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A REMARK ON ANALYTIC FREDHOLM ALTERNATIVE

We apply a recent result of Borichev-Golinskii-Kupin on the Blaschke-type conditions for zeros of analytic functions on the complex plane with a cut along the positive semi-axis to the problem of the eigenvalues distribution of the Fredholm-type analytic operator-valued functions.

Introduction and main results

The goal of this note is to refine partially (for a certain range of parameters) a recent result of R. Frank [START_REF] Frank | Eigenvalue bounds for Schrödinger operators with complex potentials, III[END_REF]Theorem 3.1] on some quantitative aspects of the analytic Fredholm alternative. Precisely, the problem concerns the distribution of eigenvalues of finite type of an operator-valued function W (•) = I + T (•), analytic on a domain Ω of the complex plane. We always assume that T ∈ S ∞ , the set of compact operators on the Hilbert space. A number λ 0 ∈ Ω is called an eigenvalue of finite type of W if ker W (λ 0 ) = {0}, (i.e., -1 is an eigenvalue of T (λ 0 )), if W (λ 0 ) is Fredholm (that is, both dim ker W (λ 0 ) and codim ran W (λ 0 ) are finite), and if W is invertible in some punctured neighborhood of λ 0 . The function W admits the following expansion at any eigenvalue of finite type, see [START_REF] Gokhberg | Classes of linear operators[END_REF]Theorem XI.8.1],

W (λ) = E(λ)(P 0 + (λ -λ 0 ) k1 P 1 + . . . + (λ -λ 0 ) k l P l )G(λ),
where P 1 , . . . , P l are mutually disjoint projections of rank one, P 0 = I -P 1 -. . .-P l , k 1 ≤ . . . ≤ k l are positive integers, and E, G are analytic operator-valued functions, defined and invertible in some neighborhood of λ 0 . The number ν(λ 0 , W ) := k 1 + . . . + k l is usually referred to as an algebraic multiplicity of the eigenvalue λ 0 .

The following result, Theorem 3.1, is a cornerstone of the paper [START_REF] Frank | Eigenvalue bounds for Schrödinger operators with complex potentials, III[END_REF]. By {λ j } we always denote the eigenvalues of W = I + T of finite type, repeated accordingly to their algebraic multiplicity.

Theorem A. Let T (•) be an analytic operator-valued function on the domain Ω = C\R + , so that T ∈ S p , p ≥ 1, the set of the Schatten-von Neumann operators of order p. Assume that for all λ ∈ C\R + (0.1)

T (λ) p ≤ M d ρ (λ, R + )|λ| σ , ρ > 0, σ ∈ R, ρ + σ > 0, d (λ, R + )
is the Euclidean distance from λ to the positive semi-axis. Then for all ε, ε > 0 and ν ≥ 1 (0.2) where q := (pρ + 2pσ -1 + ε) + , and

|λj |≤M 1/(ρ+σ) d pρ+1+ε (λ j , R + ) |λ j | q-pρ-1-ε 2 ≤ CM q+pρ+1+ε 2(
(0.3) |λj |≥νM 1/(ρ+σ) d pρ+1+ε (λ j , R + ) |λ j | ρ+σ-pρ-1-ε-ε ≤ C ν ε M ρ+σ-ε ρ+σ .
Here C is a generic positive constant which depends on p, ρ, σ, ε, ε .

The similar results for ρ = 0 are also available. The proof of this result is based on the identification of the eigenvalues of finite type of W with the zeros of certain scalar analytic functions, known as the regularized determinants f (λ) := det p (I + T (λ)), see [START_REF] Gokhberg | Introduction to the theory of non-selfadjoint operators in the Hilbert space[END_REF][START_REF] Simon | Trace ideals and their applications[END_REF] for their definition and basic properties. The point is that the set of eigenvalues of finite type of W agrees with the zero set of f , and moreover, ν(λ 0 , W ) = µ f (λ 0 ), the multiplicity of zero of f at λ 0 (see [START_REF] Frank | Eigenvalue bounds for Schrödinger operators with complex potentials, III[END_REF]Lemma 3.2] for the rigorous proof). Thereby, the problem is reduced to the study of the zero distributions of certain analytic functions, the latter being a classical topic of complex analysis going back to Jensen [START_REF] Jensen | Sur un nouvel et important théorème de la théorie des fonctions[END_REF] and Blaschke [START_REF] Blaschke | Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen[END_REF].

A key ingredient of the proof in [START_REF] Frank | Eigenvalue bounds for Schrödinger operators with complex potentials, III[END_REF] is a result of [2, Theorem 0.2] on the Blaschketype conditions for zeros of analytic functions in the unit disk which can grow at the direction of certain (finite) subsets of the unit circle. In a recent manuscript [START_REF] Borichev | On zeros of analytic functions satisfying non-radial growth conditions[END_REF] some new such conditions on zeros of analytic functions in the unit disk and on some other domains, including the complex plane with a cut along the positive semi-axis, are suggested. Here is a particular case of [3, Theorem 4.5] which seems relevant. We use a convenient shortening

{u} c,ε := (u --1 + ε) + -min(c, u + ), c ≥ 0, ε > 0, u = u + -u -∈ R.
Theorem B. Let h be an analytic function on Ω = C\R + , |h(-1)| = 1, subject to the growth condition

log |h(λ)| ≤ K |λ| r (1 + |λ|) b d a (λ, R + ) , λ ∈ C\R + , a, b ≥ 0, r ∈ R.
Let Z(h) be its zero set, counting multiplicities (the divisor of h). Denote s := 3a -2b + 2r.

Then for each ε > 0 there is a positive number C which depends on all parameters involved such that the following inequality holds

(0.4) z∈Z(h) d a+1+ε (z, R + ) |z| s1 (1 + |z|) s2 ≤ C • K,
where the parameters s 1 , s 2 are defined by the relations

s 1 := {-2r -a} a,ε -a -1 -ε 2 , s 2 := a + 1 + ε + {-2r -a} a,ε + {s} a,ε 2 .
We are aimed at proving the results, which refine Theorem A for a certain range of parameters, by using Theorem B.

Theorem 0.1. Let T (•) be an analytic operator-valued function on the domain Ω = C\R + , which satisfies the hypothesis of Theorem A. Assume that

(0.5) 0 < ρ + σ ≤ ρ 2 .
Then for all 0 < ε < 1 (0.6)

|λj |≤M 1/(ρ+σ) d pρ+1+ε (λ j , R + ) |λ j | pσ-1+ε 2 ≤ CM p+ 1+ε 2(ρ+σ) .
Note that under assumption (0.5)

pσ - 1 + ε 2 ≤ - pρ + 1 + ε 2 < 0, so for |ζ| ≤ 1 |ζ| pσ-1+ε 2 ≥ |ζ| -pρ+1+ε 2 ≥ |ζ| q-pρ-1-ε 2 ,
that is, (0.6) is stronger than (0.2) with regard to eigenvalues tending to zero. Theorem B gives the same results, (0.2) and (0.3), as in Theorem A, for the rest of the values of ρ and σ, and the eigenvalues tending to infinity. The case

(0.7) ρ > 0, ρ + σ < 0,
is not treated in [START_REF] Frank | Eigenvalue bounds for Schrödinger operators with complex potentials, III[END_REF].

Theorem 0.2. Under conditions (0.7) assume that for all λ ∈ C\R + (0.8)

T (λ) p ≤ M d ρ (λ, R + )|λ| σ .
Then for -ρ/2 ≤ ρ + σ < 0 and all ε > 0 (0.9)

|λj |≥M 1/(ρ+σ) d pρ+1+ε (λ j , R + ) |λ j | pσ-3 2 (1+ε) ≤ C M p-1+ε 2(ρ+σ) ,
and for ρ + σ < -ρ/2 and all ε > 0 (0.10)

|λj |≥M 1/(ρ+σ) d pρ+1+ε (λ j , R + ) |λ j | -l+3(pρ+1+ε) 2 ≤ C M -l+pρ+1+ε 2(ρ+σ)
, where l := (-3pρ -2pσ -1 + ε) + . Moreover, under conditions (0.7), for all ε, ε > 0 and 0 < µ ≤ 1 (0.11)

|λj |≤µM 1/(ρ+σ) d pρ+1+ε (λ j , R + ) |λ j | ρ+σ-pρ-1-ε+ε ≤ C µ ε M ρ+σ+ε ρ+σ
.

Proof of main results

Proof of Theorem 0.1. We follow the line of reasoning from [START_REF] Frank | Eigenvalue bounds for Schrödinger operators with complex potentials, III[END_REF]. The scaling T 1 (λ) := T (M 1/(ρ+σ) λ) looks reasonable, so

T 1 (λ) p ≤ 1 d ρ (λ, R + ) |λ| σ ,
and, by [9, Theorem 9.2, (b)], we have for the determinant

f 1 = det p (I + T 1 ) (1.1) log |f 1 (λ)| ≤ Γ p d pρ (λ, R + ) |λ| pσ , λ ∈ C\R + .
To apply Theorem B we have to ensure the normalization condition. Note that the function T 1 tends to zero along the left semi-axis as long as ρ + σ > 0, so the inequality (see [9, Theorem 9.2, (c)])

(1.2) |f 1 (λ) -1| ≤ ϕ( T 1 (λ) p ), ϕ(t) := t exp Γ p (t + 1) p , t ≥ 0,
holds with a suitable constant Γ p which depends only on p, and provides a lower bound for f 1 whenever the right side is small enough. We have for t ≥ 1 and

λ = -t ∈ R - |f 1 (-t) -1| ≤ C 1 t ρ+σ ,
(in the sequel C k stand for generic positive constants depending on the parameters involved). If t ≥ (2C 1 ) 1/(ρ+σ) = C 2 , then |f 1 (-t)| ≥ 1/2, and so

(1.3) log |f 1 (-t)| ≥ -2(1 -|f 1 (-t)|) ≥ - 2C 1 t ρ+σ . Next, put (1.4) h(λ) := f 1 (tl) f 1 (-t) , h(-1) = 1.
It follows from (1.1) and ( 1.

3) that for t ≥ C 2 log |h(λ)| = log |f 1 (tl)| -log |f 1 (-t)| ≤ Γ p t ρ+σ 1 d pρ (λ, R + ) |λ| pσ + 2C 1 t ρ+σ ≤ C 3 t ρ+σ 1 d pρ (λ, R + ) |λ| pσ + 1 ≤ C 3 t ρ+σ (1 + |λ|) p(ρ+σ) d pρ (λ, R + ) |λ| pσ .
Theorem B applies now with a = pρ, r = pσ, b = p(ρ + σ), K = C 3 t ρ+σ , and s = a, {s} a,ε = -a. In view of (0.5) one has 2r + a = p(ρ + 2σ) ≤ 0, so {-2r -a} a,ε = -min(a, -2r -a) = 2r + a = pρ + 2pσ, (recall that, by the assumption, a > -2r -a). Hence

s 1 = 2pσ -1 -ε 2 , s 2 = pρ + pσ + 1 + ε, and (0.4) implies z∈Z(h) 
d pρ+1+ε (z, R + ) |z| 2pσ-1-ε 2 (1 + |z|) pρ+pσ+1+ε ≤ C 4 t ρ+σ , or t 1+ε 2 ζ∈Z(f1) d pρ+1+ε (ζ, R + ) |ζ| 2pσ-1-ε 2 (t + |ζ|) pρ+pσ+1+ε ≤ C 4 t ρ+σ .
For |ζ| ≤ 1 we fix t, say, t = C 2 , and since t + |ζ| ≤ C 2 + 1, we come to

ζ∈Z(f1)∩ D d pρ+1+ε (ζ, R + ) |ζ| pσ-1+ε 2 ≤ C 5 ,
which, after scaling, is (0.6). The proof is complete.
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Proof of Theorem 0.2.

The idea is much the same with the only technical differences. In the above notation relation (1.1) still holds, and the function T 1 tends to zero as t → 0-whenever ρ + σ < 0. So

(1.5) log |f 1 (-t)| ≥ -2(1 -|f 1 (-t)|) ≥ - 2C 1 t ρ+σ = -2C 1 t |ρ+σ| , 0 < t ≤ C 2 .
For the function h (1. Theorem B applies with a = pρ, r = -a = -pρ, b = -p(ρ + σ), K = C 3 t ρ+σ , and -2r -a = a > 0, so

{-2r -a} a,ε = -a = -pρ, s 1 = -pρ - 1 + ε 2 .
The sign of s = 3a -2b + 2r = p(3ρ + 2σ) (which can be either positive or negative) affects the computation of {s} a,ε , so we will differ two situations. In the case -ρ/2 ≤ ρ + σ < 0 we have 

(1.7) s > 0, {s} a,ε = -min(a, s + ) = -
d pρ+1+ε (ζ, R + ) |ζ| -pρ-1+ε 2 (t + |ζ|) p|ρ+σ|+1+ε ≤ C 4 t ρ+σ , 0 < t ≤ C 2 . A simple bound (C 2 + |ζ|) -1 ≥ C 5 |ζ| -1 for |ζ| ≥ 1 and fixed t = C 2 gives ζ∈Z(f1)∩D- d pρ+1+ε (ζ, R + ) |ζ| pσ-3 2 (1+ε) ≤ C 6 , D -:= {|ζ| ≥ 1},
which, after scaling, is (0.9). If |ζ| ≤ µ ≤ 1, we multiply (1.8) through by t ρ+σ-1+ε and integrate it termwise with respect to t from 0 to µC 2 (the idea comes from [START_REF] Demuth | On the discrete spectrum of non-selfadjoint operators[END_REF])

µC2 0 t (p-1)|ρ+σ|+ 1+ε 2 -1+ε (t + |ζ|) p|ρ+σ|+1+ε dt = |ζ| ρ+σ-1+ε 2 +ε µC2/|ζ| 0 x (p-1)|ρ+σ|+ 1+ε 2 -1+ε (1 + x) p|ρ+σ|+1+ε dx ≥ C 7 |ζ| ρ+σ-1+ε 2 +ε , to obtain ζ∈Z(f1)∩Dµ d pρ+1+ε (ζ, R + ) |ζ| ρ+σ-pρ-1-ε+ε ≤ C 8 (µC 2 ) ε , D µ := {|ζ| ≤ µ},
which, after scaling, gives (0.11).

In the case ρ + σ < -ρ/2 the proof is the same with s ≤ 0 and {s} a,ε = (-3pρ -2pσ -1 + ε) + = l, s 2 = pρ + l 2 + 1 + ε. 
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