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Although the notion of assumptions is important in the discipline of mathematics and permeates 

(often tacitly) mathematical activity in school classrooms, instruction in the elementary school pays 

little attention to it. This situation is unlikely to change unless elementary teachers have a good 

understanding of the role of assumptions in mathematical activity and an appreciation of the 

pedagogical implications of that role. In this paper, we investigate how teacher education can 

promote this dual goal by illustrating a promising, task-based approach to supporting prospective 

elementary teachers to develop pedagogically functional mathematical knowledge about the role of 

assumptions in mathematical activity. We developed the approach in a 4-year design experiment we 

conducted in a mathematics course for prospective elementary teachers in the United States. 
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Introduction 

Assumptions denote the statements doers of mathematics use or accept (often implicitly) and on 

which their claims are based (Fawcett, 1938) and, thus, assumptions are fundamental to any 

mathematical activity at all levels. In school mathematics, however, assumptions often receive little 

explicit attention, especially at the elementary school level. The notion of assumptions has received 

also relatively little explicit attention in the mathematics education literature.  

A small number of studies addressed the role of assumptions in the particular area of proving at the 

secondary school (Fawcett, 1938; Jahnke & Wambach, 2013) and elementary school (Stylianides, 

2016) levels. However, there is a scarcity of relevant research at the teacher education level. This is 

problematic: unless teachers are supported to develop a good understanding of the role of 

assumptions in mathematical activity and an appreciation of its pedagogical implications, it is 

unlikely that teachers will offer to their students productive learning opportunities in the area of 

assumptions.  

In this paper, we investigate how teacher education can promote prospective elementary teachers’ 

knowledge about the role of assumptions in mathematical activity. We focus on the design and 

implementation of tasks that can support Mathematical Knowledge for Teaching (MKfT).  

Research background 

The notion of MKfT (Ball et al., 2008) denotes the kind of “pedagogically functional mathematical 

knowledge” (Ball & Bass, 2000, p. 95) that teachers need to have to be able to manage the 

mathematical demands of their practice. It has been noted that “there is a specificity to the 

mathematics that teachers need to know and know how to use” (Adler & Davis, 2006, p. 271) and 

that teacher education should aim to create learning opportunities for prospective teachers (PTs) that 

would enable them “not only to know, but to learn to use what they know in the varied contexts of 



[their] practice (Ball & Bass, 2000, p. 95). Thus mathematics courses for PTs cannot lose sight of 

the domain of application of the targeted knowledge (i.e., the domain of mathematics teaching).  

We consider next what might be essential elements of MKfT about the role of assumptions in 

mathematical activity. We begin by describing two elements we identified based on consideration of 

the role of assumptions in the discipline of mathematics (e.g., Fawcett, 1938; Kitcher, 1984) and 

mathematical analysis of classroom practice where the notion of assumptions received explicit 

instructional treatment (Fawcett, 1938; Jahnke & Wambach, 2013; Stylianides, 2016). 

 Element 1: Understanding that a conclusion is dependent on the assumptions on which the 

argument that led to it was based.  

 Element 2: Understanding that different legitimate assumptions can lead to different conclusions 

that, although on the surface may appear to be contradictory to each other, may nevertheless 

both be valid within the set of their underpinning assumptions. 

These interrelated elements are central to mathematical work. The different sets of axioms in 

Euclidean and non-Euclidean geometries, including associated results, offer an illustration of both 

of these elements in the discipline of mathematics or in the upper secondary school (Fawcett, 1938). 

Similar ideas are central also to the elementary school (Stylianides, 2016) and are consistent with 

recommendations in curriculum frameworks (e.g., NGA & CCSSO, 2010, p. 6). Furthermore, the 

two elements are essential for mathematical knowledge that is also pedagogically functional. For 

example, they can allow a teacher to recognize that, when two students offer inconsistent answers to 

a task, this does not necessarily mean that one of them is wrong; both students may have applied 

sound reasoning based on different assumptions about the conditions of the task. We capture this 

kind of pedagogical functionality of elements 1 and 2 under a third element of MKfT: 

 Element 3: Ability to recognize possible ways in which elements 1 and 2 might apply in 

mathematics teaching.  

Regarding how to promote PTs’ MKfT, in Stylianides and Stylianides (2014) we discussed and 

illustrated a special kind of mathematics tasks that we called pedagogy-related mathematics tasks. 

These tasks have two major features: (1) A mathematical focus, which relates to mathematical ideas 

that are important for teachers to know; and (2) A substantial pedagogical context, which is an 

integral part of the task and essential for its solution. Notwithstanding the importance of pedagogy-

related mathematics tasks, there is also a need for the use of other kinds of tasks in mathematics 

courses for teachers. In this paper, we focus on a task sequence that illustrates another approach we 

followed to promote MKfT. Unlike pedagogy-related mathematics tasks where mathematics and 

pedagogy are intertwined in the same task, this task sequence illustrates an approach to promoting 

MKfT in which (1) initial work on a non-contextualized mathematics task can create a productive 

space for pedagogical reflection and (2) follow-up instruction can foster the intertwinement between 

mathematics and pedagogy. We elaborate on the task sequence in the Method section. 

To conclude, in this paper we address the following research question: What task sequence can offer 

a productive learning environment for prospective elementary teachers to develop the three elements 

of MKfT that we described earlier about the role of assumptions in mathematical activity?  



Method 

Research context 

This research derived from the last cycle of a 4-year design experiment (e.g., Cobb et al., 2003) in a 

semester-long mathematics course (3hrs per week) for prospective elementary teachers in the United 

States. The design experiment comprised five research cycles of implementation, analysis, and 

refinement of task sequences and associated implementation plans that aimed to promote PTs’ 

MKfT. The students were undergraduates who majored in different fields and were taking the 

course as a prerequisite for admission to the master’s level elementary teacher education program. 

The task sequence we focus on was implemented toward the end of the semester and was the only 

one that explicitly targeted PTs’ MKfT about the role of assumptions in mathematical activity. We 

introduced the task sequence in cycle 4 because we felt an explicit intervention was needed to 

adequately promote PTs’ MKfT of elements 1–3. Analysis of how the task sequence played out in 

cycle 4, alongside our developing understanding of how things “worked,” led to modifications of 

the task sequence, culminating in the form described below which took place in cycle 5. 

 

Figure 1: The “Floors Problem” (derived from Ball, 1993) in part A of the task sequence 

The task sequence 

The task sequence comprised three parts. In part A we used the “Floors Problem” (Ball, 1993) in 

Figure 1. Two task features made it suitable for our goals to promote elements 1 and 2 of MKfT. 

First, the task conditions were ambiguous and thus subject to different legitimate assumptions; a 

major ambiguity concerned whether or not the person in the task had to travel directly to the second 

floor. Second, different assumptions about the task conditions could support different arguments for 

answers to the task that might appear to be contradictory but might actually be correct given their 

underpinning assumptions. In addition to promoting elements 1 and 2 of MKfT, we hypothesized 



that PTs’ mathematical experience with the task in part A could offer a productive context for 

pedagogical reflection (cf. element 3). We capitalized on this potential of the task in parts B and C. 

In part B we used two conceptual awareness pillars (or simply pillars; Stylianides & Stylianides, 

2009) to which the PTs responded individually and in writing. (There was a third pillar whose 

discussion we omit due to space limitations and a lack of direct relevance to our focus.) The pillars 

are presented in the first column of Table 1 (see next section). With them we aimed to amplify PTs’ 

mathematical learning (see pillar 1 in relation to elements 1 and 2 of MKfT) and its intertwinement 

with pedagogical reflection (see pillar 2 in relation to element 3). As per the definition of pillars 

(Stylianides & Stylianides, 2009), the non-directive prompts in them could increase PTs’ awareness 

of key realizations they might have developed (possibly in tacit form) during their work on the task. 

Finally, in part C we engaged PTs in small-group and whole-class discussion around the three 

prompts in Figure 2 that aimed to further support PTs’ reflective insights from part B and help them 

consider the applicability of those insights beyond the particular task. The prompts raised issues 

relating to elements 1–3 of MKfT. For example, in prompt 1 the first question related to elements 1 

and 2, while the second question related to element 3. Each small group was asked to collectively 

produce a written response to each prompt prior to a whole-class discussion. Due to space 

constraints we report only findings from our analysis of the small groups’ written responses. 

1. “Conclusions are ‘true’ only within the limits of the assumptions on which they are 

based.” How do you understand this statement? Do you think it is important for elementary 

school students to develop a sense of the role of assumptions in mathematics? Explain. 

2. “Teachers should always make sure that the mathematical tasks they give to their students 

have unambiguous conditions.” What do you think about this statement? Explain. 

3. There may be situations where teachers do not realize that a mathematical task they give 

to their students has ambiguous conditions. What might happen in these situations and how 

might teachers handle the situations? 

Figure 2: Discussion prompts used in part C of the task sequence 

Data and analysis  

The task sequence in research cycle 5 was implemented in two parallel (independent) classes of the 

course that were both taught by the second author. At this stage of our analysis we are using data 

from only one of the classes: videos and transcripts of the implementation of the task sequence in 

this class with 16 PTs attending on that day; these PTs’ written work including their individual 

responses to part B and their group responses to part C; and field notes from a research assistant 

documenting the work of one small group. Our data analysis was guided by elements 1–3 of MKfT 

that we aimed to promote. Specifically, we conducted qualitative content analysis of the transcripts 

and field notes in part A to examine whether and how the PTs developed understandings relating to 

elements 1 and 2, and also of PTs’ responses to parts B and C to identify themes in their responses 

and examine whether and how these themes corresponded to elements 1–3 of MKfT.  



Implementation of the task sequence and discussion 

Part A: implementation of the Floors Problem 

Stylianides showed the problem statement and the building model, and explained the notation for 

negative numbers. He also established a common notation with the class about representing trips. 

After that, he asked the PTs to work on the problem first individually and then in groups of four. He 

also said he would not answer any clarifying questions about the problem, an intentional aspect of 

our instructional design. The discussion in the small group where the research assistant was taking 

field notes is indicative of the way the PTs engaged with the problem (all names are pseudonyms):  

Amanda:  So… can you pass the second floor and then go back to it? Or do you have to stop, 

because you’ve technically gotten there? So… you just have to look at how to get 

directly there? If not, it’s going to be infinity! 

Beth:  That’s what I did…the direct. I just counted how many up and how many down… 

Monica:  But that doesn’t say that you have to come in the entrance… So you can start 

anywhere? 

At this point Stylianides passed by the small group and Monica asked him whether the trips had to 

start from the ground floor. Stylianides reminded her that he would rather not respond to clarifying 

questions and he moved on to a different group. The small group discussion continued as follows: 

Victor:  So… the solution of this problem depends on our assumption. 

Amanda:  Well, fine then. I say 15… because I’m assuming that you start on the ground 

floor and can’t pass [floor] 2 and can’t change direction more than once. 

Victor:  I say 25 because… [He was interrupted by the start of the whole-class discussion.] 

As illustrated by this exchange, the decision not to respond to clarifying questions allowed for the 

notion of assumptions to emerge naturally in the discussion: had the instructor specified an 

interpretation, the PTs would not have considered alternative interpretations. The whole class 

discussion started with the small groups explaining their answers to the problem: 25, infinity, 15, 

and 51. Sherrill explained the answer of 25 by noting how each floor could constitute a separate 

starting point for a direct trip to the second floor. Sophie then tried to explain infinity as an answer:  

Sophie: Well, we picked infinity because […] if you’re saying you can go up and down 

and up and down as many times as you wanted before you reach the second floor, 

I think that the question isn’t specific enough. Like they [Sherrill’s group] 

assumed you can only go up or down one time. […] 

Stylianides: So you say [referring to Sophie] if we don’t assume that [what Sherrill’s group 

assumed] and [we assume] you’re allowed to travel up and down as many times as 

you want, then the answer would be infinity? [To the class:] What do you think 

about that? Is one of them wrong? Are both of them right? […] 

Lindsey: I think […] they just made different rules, and like, thought processes. […] You 

could have a direct route and that’s it, no going back and forth… like, you could, 

when you were talking about going up and down and up and down and that’s not 



really a direct route… So really, you could do anything that you wanted to, but it 

just depends on what the person… what the problem is looking for, I guess. 

Sherrill: It’s up to the interpretation of the reader... Like I read it and I just assumed that it 

had to be a direct route, but it clearly doesn’t state that… […] 

Infinity as an answer was discussed again later, after the class had considered also 15 and 51 as 

possible answers. Overall, the whole-class discussion mirrored the previous small-group discussion. 

Sophie, Lindsey, and Sherrill’s comments show an increased understanding of elements 1 and 2: the 

PTs acknowledged that the task allowed for different legitimate interpretations of its conditions and 

that their conclusions depended on their assumptions (element 1), while realizing that the different 

answers they came up with were all correct based on their underpinning assumptions (element 2).  

Part B: PTs’ responses to the pillars 

Analysis of PTs’ responses to the two pillars gave rise to the themes summarized in Table 1. Each 

response could receive multiple codes. The frequencies are offered to show how prominent each 

theme was among PTs’ responses, not for generalizability. Regarding pillar 1, PTs’ responses under 

themes 1–4 related to both elements 1 and 2 of MKfT. The responses below illustrate all themes: 

Sherrill: I was surprised at the multiple assumptions made. I had not even considered the fact that 

answers other than 25 existed because of the way people interpreted the problem. I now realize 

how greatly making assumptions can alter mathematics. (themes 2, 4) 

Lorri: [A]ll of our groups had different interpretations of how many ways there were […] Some 

of the other groups’ answers […] I could understand their rationales as to why their answer was 

correct. Our answers were not wrong under this ambiguous problem. (themes 1, 3) 

Pillars Themes and frequencies (in parentheses) 

Pillar 1: Is there 

anything that 

particularly stood out to 

you from our work on 

the “Floors Problem”? 

1.  Multiple legitimate interpretations (8) 

2.  Multiple assumptions (5) 

3.  Multiple correct answers (4) 

4.  Importance of assumptions (4) 

5.  Other (2) 

Pillar 2: The “Floors 

Problem” was 

purposefully designed 

to be ambiguous. Why 

might a teacher use a 

problem like that in 

his/her classroom? 

a.  To encourage sensitivity to language (7) 

b.  To increase awareness of the role of assumptions (6) 

c.  To enhance appreciation of different possible interpretations 

of the same (ambiguous) text (6) 

d.  To enhance appreciation of the interdependency between 

different assumptions/interpretations and different answers 

and solution paths (5) 

e. To encourage discussion, explanation, or proof (5) 

f.  Other (3) 

Table 1: Summary of results from PTs’ responses to the pillars in part B of the task sequence (n=16) 



Regarding pillar 2, PTs’ responses under themes a–e showed ability to recognize how their 

mathematical insights from the problem could apply in teaching. Thus the responses offered 

evidence related to element 3 of MKfT. We offer two responses that illustrate some of the themes:     

Lorri: A teacher could use this ambiguous problem to get their students to understand that 

sometimes their answers are not wrong and that there may be other answers to a problem. 

Students will be able to explore their different ways of interpretation and must be open to others’ 

interpretations […] They will understand that there will be different […] answers that will 

depend on the information given in the problem, which may be ambiguous. (themes a, c, d) 

Helen: To learn about assumptions and understand not only the importance of specifics […] but 

also the freedom for one to think along the terms of their own assumptions. (themes a, b, c) 

Part C: responses of small groups to the discussion prompts  

Overall the PTs’ responses to part C were pedagogically sound and were informed by the powerful 

impact the Floors Problem had on their mathematical learning. Also, one can see parallels between 

PTs’ responses in part C and the part B pillars; these were supported by our instructional design.     

Prompt 1: An illustrative explanation of the first question in prompt 1 was: “You have to start with 

a base and then make assumptions from that. So your conclusion can only be based on those 

assumptions. Therefore your conclusion can be only true or false for those assumptions.” Regarding 

the second question in prompt 1, all groups noted the importance of helping students develop a 

sense of the role of assumptions in mathematics. The groups justified their response with reference 

to the following: the importance of assumptions in the discipline; knowledge of assumptions can 

help students understand that different legitimate interpretations of a problem can lead to different 

valid conclusions; and knowledge of assumptions can highlight the need for students to explain 

their thinking. These justifications relate to element 3 and are underpinned by the understanding of 

elements 1 and 2 that was evidenced in PTs’ responses to the first question in prompt 1.  

Prompt 2: All groups disagreed with the statement and highlighted, in a similar manner, that the 

phrasing of a task should align with the teacher’s goals. Here is an illustrative response: “If a teacher 

is giving a math test, or graded evaluation where they are looking for a specific answer then yes, the 

tasks should be unambiguous. However, if the teacher is trying to prove a point about assumptions 

or different approaches to the same problem, an ambiguous task may be beneficial.” 

Prompt 3: Two major points emerged from the responses to prompt 3. The first point related to 

teachers being able to recognize that some students’ approaches to a task that appear as “faulty” may 

be in fact mathematically sound based on unforeseen (to the teacher) legitimate assumptions. The 

second point related to teachers asking students to explain their thinking to see whether the students 

indeed operated on different assumptions rather than just focus on the final answer. Again, these 

justifications relate to element 3 but are also based on understanding of elements 1 and 2. 

Conclusion 

In this paper we investigated how teacher education can promote prospective elementary teachers’ 

knowledge about the role of assumptions in mathematical activity, with attention to the design and 

implementation of a task sequence that aimed to support three elements of MKfT. We illustrated a 

task-based approach to promoting MKfT whereby a mathematics task, although not embedded in a 



pedagogical context, can nevertheless create a productive space for pedagogical reflection through 

the creation of a powerful mathematical experience for PTs. Analysis of data from the fifth research 

cycle of a design experiment in a mathematics course for PTs provided evidence for the promise of 

this approach and highlighted the important role of the teacher educator in implementing deliberate 

(pre-planned) instructional moves to help amplify PTs’ mathematical learning and enhance the 

pedagogical functionality of their acquired knowledge. Future research can investigate whether and 

how the rich insights (both mathematical and pedagogical) that PTs may develop through the task 

sequence about the role of assumptions in mathematical activity can inform their practice.  
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