schur-Frobenius lemma). Let A ∈ B(H) be as above and suppose

that C ∈ B(H 2 ) is boundedly invertible, i.e. C -1 ∈ B(H 2 ).
Then the operator A is positive, A ≥ 0, if and only if:

(1) A ≥ 0 H1 and C ≥ 0 H2 , (2) A -BC -1 B * ≥ 0 H1 .
We need a generalization of the above result on Fredholm operators which is most probably a part of folklore on the subject. We give its proof for the completeness of the presentation. Let F = F (H) be the ideal of finite rank operators on H, and

B F = B F (H) = B(H)/F be the factor-algebra of bounded operators on H modulo F . For X, Y ∈ B(H) we write X = Y , if X = Y as elements of B F , or, equivalently, X -Y ∈ F . We say that X equals to Y modulo F . We say that X ≥ Y (X > Y ), if X -X * , Y -Y * ∈ F , and X -Y + F ≥ 0 (X -Y + F > 0, respectively) for some F ∈ F . Similarly, X ≤ Y (X < Y ), if there is a F ∈ F (H) with the property X -Y + F ≤ 0 (X -Y + F < 0, respectively). As usual, an operator C ∈ B(H) is invertible in B F , if there is a C 1 ∈ B(H) such that CC 1 = I H , C 1 C = I H .
More generally, X satisfies a property modulo F , if X + F has the claimed property for some F ∈ F .

Lemma 2.4 (Generalized Schur-Frobenius lemma). Let A ∈ B(H) be an operator as above. Suppose that

A = A * in B F (H 1 ), C = C * in B F (H 2 ), and C is invertible in B F (H 2 ).
Then A ≥ 0 if and only if:

(1) A ≥ 0 and C ≥ 0, (2) A -BC 1 B * ≥ 0, where C 1 is the inverse of C modulo F .
Proof. We start with several auxiliary facts. First, we have C ≥ 0, and for an F ∈ F (H 2 ), we see that C + F ≥ 0. So, replacing C with C + F , we can suppose C ≥ 0.

Second, under the assumptions of the lemma, C and C 1 can be chosen self-adjoint without loss of generality. In fact, we have Third, we have C ≥ 0 H2 , but we can assume C to be strictly positive without loss of generality. Indeed, relation (2.6) implies

CC 1 = I H2 + F 1 , C 1 C = I H2 + F 2 for certain F 1 , F 2 ∈ F (H 2 )
. Above, C, C 1 are self-adjoint. In particular, Ker C ⊂ Ker (I H2 + F 2 ), and so dim Ker C is of finite dimension. It is easy to see that, for a fixed ε > 0, C = C + εP Ker C , and so we can replace C with the latter operator.

Let us prove that this new C is strictly positive, i.e., C > 0 H2 . This is equivalent to show that σ(C) ⊂ (0, +∞), or 0 ∈ σ(C). By contradiction, suppose that this is not the case, and 0 ∈ σ(C). Since Ker C = 0, this means that there is a sequence

{f n } ⊂ H 2 , ||f n || = 1, such that Cf n → 0 and f n w → 0 as n → +∞.
As usual, the symbol w → stays for the weak convergence. Consequently, (2.7)

C 1 Cf n = (I H2 + F 2 )f n = f n + F 2 f n ,
as n → +∞. Notice that the weak convergence of the sequence {f n } implies that

F 2 f n → 0, since F 2 ∈ F (H 2 )
. The LHS of (2.7) goes to 0 by the choice of {f n }, while the RHS of this relation is

||f n + F 2 f n || ≥ ||f n || -||F 2 f n || ≥ 1 2
for n large enough. Thus, we indeed have C > 0 H2 , or, more precisely, C > εI H2 .

We go now to the proof of the claim of the lemma. Let us first prove the direct implication. Recalling notation (2.5), we have that

A ≥ 0 H , or there is a F 0 ∈ F (H) so that A + F 0 ≥ 0 H . For f 1 ∈ H 1 we get
Af, f = (A + F 0 )f, f ≥ 0, consequently A + P H1 F 0 P H1 ≥ 0 H1 , and A ≥ 0 H1 .

Similarly one obtains C ≥ 0 H2 . Then, since A ≥ 0 H , we also have

I -BC 1 0 0 A B B * C I 0 -C * 1 B * 0 ≥ 0 H .
Computing the operator on the LHS of this relation, we get

A -BC 1 B * 0 0 0 ≥ 0 H , which implies A -BC 1 B * ≥ 0 H1 .
Turning to the proof of the inverse implication, we look at

Af, f = A B B * C f 1 f 2 , f 1 f 2 , = Af 1 , f 1 + 2Re f 2 , B * f 1 + Cf 2 , f 2 ,
where for an arbitrary

f ∈ H we set f = f 1 ⊕ f 2 , f 1 ∈ H 1 , f 2 ∈ H 2 .
By the hypotheses of the lemma,

Af 1 , f 1 + 2Re f 2 , B * f 1 + Cf 2 , f 2 ≥ BC 1 B * f 1 , f 1 + 2Re f 2 , B * f 1 + Cf 2 , f 2 + F f, f , (2.8) where F ∈ F (H). Assuming C > 0 H2 , let g := B * f 1 and then h := C -1/2 g = C -1/2 B * f 1 , e := C 1/2 f 2 . We continue as BC 1 B * f 1 , f 1 + 2Re f 2 , B * f 1 + Cf 2 , f 2 = C 1 g, g + 2Re e, C -1/2 g + ||e|| 2 = C 1 C 1/2 h, C 1/2 h + 2Re e, h + ||e|| 2 . Now, C 1/2 C 1 C 1/2 = I H2 , so quadratic form (2.8) equals to ||h + e|| 2 ≥ 0 modulo F .
Hence, we obtain that A ≥ 0, and the proof of the lemma is complete.

It is worth mentioning that the above reasoning gives a similar result for Calkin algebra, i.e., the factor space of B(H) over the compact operators instead the finite rank ones.

Proof of Theorem 3.1

We are mainly interested in sufficient conditions on the presence of the discrete spectrum for block Jacobi matrices J (1.1), as well as in an upper bound for the counting function of eigenvalues of J in this situation.

Suppose that the spectrum σ(J) of J is purely discrete in the interval I . We denote by n(J; I ) the counting function of the eigenvalues of J in the interval I , I ⊂ I . Of course, the eigenvalues are numbered taking into account their multiplicity, i.e., In general, we deal with unbounded operators having a dense domain containing

2 d,∅ ⊂ 2 d , see (2.
1); generically, we apply them to vectors from 2 d,∅ , and so the expressions we manipulate are well-defined.

Theorem 3.1 (=Theorem A). Let J be a block Jacobi matrix (1.1). Suppose that:

(1) for some fixed c ∈ R, there is a N 0 such that B 2n ≤ cI d for n ≥ N 0 .

(2) we have

lim n→∞ B 2n-1 = +∞
in the sense of (1.3). Then the spectrum of J (denoting an arbitrary self-adjoint extension of J min ) is discrete in (c, +∞), and it accumulates to +∞ only.

Moreover, for a > 0 Proof. Without loss of generality, we suppose that c = 0, so the first condition of the theorem reads as

B 2n ≤ 0 for n ≥ N 0 . Set B = diag {B j } and J A = J -B, that is (3.3) B =       B 1 0 0 . . . 0 B 2 0 . . . 0 0 B 3 . . . . . . . . . . . . . . .       , J A =        0 A 1 0 . . . A * 1 0 A 2 . . . 0 A * 2 0 . . . . . . . . . . . . . . .       
.

For an a > 0, the block decomposition of the operator (J -aI) with respect to Let

2 d = 2 d,o ⊕ 2 d,
L N = {u = {u j } ∈ 2 d : u j = 0 d , j > N } ⊂ 2 d , (3.5) L ⊥ N = {u = {u j } ∈ 2 d : u j = 0 d , j ≤ N } ⊂ 2 d . The first step of the proof is to show that the quadratic form (J -aI) 2 -a 2 I is positive on 2 d,∅ ∩ L ⊥ N for N large enough. Indeed, writing u = u o ⊕ u e , u ∈ 2 d , u o ∈ 2 d,o , u e ∈ 2
d,e , we obtain First, we require that j ≥ N 0 , so B 2j ≤ 0 and P e (-2aB)P e u e , u e ≥ 0 for u e ∈ L ⊥ 2N0 . Second, we take M = 2a, a > 0 from definition (1.3) and, consequently,

[(J -aI) 2 -a 2 I]u, u = [(J -aI) 2 -a 2 I] u o u e , u o u e = P o (B 2 -2aB)P o u o , u o + ||T u o || 2 + P e (B 2 - 
B 2j-1 ≥ 2aI d for j ≥ N (2a). That is, for u o ∈ L ⊥ 2N (2a)-1 , we have P o (B - 2a)P o u o , u o ≥ 0. So, P o (2aB -4a 2 )P o u o , u o + P e (-2aB)P e u e , u e ≥ 2a P o (B -2a)P o u o , u o ≥ 0.
To sum up, we define

(3.8) N (2a) := max{2N 0 , 2N (2a) -1},
and we see that

[(J -aI) 2 -a 2 I]u, u ≥ 0 for u ∈ 2 d,∅ ∩ L ⊥ N (2a)
. By the min-max principle for self-adjoint operators [4, Ch. 4], the total multiplicity of the spectrum σ(J) in the interval (0, 2a) does not exceed d N (2a) + ind J min . Consequently, σ(J) is discrete there, and

(3.9) n(J; (0, 2a)) ≤ d • N (2a) + ind J min .
The second step of the proof consists in doing the similar computation for an arbitrary c ∈ R. In fact, if the Jacobi matrix J satisfies the assumptions of the theorem with a given c, consider J := J -c, and apply the calculation from the first step of the proof to this operator. The d × d matrices with double-primes refer to the matrix entries of J . Then B 2j = B 2j -cI d ≤ 0 d , B 2j-1 = B 2j-1 -cI d , and A j = A j . Now, apply the result of the above first step to J , and then shift the spectrum σ(J ) by +c to obtain

(3.10) n(J; (c, c + 2a)) ≤ d • N (c + 2a) + ind J min .
The theorem is proved.

Of course, one may rewrite the conclusion of the theorem in a slightly different manner. For instance, we have that σ(J) ∩ (c, +∞) = σ d (J) ∩ (c, +∞) = {λ n }, where the eigenvalues λ n are numbered increasingly counting the multiplicities. Then, picking a > 0 in a way that c + a = λ n for some fixed n, we see that, for a = λ n -c, relation (3.10) becomes

n = n(J; (c, λ n )) ≤ d • N (λ n ) + ind J min ,
which implies a bound on {λ n } from below.

Here is another corollary of Theorem 3.1.

Proposition 3.2. Let J be a block Jacobi matrix (1.1). Suppose that

(3.11) lim j→∞ B 2j-1 = +∞, lim j→∞ B 2j = -∞.
Then the spectrum of J is purely discrete and it accumulates to ±∞ only.

Of course, relation (3.11) means that for any M > 0, there is a

N = N (M ) such that B 2j-1 ≥ M I d and B 2j ≤ -M I d for j ≥ N .
Proof. By the hypotheses of the proposition, we have that B 2j-1 → +∞ as j → +∞ and B 2j ≤ -M I d for some fixed M > 0 and j ≥ N 0 (M ). So, by Theorem 3.1, the spectrum σ(J) is discrete in (-M, +∞). Since M > 0 is arbitrary, the whole σ(J) is discrete.

The spectrum has to accumulate to ±∞, since

B 2j-1 u 2j-1 , u 2j-1 = Ju, u → +∞ for u 2j-1 ∈ (C d ) 2j-1 , ||u 2j-1 || = 1 and u = {u k } = 0 d , k = 2j -1, u 2j-1 , k = 2j -1. A similar bound for u 2j ∈ (C d ) 2j , ||u 2j || = 1 B 2j u 2j , u 2j = Ju, u → -∞, j → +∞, finishes the proof. Above, u = {u k } = 0 d , k = 2j, u 2j , k = 2j.

Proof of Theorem 4.2

First we prove a version of Theorem 4.2 for Jacobi matrices with invertible diagonal. Then we show that one can remove this assumption, and, modulo suitable modification, the result still holds true.

For B n ∈ M d,d (C), B n = B * n , the (elementary) spectral theorem allows us to define B n+ = (B n ) + := B n P (0,+∞) , B n-= (B n ) -:= B n P (-∞,0] , where P I is the spectral projection of B n on the interval I ⊂ R, so that B n = B n+ + B n-. Theorem 4.1. Let J be the block Jacobi matrix defined by (1.1). Suppose that:

(1) B is invertible, i.e., 0 ∈ σ(B), 

(2) B 2k-1 → +∞ as k → +∞, ( 3 
) (B 2k ) + Im ((B 2k )+) → +∞ as k → +∞, or (B 2k ) + = 0, (4) one has 
) + A * 2n-1 B -1/2 2n-1 || + lim sup n→+∞ ||(B -1/2 2n-2 ) + A 2n-2 B -1/2 2n-1 || < 1.
Then the part of the spectrum σ(J) ∩ (0, +∞) is discrete.

Of course, one can interpret assumption (3) of the theorem exactly as lim k→+∞ (B -1 2k ) ⊕ = 0. This assumption, as well as condition (2) in Theorem 4.2, says that the sequence {B 2k } is allowed to contain two subsequences with rather different behavior, i.e. one can have (B 2k ) + → +∞ for the first subsequence and (B 2k ) + = 0 for the second subsequence complementary to the first one.

Similarly to the discussion at the end the proof of Theorem 3.1, one can give an upper bound on the eigenvalue counting function n(J; I) for an interval I, see (3.1).

Proof. As in Theorem 3.1, the idea is to prove the inequality (J -aI) 2 -a 2 I ≥ 0 for a parameter a > 0 going to +∞. This implies that σ(J) ∩ (0, 2a) is discrete, which will give immediately the claim of the theorem.

Recall that T := P e J A P o . We continue on with relation (3.6) from Theorem 3.1 Assumption (1) yields that B is invertible, and so is B + on Im (B + ). Furthermore, by assumptions (2), (3) the set σ(B) ∩ (0, +∞) is discrete and it accumulates to +∞ only. Without loss of generality, we can take 2a ∈ σ(B) ∩ (0, +∞), a > 0. The spectral mapping theorem says then that (B 2 -2aB) is invertible, and so is P e (B 2 -2aB)P e on 2 d,e . The same applies to P e (B 2 + -2aB + )P e . 

(4.2) [(J -aI) 2 -a 2 I]u, u = P o (B 2 -2aB)P o u o , u o + ||T u o || 2 + P e (B 2 - 

Furthermore, we have (B

-2a) = (B -2a) + ⊕ (B -2a) -and (B -2a) -1 = (B -2a) -1 + ⊕ (B -2a) -1 -≤ (B -2a) -1 + . So,
P o B -1 (B -2a)P o -(P o BP o ) -1/2 T * (P e (B -2a) -1 + P e ) T (P o BP o ) -1/2 ≥ 0. Consider the operator (B -2a) + on 2 d,e . One has (B -2a) + = (B + -2a) + = B + (I -2aB + -1
) + , where B -1 + := (B -1 ) + . Restricting the latter expression on L ⊥ N with N large enough, we get ||B + -1 || < 1/(2a), and so (I -2aB -1 + ) ≥ 0 on this subspace. Hence P e (B -2a) -1

+ P e = P e B -1 + (I -2aB -1 + )

-1

+ P e = P e B -1 + (I -2aB -1 + ) -1 P e , and we rewrite (4.6) as

P o -2a(P o B -1 P o ) -(P o BP o ) -1/2 T * (P e B -1
+ (I -2aB -1 + ) -1 P e )T (P o BP o ) -1/2 ≥ 0. Note that under conditions (2), (3) of the theorem, for any δ > 0, we have

B -1 + (I -2aB -1 + ) -1 ≤ (1 + δ)B -1 + . Therefore, it is enough to check (4.7) P o -(1 + δ) (P o BP o ) -1/2 T * (P e B -1 + P e )T (P o BP o ) -1/2 -2a(P o B -1 P o ) ≥ 0. Take N 1 , N 1 ≥ N large
enough to guarantee that the norm of 2a(P o B -1 P o ) is as small as we want and restrict the latter inequality to L ⊥ N1 . Picking δ > 0 small enough, we see that inequality (4.7) holds, if

P o -(P o BP o ) -1/2 T * (P e B -1
+ P e )T (P o BP o ) -1/2 ≥ δ 1 P o for some δ 1 > 0. In turn, this relation is true if we require

||(P e B -1/2 + P e )T (P o BP o ) -1/2 || < 1,
where we understand that the operator (P e B -1/2 + P e )T (P o BP o ) -1/2 is restricted to L ⊥ N2 for some N 2 ≥ N 1 . This is the same as 

P e )SA * (P o BP o ) -1/2 L ⊥ n || + lim sup n→+∞ ||(P e B -1/2 + P e )AS * (P o BP o ) -1/2 L ⊥ n || < 1.
Explicitely computing the operators appearing under the norms in the previous relation gives

lim sup n→+∞ ||(B -1/2 2n ) + A * 2n-1 B -1/2 2n-1 || + lim sup n→+∞ ||(B -1/2 2n-2 ) + A 2n-2 B -1/2 2n-1 || < 1,
which is the claim of the theorem. Now, the point is to obtain an extension of Theorem 4.1 getting rid of the technical condition (1) from its formulation. Recall the notation

(B -1 ) ⊕ = (B + ) -1 , on Im (B + ), 0 d , on Im (B + ) ⊥ .
introduced in (1.4). Recall that, with a slight abuse of the notation, (

B -1/2 ) ⊕ = (B -1 ) ⊕ 1/2 .
Theorem 4.2 (=Theorem B). Let J be the Jacobi matrix defined by (1.1). Assume that:

(1)

lim k→∞ B 2k-1 = +∞, (2) either 
(B 2k ) + → +∞ or (B 2k ) + = 0, (3) one has 
(4.9) lim sup n→+∞ ||(B -1/2 2n ) ⊕ A * 2n-1 B -1/2 2n-1 || + lim sup n→+∞ ||(B -1/2 2n-2 ) ⊕ A 2n-2 B -1/2 2n-1 || < 1.
Then the part of the spectrum σ(J) ∩ (0, +∞) is discrete.

Compared to Theorem 4.1, we drop the condition of the invertibility of B. The price to pay is that the expressions (B -1 2k ) + in (4.1) become (B -1 2k ) ⊕ in (4.9). Notice that condition (2) of the theorem can be read as lim k→+∞ (B -1 2k ) ⊕ = 0. . Proof. The proof of the theorem follows exactly the lines of Theorem 4.1. The only thing to do is to explain how one gets rid of the invertibility of B in Theorem 4.1.

The problem is that to apply the Schur-Frobenius lemma to (4.3), we need to have an invertible (P e B + P e ). To this end, recall that

2 d = 2 d,o ⊕ 2 d,e
, and consider and the positivity of the latter form easily yields the positivity of quadratic form (4.10), since T * T = T * (P E + P G )T ≥ T * P E T . We observe that the proof of Theorem 4.1 goes through for the form in the RHS of (4.11) (i.e., , with T replaced with P E T ). Hence, we obtain the discreteness of σ(J) on the interval (0, 2a), and the proof of the theorem is finished. In this section we give a series of examples discussing the phenomena described in Theorems 3.1-4.2. Besides that, the examples show that the results obtained in these theorems are sharp, and they give negative answers to some natural attempts of their generalization. Most examples seem to be interesting and non-trivial even in the scalar-valued case d = 1. 5.1. Example 5.1. The following easy fact was mentioned in the introduction, and now we give a sketch of its proof for the completeness. Let

E 2k = Im B 2k ⊂ (C d ) 2k . Of course, since B 2k is self-adjoint, Im B 2k = (C d ) 2k Ker B 2k . Set E = ⊕ k:E 2k ={0} E 2k ⊂ 2 d,
J α = J({n α }, {0}), J α,β = J({n α }, {n β }),
where 0 < α ≤ 1, 0 < β < α, see (1.2) for notation. Set also B = diag {n β }. Then J α,β = J α + B is neither relatively compact nor relatively bounded perturbation of J α .

Observe that, due to Carleman condition [1, Ch. 1, Pb. 1], the Jacobi matrix J α is in the limit point case, and so D(J α ) = D((J α ) max ), where J α stays for the self-adjoint extension of J α for the simplicity of notation.

We have to present an u = {u n } ∈ 2 such that J α u ∈ 2 , but Bu ∈ 2 . Set u n := (i n )/n x , u := {u n }. The condition u ∈ 2 implies x > 1/2. Then

(J α u) n = (n -1) α i n-1 (n -1) x + n α i n+1 (n + 1) x = i n-1 n α-x 2x -α n + O 1 n 2 .
Assuming 2x = α, the vector J α u is in 2 whenever x > α -1/2, and this is true since x > 1/2. Now, Bu =

i n n x-β
is not in 2 if x ≤ β + 1/2. So, for an arbitrary small β > 0, one can choose a value x so that 1/2 < x ≤ 1/2 + β, and the vector u satisfies all requirements. Therefore, B is not a relatively compact perturbation of J α , and it does change dramatically its essential spectrum. 5.2. Example 5.2. Consider the scalar-valued Jacobi matrix J = J({a n }, {b n }) where

a n = n α , b n = bn α , n = 2k -1, 0 , n = 2k,
where 2/3 ≤ α < 1 and b > 0, and so c = 0, see Theorem 3.1. On the one hand, Damanik-Naboko [START_REF] Damanik | Unbounded Jacobi matrices at critical coupling[END_REF]Thm. 3] say that σ(J) ∩ (-∞, 0] is purely absolutely continuous. On the other hand, Theorem 3.1 claims that σ(J) ∩ (0, +∞) is purely discrete with only accumulation point at +∞. Notice that the example shows that one cannot extend the presence of the discrete spectrum of J to the interval (-ε, +∞) for any ε > 0, and hence the value c in Theorem 3.1 is sharp.

The above example also shows that Theorem 4.2 is sharp as well. Indeed, we have in terms of Theorem 4.2 that B 2n-1 = b 2n-1 = b(2n -1) α → +∞, and B 2n = b 2n = 0. Hence (B 2n ) + = 0 and (B -1 2n ) ⊕ = 0. As above, we have σ(J) ∩ (-∞, 0] is purely absolutely continuous, and, by Theorem 4.2, σ(J) ∩ (0, +∞) is purely absolutely discrete. 5.3. An heuristic example. A very special feature of Theorem 3.1 is that the result depends on the behavior of entries B 2n-1 , B 2n of the matrix J, but not on A n which can be arbitrary. A simple example presented below explains how this phenomenon can occur; it is of heuristic nature and it cannot be considered as a rigorous proof. Since the following discussion makes quite apparent that the effect comes from a fine cancellation of "A n -terms" in certain asymptotics, we decided to include it in the paper.

Consider the scalar-valued Jacobi matrix J = J({a n }, {b n }) with entries

a n = n α , b n = n β , n = 2k -1, 0 , n = 2k,
where 1/2 < α < 1, 0 < β < α, and α > 1 2 max{1 + β, 2 -β}. The last relation implies in fact that 3/4 ≤ α < 1. Denote by Φ n the standard transfer matrix for J, i.e.,

u n u n+1 = Φ n u n-1 u n ,
where (Ju ± ) (λ) = λ(u ± ) (λ), and u ± := u ± (λ) = {u ± n }, see Subsection 2.2 for the prime-notation.

We have for 2-step transfer matrices

Ψ n := Φ 2n Φ 2n-1 = 0 1 -(2n-1) α (2n) α λ (2n) α 0 1 -(2n-2) α (2n-1) α λ-b2n-1 (2n-1) α = -(2n-2) α (2n-1) α λ-b2n-1 (2n-1) α -λ(2n-2) α (2n) α (2n-1) α -(2n-1) α (2n) α + λ(λ-b2n-1) (2n) α (2n-1) α = -I 2 + α 2n λ (2n) α -b2n-1 (2n-1) α -λ (2n) α α 2n -λb2n-1 (2n) 2α + R n ,
where {R n } ∈ 1 (M d,d (C)) and we used the Taylor expansion of elementary functions appearing in the preceding expression. To calculate the eigenvalues λ ± (n) of Ψ n , we notice that

det Ψ n = det Φ 2n det Φ 2n-1 = 2n -2 2n α = 1 - 1 n α , tr Ψ n = -2 + α n - λb 2n-1 (2n) 2α + O 1 n 2α ,
and, consequently,

λ ± (n) = 1 2 tr Ψ n ± 1 4 (tr Ψ n ) 2 -det Ψ n = -1 + α 2n - λb 2n-1 2(2n) 2α + O 1 n 2α ± -1 + α 2n - λb 2n-1 2(2n) 2α + O 1 n 2α 2 -1 - 1 n α (5.1) = -1 + α 2n - λb 2n-1 2(2n) 2α + O 1 n 2α ± λb 2n-1 (2n) α + O 1 b 2n-1 n α .
Hence we obtain

λ ± (n) = -1 + α 2n ± λb 2n-1 (2n) α + r n ,
where

r n = - λb 2n-1 2(2n) 2α + O 1 n α+β/2 . Take λ > 0. The condition 2α > max{1 + β, 2 -β} yields that {r n } ∈ 1 . Recall that u ± := u ± (λ) = {u ±
n } is a generalized eigenvector for the equation (Ju ± ) (λ) = λ(u ± ) (λ). A Levinson type result in this situation, e.g., see Theorem 2.2, along with a simple computation would imply formally that

|u - 2N | = (1 + ō(1)) N n=1 |λ -(n)| = (1 + ō(1)) N n=1 -1 + α 2n - λ 1/2 (2n) α-β/2 = O 1 n α/2 exp - √ λ 1 -α + β/2 n 2 1-α+β/2 .
A similar asymptotic bound holds for odd-numbered components u - 2N -1 , and hence we get u -∈ 2 , which suggests that λ ∈ σ d (J) whenever u(λ) satisfies the appropriate boundary conditions, see Theorem 2.1. On the contrary, taking λ < 0 gives rise to bounded oscillating solutions u ± = {u ± n }, (Ju ± ) (λ) = λ(u ± ) (λ), where, granting a Levinson-type result (Theorem 2.2) again,

u ± 2N = (1 + ō(1)) N n=1 λ ± (n) = (1 + ō(1)) N n=1 -1 + α 2n ± i|λ| 1/2 (2n) α-β/2 = O 1 n α/2 exp ± i |λ| 1 -α + β/2 n 2 1-α+β/2
. By subordinacy theory for eigenvectors of Jacobi matrices (Theorem 2.1), this suggests that λ ∈ σ ac (J).

The issue here is that a Levinson-type theorem is not fully applicable in this situation. Still, the point is that one clearly sees the cancellation of leading terms depending on a n (i.e., α-power terms) under the square root (5.1), thus bringing into "the main game" a term depending on b 2n-1 producing either rapidly decreasing solutions u -(λ) for λ > 0, or bounded oscillating solutions u ± (λ) for λ < 0. Theorem 3.1 gives a rigorous proof for this phenomenon in a completely general case.

Concluding this example, we remark that it is likely that a more rigorous analysis in this direction might be performed with the help of methods introduced in Naboko-Simonov [START_REF] Naboko | Spectral analysis of a class of Hermitian Jacobi matrices in a critical (double root) hyperbolic case[END_REF].

5.4.

A counterexample for a counterpart of Theorem 3.1 "with step 3". Let J = J({A n }, {B n }) be a block Jacobi matrix. Theorem 3.1 says that, if the entries B 2n are uniformly bounded and B 2n-1 → +∞ as n → +∞, then the spectrum σ(J) is discrete on a right half-axis. This claim prompts to a guess that the same effect is likely to take place if we extend the "2-step" formulation to a larger number of "steps". For instance, we wish to understand if the conditions sup

n =n k B n ≤ c 0 , B n k → +∞, k → +∞ for a "reasonable" sequence {n k } ⊂ N, n k
+∞, ensure that σ(J) is discrete on a right real half-axis.

It turns out that the answer to this guess is negative. Moreover, even the "3step" assumptions do not give the discreteness conclusion in full generality, as the below proposition shows. Hence, the open problem is to give a version of "n-step" result similar to Theorem 3.1 under some additional assumptions.

Proposition 5.3. There is a scalar-valued Jacobi matrix J = J({a n }, {b n }) such that b 3n → +∞, b 3n-1 = b 3n-2 = 0, and, for a suitable choice of {a n }, the spectrum σ(J) is purely absolutely continuous and σ(J) = σ(J ac ) = R.

Proof. We choose a n = n α , b 3n = δ(3n) α , with 1/2 < α < 1 and 0 < δ < 2. Notice that for δ = 2, this choice corresponds to the critical coupling of the main diagonal {b n } and auxiliary diagonals {a n }, that is a n-1 + a n -b n = ō(n α ), see [START_REF] Janas | Multithreshold spectral phase transitions for a class of Jacobi matrices[END_REF][START_REF] Janas | Spectral properties of selfadjoint Jacobi matrices coming from birth and death processes[END_REF]. We have for 3-step transfer matrices 

=

λ(3n-3) α (3n-1) α (3n-2) α (3n-1) α (3n-3) α (3n) α (3n-2) α -λ(λ-b3n)(3n-3) α (3n) α (3n-1) α (3n-2) α -(3n-2) α (3n-1) α + λ 2 (3n-2) α (3n-1) α λ(3n-1) α (3n) α (3n-2) α + (λ-b3n) (3n) α -(3n-2) α (3n-1) α + λ 2 (3n-1) α (3n-2) α   , and det Ψ n = det Φ 3n det Φ 3n-1 det Φ 3n-2 = (3n -3) α (3n) α = 1 -

1 n α , tr Ψ n = - λ(3n -3) α (3n -1) α (3n -2) α - λ(3n -1) α (3n) α (3n -2) α + (λ -b 3n ) (3n) α - (3n -2) α (3n -1) α + λ 2 (3n -1) α (3n -2) α = δ - 3λ (3n) α - αδ 3n + O 1 n 2α .
where we used once again Taylor expansions for standard power functions. Furthermore, expanding similarly the components of Ψ n , we obtain which is strictly less than one. The proof is finished.

Ψ n = 0 -1 1 0 + α 3n F 1 + λ (3n) α
Note that in case (3) above, when one has (C 1 + C 2 ) 2 = D 1 D 2 , the continuous spectrum of J can cover a half-line, see [START_REF] Damanik | Unbounded Jacobi matrices at critical coupling[END_REF]. 5.6. Example 5.6 to Theorem 4.2, a 2 × 2-matrix case. In this subsection, we show how Theorem 4.2 can be applied to the study of the spectrum of a block Jacobi matrix J = J({A n }, {B n }). The computations essentially use its block structure. For simplicity, we take d = 2.

Let B 2n-1 → +∞ in the sense required by Theorem 4.2 as n → +∞, and, for large j Notice that for large j , where a 2j , a 2j-1 > 0 and η 2j , η 2j-1 = 0, so the inverses to A 2j , A 2j-1 exist.

a 1 b 2 a 2 ,

 2 where a j , b j ∈ R and a j = 0 for all j.Let {B n } ⊂ M d,d (C) be a sequence of Hermitian matrices. We say that(1.3) lim n→∞ B n = +∞, if for any M ≥ 0 there is a N = N (M ) such that B n ≥ M I d for n ≥ N .

(2. 6 )

 6 C 1 C = CC 1 = I H2 , and so C * C * 1 = C * 1 C * = I H2 . Since C = C * , one can replace the operator C by Re C in the above relation. That is, C 1 (Re C) = (Re C)C 1 = I H2 , and we can suppose C to be self-adjoint, C = C * . Exactly the same argument applies to C 1 .

( 3

 3 .1) n(J; I ) := #(σ(J) ∩ I ) = #{j : λ j (J) ∈ I }.

(3. 2 )

 2 n(J; (c, c + a)) ≤ d • N (c + a) + ind J min , where the quantity N (c + a) is defined in (3.8), (3.10).

  To simplify the writing, set T := P e J A P o . The above equality takes the form (J -aI) 2 -a 2 I = P o (B 2 -2aB)P o + T * T T (P o (B -aI)P o ) + (P e (B -aI)P e )T (3.4) P o (B -aI)P o T * + T * P e (B -aI)P e T T * + P e (B 2 -2aB) 2 P e

  2aB)P e u e , u e + ||T * u e || 2 + 2Re (P o (B -aI)P o )T * u e , u o + 2Re T * (P e (B -aI)P e )u e , u o .Recalling that u e , T u o = T * u e , u o , an elementary transformation yields. . . = P o (B 2 -2aB)P o u o , u o + ||T u o || 2 + ||T * u e || 2 (3.6) + 2Re T * u e , (P o (B -2aI)P o )u o + 2Re (P e BP e )u e , T u o + P e (B 2 -2aB)P e u e , u e . Suppose that u = u o ⊕ u e ∈ L ⊥N with N large enough. The choice of N will be made precise below, see(3.8). By Cauchy-Schwarz inequality and using the fact that B commutes with P o , P e , we get . . . ≥ P o (B 2 -2aB)P o u o , u o + ||T u o || 2 + ||T * u e || 2 + P e (B 2 -2aB)P e u e , u e -(||P o (B -2aI)P o )u o || 2 + ||T * u e || 2 ) -(||(P e BP e )u e || 2 + ||T u o || 2 ) = P o (B 2 -2aB)P o u o , u o + P e (B 2 -2aB)P e u e , u e -P o (B -2aI) 2 P o u o , u o -P e B 2 P e u e , u e = P o (2aB -4a 2 )P o u o , u o + P e (-2aB)P e u e , u e . (3.7)

  2aB)P e u e , u e + ||T * u e || 2 + 2Re T * u e , (P o (B -2aI)P o )u o + 2Re T u o , (P e BP e )u e , where u = u o ⊕ u e ∈ 2 d . By Cauchy-Schwarz inequality, we get 2Re T * u e , (P o (B -2aI)P o )u o ≥ -||T * u e || 2 + ||(P o (B -2aI)P o )u o || 2 .So, we can bound (4.2) from below as[(J -aI) 2 -a 2 I]u, u ≥ 2a P o (B -2a)P o u o , u o + ||T u o || 2+ 2Re T * (P e BP e )u e , u o + P e (B 2 -2aB)P e u e , u e . We see that the latter quadratic form is generated by the following operator written in the 2 × 2-block decomposition (4.3) à B B * C := 2a(P o (B -2a)P o ) + T * T T * (P e BP e ) (P e BP e )T P e (B 2 -2aB)P e : 2 d,o ⊕ 2 d,e → 2 d,o ⊕ 2 d,e . To see the positivity modulo F of the above operator, we apply Lemma 2.4. Trivially, we have à = 2a(P o (B -2a)P o ) + T * T ≥ 0 provided assumption (2) of the theorem. In the same way, we see that C = P e (B 2 -2aB)P e ≥ P e (B 2 + -2aB + )P e > 0, since, by assumption (3) of the theorem (B 2k ) + → +∞ (in the sense that min(σ(B 2k ∩ (0, +∞)) → +∞ as k → +∞).

  Now, we have to check that the operator à -B C-1 B * = 2a(P o (B -2a)P o ) + T * T -T * (P e BP e )(P e (B 2 -2aB)P e ) -1 (P e BP e )T = 2a(P o (B -2a)P o + T * I e -(P e B 2 P e )(P e (B 2 -2aB)P e ) -1 P e T (4.4) is positive modulo F . Using the fact that B is a block-diagonal operator, we have P e B = BP e , and, after a simple algebraic calculation, (4.4) takes the form . . . = 2a(P o (B -2a)P o ) -2aT * (P e (B -2a) -1 P e )T. Its positvity is equivalent to the positivity of (P o (B -2a)P o ) -T * (P e (B -2a) -1 P e )T.

( 4 2 L ⊥ N 2 || < 1 .

 4221 .8) lim sup N2→+∞ ||(P e B -1/2 + P e )T (P o BP o ) -1/Properly understanding the inverse of the operator, we have (P e B -1/2 + P e ) = (P e B -1 + P e ) 1/2 = (P e B + P e ) -1/2 . Denote by S the shift operator acting on 2 d , i.e., S{u n } = {0, u 1 , u 2 , . . . } for u ∈ 2 d . Set also A = diag {A j }, and so T = P e J A P o = P e SA * P o + P e AS * P o , see the formula preceding (3.4). Consequently, relation (4.8) follows from lim sup n→+∞ ||(P e B -1/2 +

5 .

 5 Some examples to Theorems 3.1, 4.1, 4.2

Ψ

  n := Φ 3n Φ 3n-1 Φ 3n-2

Proposition 5 . 5 .( 1 ) 2 max{α 1 , α 2 } < β 1 + β 2 , ( 2 )C 1

 551121221 F 2 (5.2) + b 3n (3n) α F 3 (1 -Let J = J({a n }, {b n }) be a scalar-valued Jacobi matrix, d = 1. Assume that for large na 2n ≤ C 1 n α1 , a 2n-1 ≤ C 2 n α2 , b 2n ∼ D 1 n β1 , b 2n-1 ∼ D 2 n β2 , where C i , D i > 0, α i , β i > 0 for i = 1, 2.Let one of the following conditions holds true:2α 1 = β 1 + β 2 , 2α 2 < β 1 + β 2 and C 2 1 < D 1 D 2 , (3) 2α 1 = 2α 2 = β 1 + β 2 and (C 1 + C 2 ) 2 < D 1 D 2 .Then the spectrum σ(J) is purely discrete and it accumulates to +∞ only.It goes without saying that the above condition (2) can be replaced by its symmetric version, 2α1 < β 1 + β 2 , 2α 2 = β 1 + β 2 and C 2 1 < D 1 D 2 .Proof. We obviously have b 2n-1 → +∞, b 2n = (b 2n ) + → +∞, so it remains to check condition (4.9) only. In this specific situation it reads as lim sup (2n) α1 √ D 1 D 2 (2n) (β1+β2)/2 + lim sup n→+∞ C 2 (2n) α2 √ D 1 D 2 (2n) (β1+β2)/2 < 1.Now, it is very easy to finish the proof for cases (1)-(3) from the formulation of the proposition. For the sake of completeness, we give the details for the case (3), the other cases are similar. So, when 2α 1 = 2α 2 = β 1 + β 2 , the latter limsup's are lim sup n→+∞ C 1 n α1 √ D 1 D 2 n (β1+β2)/2 + lim sup n→+∞ C 2 n α2 √ D 1 D 2 n (β1+β2)/2 = C 1 + C 2 √ D 1 D 2 ,

  b j → +∞ as j → +∞. Furthermore, set (5.6)A 2j = a 2j 1 0 2j η 2j , A 2j-1 = a 2j-1 1 0 2j-1 η 2j-1

  e is (J -aI) = P o (B -aI)P o P o J A P e P e J A P o P e (B -aI)P e , where P o J A P o = P e J A P e = 0. Therefore, we have (J -aI) 2 -a 2 I = P o (B -aI) 2 P o -a 2 P o + (P o J A P e )(P e J A P o ) (P e J A P o )(P o (B -aI)P o ) + (P e (B -aI)P e )(P e J A P o ) (P o (B -aI)P o )(P o J A P e ) + (P o J A P e )(P

e (B -aI)P e ) (P e J A P o )(P o J A P e ) + P e (B -aI) 2 P e -a 2 P e

  Once again, the invertibility of B yields that (P o BP o ) is invertible as well on 2 d,o . Moreover, assumption (2) of the theorem implies that (P o BP o ) > 0. Let us conjugate relation (4.5) by (P 0 BP 0 ) -1/2 . Recalling P o B = BP o , this gives (4.6)

		the required positivity will be proved,
	if we obtain	
	(4.5)	P

o (B -2a)P o -T * (P e (B -2a) -1 + P e )T ≥ 0.

  E ; the corresponding orthoprojectors are denoted by P E and P G , respectively. It follows from the construction that P e B + P e : E → E is an invertible operator. Consider its restriction on the space 2 o ⊕ E ; it is given by 2a(P o (B -2a)P o ) + T * T T * (P e BP e )P E P E (P e BP e )T P E (B 2 -2aB)P E ≥ 2a(P o (B -2a)P o ) + T * P E T T * P E (P e BP e )P E P E (P e BP e )P E T P E (B 2 -2aB)P E , (4.11)

		e ,
	and G = 2 d,e	
	Now, let us turn back to the block representation of the quadratic form (4.3),
	i.e.,	
	(4.10)	2a(P

o (B -2a)P o ) + T * T T * (P e BP e ) (P e BP e )T P e (B 2 -2aB)P e .
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where

The leading term 0 -1 1 δ in (5.2) has distinct eigenvalues δ/2± δ 2 /4 -1, δ = 2, and so we can apply the generalized version of Levinson theorem from Janas-Moszyński [9, Thm. 1.5], see also the discussion in Sect. 2.3. Indeed, we have

and

(1) det Ψ n → 1, and det

we have

Hence, by Theorem 2.2 the generalized eigenvectors u

where

It follows that the basis solutions u ± (λ), λ ∈ R, do not generate a subordinated solution, and, by Gilbert-Pearson subordinacy theory, see Sect. 2.2, the spectrum σ(J) of the constructed Jacobi matrix is purely absolutely continuous and R + ⊂ σ ac (J) = R. The proof of the proposition is complete.

Observe that 0 < δ < 2 in the above proof and the upper bound on δ < 2 is optimal. If we take δ > 2, then a reasoning similar to Proposition 3.2 shows that the spectrum σ(J) is purely discrete on the whole real axis, see also Janas-Naboko [START_REF] Janas | Spectral analysis of selfadjoint Jacobi matrices with periodically modulated entries[END_REF] in this connection. 5.5. Example 5.4 to Theorem 4.2, a scalar case. We give short examples of application of Theorems 4.1, 4.2 in this and the next subsection. This subsection is concerned with the scalar-valued Jacobi matrices, and the next one deals with the matrix-valued case. Proposition 5.7. Let J = J({A n }, {B n }) be a 2 × 2-block Jacobi matrix with block entries A n , B n defined in (5.4), (5.6). Let a j , η j satisfy the assumptions given above. Furthermore, suppose

Then the σ(J) ∩ (0, +∞) is discrete and it accumulates to +∞ only.

Proof. Once again, this is a straightforward application of Theorem 4.2. Since assumptions (1)-( 3) of this theorem are clearly satisfied, we need to check the last condition (4.9) only; hence we are to show that this condition is equivalent to (5.7), (5.8).

Since the computations are rather similar and simple, we give details for relation (5.7) only. Reminding (5.5), we obtain Recalling that B -1/2 4j-1 is an Hermitian matrix, relation (5.7) follows.