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We are interested in exploring the role of enactive metaphoring in mathematical thinking, 

especially in the context of problem posing and solving, not only as a means to foster and enhance 

the learner’s ability to think mathematically but also as a mean to alleviate the cognitive abuse that 

the teaching of mathematics has turned out to be for most children and adolescents in the world. 

We present some illustrative examples to this end besides describing our theoretical framework. 
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Introduction 

Our concern in this paper is the role of metaphor, more precisely enactive metaphor, in the teaching 

and learning of mathematics, particularly in mathematical thinking arising in, or triggered by, 

problem posing and solving. Fostering mathematical thinking in the classroom is a widespread aim 

in mathematics education indeed (OECD, 2014), but in our viewpoint we have a much more severe 

and dramatic issue to address: not only mathematical thinking is not fostered in our classrooms 

(Chilean and worldwide), but mathematics has turned out to be a tool of torture for millions of 

children, who cannot escape from it. This has been recently acknowledged as “cognitive bullying” 

or “cognitive abuse” in the English literature (Watson, 2008; Johnston-Wilder & Lee, 2010). a 

practice that is “at best marginally productive and at worst emotionally damaging” (Watson, 2008: 

p. 165). We thus echo Tillich’s famous statement: “the fatal pedagogical error is to throw answers 

like stones at the heads of those who have not yet asked the questions”. To tackle this complex and 

systemic problem, a multidisciplinary approach is most wanted, where a first diagnosis emerges: 

traditional (and abusive) teaching of mathematics tends to thwart cognitive brain mechanisms 

installed during millions of years of evolution, that we would need on the contrary to recognise, 

appreciate and tap into in the context of learning, to wit: metaphorising, enacting, collaborating…   

Our main hypothesis is that practice of metaphorising, especially enactive metaphorising, in the 

classroom, might be a fundamental means to contribute to alleviating this situation of cognitive 

abuse towards students without forsaking their access to mathematical thinking, but on the contrary 

fostering it. It is our hypothesis that the way a mathematical situation is metaphorised and enacted 

by the learners strongly determines the ideas and insights that may emerge in them and may help to 

bridge the gap between the “mathematically gifted” and those apparently not so gifted or 

mathematically oriented. A big challenge is then trying to figure out under which conditions 

enaction and metaphorising, more precisely enactive metaphorising, impact on mathematical 

thinking processes as hypothesised above.           



We intend here to pursue our recent research on metaphorising and enacting (Diaz-Rojas & Soto-

Andrade, 2015, 2016; Soto-Andrade, 2015). Our earlier work on metaphor in the learning of 

mathematics was presented already in CERME5 (Soto-Andrade, 2007).      

In this paper we focus on some examples and case studies that illustrate the role that metaphorising 

and enacting may play in the spectrum of mathematical thinking elicited by problem posing and 

solving. The contextual background of our case studies involves a variety of learners in Chile: 

prospective secondary math teachers, in service primary and secondary math teachers, first year 

university students majoring in social sciences and humanities, undergraduate and graduate students 

in mathematics, primary and secondary students.   

Research questions   

Which is the role of metaphorising and enacting in mathematical problem posing and solving at 

various levels? To which extent do they influence mathematical thinking elicited by the problematic 

situation, in particular moving amongst various mathematical registers of representation to change 

the problem?   Do they shape our understanding of the processes involved, notably the relation 

between problem and learner, emotional overtones included? 

How does the interplay between affect and metaphoring helps in alleviating cognitive bullying in 

the teaching of mathematics, and even lead to enjoyment of learning and doing mathematics? 

Theoretical framework and state of the art  

Metaphorising in cognitive science and mathematics education. 

Widespread agreement has been reached in cognitive science that our ordinary conceptual system, 

in terms of which we both think and act, is fundamentally metaphorical in nature (Gibbs, 2008; 

Johnson & Lakoff, 2003). In mathematics education proper it has been progressively recognized 

during the last decades (English, 1997; Lakoff & Núñez, 2000; Sfard, 2009; Soto-Andrade, 2007, 

2014, and many others) that metaphors are not just rhetorical devices, but powerful cognitive tools, 

that help us in grasping or even building new concepts, as well as in solving problems in an 

efficient and friendly way. See Soto-Andrade (2014) for a recent survey. We may visualize  

(conceptual) metaphors (Lakoff  & Núñez, 2000) as mappings from a more down-to-earth “source 

domain” into a more abstract “target domain”, carrying the inferential structure of the former into 

that of the latter.   For the learning of mathematics we emphasize the  “poietic” role of metaphor 

that brings concepts into existence, through “reification” (Sfard, 2009). In view, here lies the main 

difference between representation and metaphor: we re-present something given beforehand but we  

metaphorise to try to fathom something unknown or a concept not yet constructed. For instance, we 

construct the concept of probability when, studying a symmetric random walk on the integers (a 

frog jumping on a row of stones in a pond), we see the walker splitting into 2 equal halves instead 

of going equally likely right or left (Soto-Andrade, 2007, 2015). In what follows we will use 

metaphorical language as a meta-language to describe cognitive or didactic theories of interest to 

us, since – we claim –  a theory is essentially the unfolding of a metaphor (Soto-Andrade, 2014). 

Enaction in cognitive science and mathematics education     

Varela metaphorized enaction as the laying down of a path in walking (Varela, 1987, p. 63), as in 

Machado’s famous poem, when he introduced the enactive approach in cognitive science (Varela, 



Thompson, & Rosch, 1991).  In his own words: “The world is not something that is given to us but 

something we engage in by moving, touching, breathing, and eating. This is what I call cognition as 

enaction since enaction connotes this bringing forth by concrete handling” (loc. cit). Less radical 

enaction in mathematics education may be traced back to Bruner (1966), inspired by Dewey’s 

“learning by doing” (Dewey, 1997), who characterised enactive, iconic and symbolic modes of 

representation. For recent significant theoretical and practical developments see Proulx  (2013). In 

what follows we are especially interested in enactive metaphors, where the learner is whole bodily 

engaged, as opposed to “sitting metaphors” in the sense of Gallagher and Lindgren (2015).    

(A)didactic situations and didactic contract 

The theory of didactical situations (Brousseau & Warfield, 2014) might be described as the 

unfolding of the emergence metaphor in math education: mathematical concepts we intend to teach 

should emerge in a suitable challenging situation the learner is enmeshed in, as the only means to 

“save his life”. No real learning is possible if mathematical concepts are airborne from Olympus. 

Such a situation is called a didactic situation, because of the didactical intent of the teacher who set 

it up. It becomes an adidactic situation when the teacher definitely steps back to let the learners 

interact on their own with the setting, with no hope of fathoming beforehand her didactical design 

or the mathematical content she is aiming at. Key metaphors are likely to emerge, as sparking 

voltaic arcs, in and among the learners, when enough “didactical tension” is built up in an adidactic 

situation for them. The notion of didactical contract (Brousseau, Sarrazy, & Novotna, 2014) is also 

of interest to us, in the context of the teacher-student relation. It is in fact a keen metaphoric 

description of the mainly implicit and unspoken mutual expectations, beliefs and commitments 

regarding the actions and reactions of the partners involved in a didactic or adidactic situation.   

Affect in mathematical problem solving 

The role of affect in mathematical problem solving is often neglected in spite of its significant 

incidence in learner’s performance (Mason, Burton, & Stacey, 2003; Hannula, 2014). Here we are 

specially concerned by the role of negative emotions that trigger a learner’s emergent metaphorising 

that can transform a problem that is a tool of cognitive bullying into a friendlier one. The outcome 

of this may be, for most learners, a positive feeling of liberation from the Procrustean bed of 

arithmetic and algebra, for instance (see example 2 below). 

Methodology and experimental background   

Our research includes an experimental facet, where our methodology mainly relies on qualitative 

approaches, to wit: Case Studies (Stake, 1995), Participant Observation techniques and 

Ethnographic methods (Spradley, 1980).   

In all, 4 cohorts of learners have been involved in our teaching and learning according to our 

metaphoric and enactivist approach from 2014 to 2016.  They include prospective secondary school 

physics and mathematics teachers in a one-semester course in number theory at the University of 

Chile; students in a one semester first year mathematics course in the social sciences and humanities 

option of the Baccalaureate Programme of the same University; in service primary and secondary 

school teachers engaged in one week professional development workshop in the South of Chile, in 

service primary school teachers engaged in a 15 month professional  development programme 

(mathematics option) at the University of Chile at Santiago; graduate students working towards a 



Ph. D. in Didactics of Mathematics, at the Catholic University of Valparaiso (UCV),  most of them 

secondary school math teachers holding a Master in Didactics of Mathematics. They were chosen 

because they constituted a broad spectrum of learners we had access to while performing our usual 

teaching duties at the University of Chile, besides some invited workshops elsewhere, with whom 

our overarching approach could be tested.  Learners, working most of the time in (random or 

spontaneous) groups of 2 to 4, were observed by the teacher or facilitator and an assistant, the latter 

assuming the role of participant observer or ethnographer (Spradley, 1980; Brewer & Firmin, 2006).  

Among aspects observed were: level of participation, questions and answers, horizontal (peer) 

interaction, emergence of metaphors, especially idiosyncratic ones, spontaneously or under 

prompting, gestural language of learners and teacher, expression and explicit acknowledgement of 

affective reactions from the learners. Snapshots of their written output in problem solving activities 

were taken and videos of their enacting moments were recorded. 

Illustrative examples and case studies   

We present and discuss here two paradigmatic examples, in geometry and arithmetics, that we have 

come across during our teaching at the University of Chile, to illustrating important aspects of our 

theoretical perspective, often neglected in usual approaches. The case of randomness has been dealt 

elsewhere (Diaz-Rojas & Soto-Andrade, 2015).  Our geometrical example deals with the exterior 

angles of a polygon and their sum: a typical geometrical notion often abusively and gratuitously 

introduced, with no context or motivation.  In arithmetic, we recall the consecutive sums of positive 

integers problem, thoroughly discussed in the literature (e.g. Mason et al., 2003)       

Example 1.  The sum of the exterior angles of a polygon 

We have observed that almost every in service and prospective secondary mathematics school 

teacher in our country, after introducing exterior angles coming out of the blue after inner angles 

and explaining them in terms of the latter, calculates dutifully their sum from the sum of the inner 

angles, that  depends on the number of sides of the polygon. Doing a bit of algebra they finally wind 

up discovering that the sum of all exterior angles is 360o, independently of the number of sides!  

Surprising! This traditional way to “get into” the task  (Proulx, 2013), is not very appealing for most 

students, that experience it as “blind calculation” (a case for cognitive bullying). When trying to 

fathom out exterior angles of a polygon however a first thing to do – from our perspective – would 

be to metaphorise it, to get into the task in a more transparent way. Not just reciting its formal 

definition, of course.  Among the metaphors emerging amongst the learners we work with, the most 

frequent are “a polygon is an enclosure between crossing sticks” (most popular among primary 

school teachers) and “a polygon is a closed path, made out of straight segments”.  Enacting the first 

metaphor triggers the idea of manipulating the sticks, as to make clearly visible the exterior angles 

first and then shifting them parallel to themselves to get smaller and smaller homothetic polygons. 

In this way teachers see that the sum of all exterior angles is 360o, instead of blindly calculating.   

Enaction of the metaphor "polygons are closed paths" by the learners themselves, literally lying 

down a polygonal path in walking, enables them to immediately “see” that the sum of the polygon’s 

exterior angles corresponds to a complete revolution (Diaz-Rojas & Soto-Andrade, 2015). In this 

way they realise that exterior angles, not inner angles, are the convenient data for the walker to 

inflect or bend his path as wanted. Analogously for the sum of all acute angles of a pointed star…    

We noticed that metaphorising a polygon is an unusual challenge, almost a violation of the 



didactical contract, for both students and teachers. But once they feel they are allowed to, even     

prompted to, metaphors begin to arise, shyly at first. The enactive metaphoric approach conveys 

here a completely different experience of mathematics than the traditional one, including the role of 

gestures, movements and, more broadly embodiment, in the learning of mathematics, particularly in 

problem solving (Libedinsky & Soto-Andrade, 2015). 

Example 2.   Which numbers are consecutive sums?  Just an arithmetic problem? 

The question is: Which numbers are sums of a string of consecutive (positive) integers. An 

unexpected question to many learners, however familiar with Gauss well known trick to sum 1 + 2 

+ …+ 100 in a wink.  From our perspective it is interesting to observe how easily this question (or 

any question) emerges in the learners, once their attention is drawn to this sort of sums. Our 

hypothesis is that learners’ reaction here is heavily dependent on their previous schooling and the 

amount of cognitive abuse they have endured. As a typical example we recall an informal short 

meeting to chat about "the mathematical experience" with a class of 12th graders from a Waldorf 

school, to whom we told about consecutive sums (just what they are), period. After a few seconds, a 

girl said: Which series of numbers do you obtain that way?  We claim than in usual problem solving 

this is an often neglected aspect: enactively letting questions emerge instead of asking them…   

Another often neglected aspect in problem solving is the affective reaction a problem elicits in the 

learner. This sort of arithmetic problem quite often triggers a feeling of distaste, especially in 

adolescents. This negative emotion may have the immediate positive effect of stimulating the 

learner to metaphorise, to transform the problem into a more attractive or friendly one, i. e. a 

creative reaction!  This is very rarely observed in our prospective teachers and Ph. D. students. 

Apparently didactical contract weights heavily here: learners are not supposed to transform or 

metaphorise the problems they receive, nor are they supposed to like or dislike mathematical objects 

or procedures, just to understand them or not.   

We observed that every learner tackled the problem arithmetically first, doing some experimenting 

(some calculating small consecutive sums, others following the opposite path: checking whether 2, 

3, 4, 5, etc. might be consecutive sums). Some got a closed formula for a consecutive sum but did 

not see what numbers are so obtained. Those who checked numbers one by one arrived quickly to 

the (surprising) conjecture that powers of 2 cannot be reached.  In fact they re-traced Mason et al. 

(2003). The proof of the conjecture remained elusive until some noticed that powers of 2 do not 

have odd divisors and so devised an algebraic proof of the conjecture. The fact that conversely a 

number which is not a power of two must be a consecutive sum remained in the shadow for 45 

minutes or so.  At his point, we asked prospective teachers whether they liked the way we were 

tackling and solving the problem. Two of them said that the conjecture was interesting and that they 

understood the algebraic procedure but that they were not very happy about it. Fernanda said that 

she was not fond of this algebraic yoga, although she was able to carry it out. For Enrique this 

algebraic approach was easy but he was unhappy because he had noticed (giving private lessons to 

secondary school students) that for most students algebraic calculations are not appealing at all. So 

both were motivated to look for different, may be geometric, approaches.    

For Ph. D. students, didactical contract played in the opposite direction: after working on 

metaphorising some months before, when asked now whether they were satisfied with their 

discovery regarding powers of 2, several students thought about metaphorising the problem, looking 



at the numbers as quantities of dots arranged in clever ways.  Andrea, an insightful female student, 

drew a trapezoidal house with a slanted roof  (of slope 1) and so transformed the problem to a 

question about the area of this trapezoid. Some tried to remember the area formula, but others, like 

three clever prospective teachers, saw by rearrangement or compensation that their trapezoid could 

be turned into a rectangle with the same base. But then they realised that this worked only “half of 

the time”:  for an odd basis! In that case the area has an obvious odd divisor.  For the even case, 

some conjectured that they could get a two-step horizontal roof, each step of equal length     and so 

the idea emerged of slicing vertically the trapezoid into two “halves” of equal base and putting one 

on top of the other.  Some went into distinguishing the cases: half base odd or even. But others had 

the idea of putting one “half trapezoid” topsy-turvy on top of the other, getting in this way a 

rectangle of odd height and half base. Then, a prospective teacher had the idea of borrowing from 

scratch a copy of the original trapezium and coupling both to obtain a rectangle with either odd base 

or odd height and whose area is twice the original one! The proof of the converse conjecture was 

left open. Regarding liking or disliking, graduate students at UCV were more enthusiastic about the 

geometric approach than prospective secondary teachers. Roughly two thirds of the latter said that 

they did not feel confortable with geometry so that they preferred calculating algebraically! In fact 

even when trying to think in geometric terms, they quickly reverted to algebraic calculation. On the 

other hand  happy visualizers realised that the trapezium area may have any value in the continuous 

case but not in the discrete one, because something pops up that has no continuous analogue: Parity! 

A surprising fact for them, who knew, from their laptop screens, that the discrete models the 

continuum well. The question remained open as to whether we can see geometrically that the area 

of a rectangular trapezium cannot be the volume of a hypercube.    

From our perspective this is an emblematic example of the possible “unfolding” of an “arithmetic” 

problem that that can be solved by some algebraic yoga (that many students do not appreciate at all) 

but can also be metaphorised as a geometric problem, more appealing to others. This metaphorising 

"prompts" us to jump naturally into the continuous world and get some inspiration there. We realise 

also the hard way that there is a tricky property of discrete shapes with no analogue in the 

continuous world: parity! Discrete lengths, areas or volumes may be odd or even, although 

asymptotically however parity vanishes… Remarkably, even insightful discussions of this problem 

found in the literature (e. g. Mason et al., 2003) remain confined in the arithmetic-algebraic realm, 

not taking advantage of the avenues and possible generalisations that metaphorisation may open up.   

Discussion  

We have shown several important aspects of the role of metaphorising and enacting in mathematical 

thinking elicited by problem posing and solving.  First, we have seen that the way we metaphorise 

and enact determines the ideas and insights we may have when tackling a problem. Then, how 

metaphorisation triggered by distaste of the problem may allow the learners to move from one realm 

to another, instead of remaining confined in just one. By so doing, they may take advantage of 

different intuitions and handlings, eventually much friendlier to them, that enhance their 

mathematical thinking and also alleviate the cognitive abuse they have been exposed to. Indeed, an 

acknowledged negative affective reaction to a proposed problem may trigger creative 

metaphorisation to change it. In this way metaphorisation appears as a means to empower students 

to transform an unappealing problem given to them, something especially relevant for adolescents 



who otherwise have the feeling of being abused by being forced to follow prescribed rules to solve 

nonsensical tasks (Watson, 2008). Also visualization appears as concatenation of metaphors: In the 

case of consecutive sums: “numbers are quantities”, “summing is putting together”, “factorizing is 

rearranging to form a rectangle” etc. Furthermore, it appears that usual problem solving, as found in 

the literature, tends to neglect, the important role of metaphorisation and enaction, as a learner’s 

first reaction when tackling a problem that looks opaque to him or her. Not only because this may 

allow the learner to solve an otherwise unyielding problem but also because it may allow him or her 

not just to solve the problem but to “see” a solution, turning a hitherto blind calculation into 

pellucid insight.  Finally the enactive and metaphoric perspective reshapes our understanding of the 

relation between problem and learner in problem posing and solving, that appears as a quite more 

circular and entangled process than usually acknowledged, where each one codetermines the other. 
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