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Abstract. In the recent years, the wide spreading of smart-phones which
are daily carried by humans and fit with tens of sensors triggered an

intense research activity in human activity recognition (HAR). HAR in

smartphones is seen as essential not only to better understand human
behavior in daily life but also for context provision to other applications

in the smartphone. Many statistical and logical based models for on-line

or off-line HAR have been designed, however, the current trend is to use
deep-learning with neural network. These models need a high amount

of data and, as most discriminative models, they are very sensitive to

the imbalanced class problem. In this paper, we study different ways to
deal with imbalanced data sets to improve accuracy of HAR with neu-

ral networks and introduce a new oversampling method, called Border

Limited Link SMOTE (BLL SMOTE) which improves the classification
accuracy of Multi-Layer Perceptron (MLP) performances.
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1. Introduction

Human Activity Recognition from wearable sensors and in particular smartphones
has been subject of an intense research and industrial activity this last decade [1].
Many learning algorithms have been used to classify physical human activities
such as Running, Walking, etc. as well as interactive and social activities (chat-
ting, talking, playing, etc.). HAR is useful for health monitoring, senior care and
personal fitness training as well as for providing context to smartphone applica-
tions. Physical human activities are generally classified from recorded sensor data
(e.g. accelerometers, GPS, audio, etc.) which are embedded into wearable devices
(e.g. smartphones and smart watches).

HAR systems performances are highly dependent on the classification model
(Decision Tree, Support Vector Machine, Multi-Layer Perceptron, etc.), the fea-
ture used, the number of classes and the size of the datasets available for train-
ing [1]. However, another aspect which plays an important role in this domain is
the lack of an uniform collection of different activities. In fact, this is the case
for most smartphones datasets (e.g. Running = 4% and Walking =40% distribu-



tion). This is called the Class Imbalance Problem which is known to have a seri-
ous influence on the performance of learning algorithms, because most standard
algorithms expect balanced class distributions [2].

In the past, research on HAR based on wearable sensor did not systemati-
cally handle the class imbalance problem. Therefore, in this paper we introduce
a generic framework which integrates active learning with oversampling method
based on MLP to overcome this problem. We also introduce a new oversampling
method, called BLL SMOTE - an extension of SMOTE [3] - which can apply to
non-convex spaces.

Contributions. Our contributions are summarized as follows. (i) A framework
integrating MLP and active learning with oversampling. (ii) A new oversampling
method, BLL SMOTE. (iii) Experiments with 2 available datasets that show the
impact of taking the class imbalance problem into account in the learning.

The paper is organized as follows. Section 2 presents a summary of the state
of the art in HAR and in learning techniques with imbalanced data. The overall
framework and the BLL SMOTE method are detailed in Section 3. Several ex-
periments are reported in Section 4. The paper ends with a short discussion and
an outlook of future work.

2. Related Work

Human Activity Recognition from wearable sensors data is a very rich domain
of research. We restrict here in presenting the main work regarding the classifi-
cation models being used, the available datasets and the techniques to deal with
imbalanced class distribution in data. Regarding the classification models, there
have been many approaches to deal with HAR from wearable sensors. Over the
last decade, the most common approach is to process windows of data streams to
extract a vector of features which will in turn be fed to a classifier. Many instance-
based classifiers have been used in the field, such as Bayesian Network [4], Deci-
sion Trees [4,5], Random Forest [5], Artificial Neural Network (ANN) [4,6], Sup-
port Vector Machines (SVM) [4, 7], etc. Since human activities can be seen as a
sequence of smaller sub-activities, sequential models such as Conditional Random
Fields [5], Hidden Markov Model [8] or Markov Logic Network [9] have also been
applied. However, since the advent of Deep Learning, ANN have become of the
most popular model in HAR from wearable sensors [10,11].

Machine learning is highly dependent on datasets. It is even more the case
with Deep Learning. The survey by [1] presents a large number of datasets ac-
quired from a smartphone. However, it also shows the lack of uniformity in tasks,
sensors, protocol, time windows, etc. It is worth to notice that most of the datasets
are restricted to inertial sensors such as accelerometers. The audio sensors are
largely ignored while being among the only ones that are always found on a
smartphone. It is also worth noticing that some are very imbalanced since the
distribution among classes are very different. For instance, in the ExtraSensory
Dataset [12], sitting represents 44.2% of the data while running only 0.3%. In this
case, the learning approach should consider the class imbalance problem.



Imbalanced data has a serious influence on the performance of learning al-

gorithms, because most standard algorithms expect balanced class distributions,

as reported in [2]. Hence, datasets exhibiting imbalanced class distribution make

these algorithms fail to correctly represent the distributive characteristics of the

data. As a consequence, it would produce mis-classification of minority classes

higher than mis-classification of majority classes, and leads to a decrease in the

overall accuracy of learning algorithms. In fact, in HAR, a few studies coped

explicitly with this problem such as [13] who proposed Weighted Support Vec-

tor Machines (WSVM) to improve learning of minority classes. However, the ap-

proach is based on a scheme that put more weight on the errors on the minority

classes than on the majority classes. Therefore, this approach is highly dependent

on the instances of the minority classes.

In general, in order to deal with imbalanced data, several other approaches

were introduced in [2] such as over-sampling and active learning. For the for-

mer approach, some methods were proposed such as SMOTE [3] or Borderline

SMOTE [14] which works by generating new synthetic instances of minority

classes. Their studies showed that over-sampling techniques succeeded to enhance

the classification accuracy for imbalanced datasets. For the latter approach, [15]

introduced a SVM-based active learning framework in which SVM starts to train

on a given training dataset, then selects the most informative instances from a

pool of training samples, afterward adds the newly selected instances to the train-

ing set and finally trains SVM again. This approach has been pursued in the

VIRTUAL framework [16]. The study showed that active learning can efficiently

handle the class imbalance problem. However, all above-mentioned studies did

not combine together in order to settle the imbalance data problem. Therefore,

in this paper we introduce a generic framework to cope with this overall issue.

More details will be provided in Section 3.

3. Oversampling and active learning framework for HAR

Our objective is to improve the learning of HAR model in case of imbalanced

datasets. The problem can be defined as follows : Let A = {a1, ..., ak} be the set

of all activities, given a set T = {t1, ..., tm} of m equally sized time windows, and

a set of sensors Si = {Si,1, ..., Si,q}. Given a feature space X ∈ Rn, an instance

x ∈ X extracted from sensors Si at time frame tj is to be classified, e.g. attached

an activity label from A.

In this paper, we focus on the classification problem. Our goals are (1) to find

a learning algorithm f : X → A returning a label f(x) = a∗ as close as possible to

the actual activity performed during ti ∈ T , (2) to enhance the classification task

using active learning, and (3) to improve the recognition task by oversampling to

balance the imbalanced training set.

In this section, we present the general framework to reach these objectives,

and then detail each of its components in the subsequent sections.
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Figure 1. The active oversampling framework

3.1. Proposed Framework

The framework, as shown in Figure 1, is an extension of VIRTUAL [16] to inte-
grate active learning with oversampling method to overcome the imbalance prob-
lem.

First of all, the learning is initiated with a pool of training instances S, which
is used to learn a classification model. Then, to choose the most relevant sample
to add in the training set, the entropy of each instance from pool of unlabeled
data U is computed using the classifier output by using Equation (1). From this,
a small pool of uncertain samples L is created by grouping the instances that
maximized the Shannon entropy. After that, the small pool L is removed from U
and user is queried for its labels.
Secondly, once L is annotated, our specific oversampling method, called BLL
SMOTE (cf. Section 3.4), looks for minority instances inside the pool L and
generates new artificial instances of these minority classes. The original pool L
plus the generated instances of the minority classes are added to the training set
S and the training restarts. This means that at each iteration, the training set
is bigger but less and less imbalanced. Each part of this framework is detailed in
the following sections.

3.2. Classification model: Multi-Layer Perceptron
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Figure 2. Multilayer Perceptron

For activity classification, many existing techniques such as SVM [7] or Ran-
dom Forest [5] can be used. Among them, MLP is one of the most common meth-
ods used in HAR systems. In the rest of this paper, MLP is used as classification
model. This choice is, on the one hand, justified by the fact that it demonstrates
high performances on the task as well as high promises of improvement and, on



the second hand, by the incremental learning strategy that fits well with active
learning.

MLP can be seen as a class of feed-forward neural network composed of at
least three layers of nodes, namely input, hidden and output layer. MLP can
be learned using the back-propagation method, an efficient optimization method
that operates iteratively. More precisely, our MLP network is designed as follows.
Given inputs X = {x1, ..., xn} are the features extracted from the sensors, the
hidden layer nodes H = {h1, ..., hl} and the output layer nodes Y = {y1, ..., yk}
are computed as follows:

h1
.
.
.
hl

 =


w1,1 ∗ x1 +... +w1,n ∗ xn

. . .

. . .

. . .
wl,1 ∗ x1 +... +wl,n ∗ xn



y1
.
.
.
yk

 =


w1,1 ∗ h1 +... +w1,l ∗ hl

. . .

. . .

. . .
wk,1 ∗ h1 +... +wk,l ∗ hl

 +


b1
.
.
.
bk


This is shown in Figure 2, where {w1,1, ..., wl,n}, {w1,1, ..., wk,l} and {b1, ..., bk}

represent weights and bias.

3.3. Active Learning

The principle of Active Learning (AL) is to learn to label unknown instances by
selecting (querying) some specific instances and ask an external system (e.g., a
human operator) to label them. It has become an emerging research topic with
applications in many fields such as image segmentation [17], data clustering [18]
and interactive data analysis [19]. Applying AL in HAR is thus an interesting
approach since it can further boost up the accuracy by involving humans in the
classification task, especially for hard to classify activities. Moreover, its scheme
provides a natural way to cope with data imbalance by exploring some most
uncertain data spaces, as pointed out in [15].

Typically, an active learning algorithm chooses objects that their labels are
among the most uncertain ones to query users for. Uncertain instances can be
chosen in many different ways [20]. Our technique is built upon the uncertainty
sampling technique [20] whose principle is that the most relevant instances to be
selected for annotation are the ones for which the estimates are the less certain.
Thus, after MLP training, we predict the labels of U using the training output Y
of MLP. Y can be seen as a vector of probability of labels. Then the instances in
U are ranked according to their decreasing Shannon Entropy, because the higher
entropy of an instance is, the more uncertainty there is on its class. Therefore, the
most uncertainty instance can be picked up by maximized Shannon entropy [21]
using Equation (1):

x∗H = argmax
x
−
∑
i

Pθ(yi|x) logPθ(yi|x) (1)



where x is an instance, Pθ(yi|x) is the probability of all possible labels on the
instance.

3.4. Oversampling Border Limited Link SMOTE Method

While classical active learning methods only add in the training set the uncer-
tainty instances, that were labeled by a user, our method also performs oversam-
pling on queried data. This makes it possible to put new information into the
training set and tackle the class imbalance problem.

Oversampling consists in adding new sample to a training set, whether they
are synthetic or real. For instance, SMOTE [3] generates a new synthetic instance,
using Equation (2):

xnew = xi + (xθi − xi) ∗ λ (2)

where xnew is the new sample generated from xi ∈ Smin, with Smin is the samples
of minority class, xθi is one of the k-nearest neighbors of xi: x

θ
i ∈ Smin, and

λ ∈ [0, 1] is the random number, which allows to randomly generate the new
synthetic instance xnew along the line between xi and xθi .

However, this method is not relevant in case of non-convex spaces. For in-
stance, imagine a space as represented Figure 3. If xi and xθi are two samples
of the green (circle) class, a direct application of Eq. (2) would produce a new
sample xnew which would not be in the right space.

Mis-generation synthetic instance

Figure 3. Example of mis-generation synthetic instance in non-convex dataset

To avoid the mis-generation of synthetic instances in the case of non-convex
dataset, we introduce the BLL SMOTE method described as follows. The method
uses Eq. (2) but calculates the distance from xnew to each of the k-nearest neigh-
bors of xi, denoted as dj = d(xnew, x

θ
i ), j = 1, ..., k, where d is the Euclidean

distance. Then, the distance of the artificial instance xnew with its nearest in-
stance xdiff 6∈ Smin such that xdiff ∈ S, denoted as ddiff = d(xnew, xdiff ) is
computed. Finally, each dj is compared to ddiff . If any dj is greater than ddiff ,
then this artificial instance xnew is not accepted to be generated. Otherwise, xnew
is accepted.

An advantage of BLL SMOTE is to avoid the mis-generated new synthetic
instance in non-convex datasets



Figure 4. Distribution of the activity labels over the datasets

4. Experimental Evaluation

4.1. Dataset

To perform HAR, we restricted ourself to comparable datasets that contain at
least audio data and accelerometer data which are the only sensors that are
guaranteed to be found on any smartphone. We selected the LIG Smart Phone
Human Activity Dataset (LIG-SPHAD) [5] and the ExtraSensory Dataset [12]
which are both publicly available, do contain continuous audio and accelerometer
data and are annotated using physical human activity labels.

As it can be seen from Figure 4, the two datasets are imbalanced. For instance,
in the LIG-SPHAD, jump is the smallest distribution class (1.9%) compared to
the highest one sitting (26.4%). For the ExtraSensory Dataset, running (1.9%)
is a minority class while walking (45.91%) is by far the most frequent one. The
datasets were randomly split into training set and test set for classification task.

4.2. Baseline results with the MLP

The MLP we implemented is composed of three layers as described in Section 3.2.
The TensorFlow library was used to implement MLP. The experiment conducted
on a workstation with 3.2Ghz CPU and 16GB RAM.

The learning results are presented in Figures 5 for the two datasets. The blue
line correspond to the F1 score on the test set. On LIG-SPHAD the overall score
is 68% F1 while it is about 65% on the ExtraSensory Dataset. In the beginning of
the learning phase, the F1 score of minority classes are very low while the F1 score
of majority classes are high. At the end of learning, the F1 of majority classes
still have a high score while the F1 score of minority classes steadily increase but
stay below the overall score. It shows that, as every discriminative learning that
does not naturally take the imbalance class problem into account, the learning
favors majority classes.

4.3. MLP learning with BLL SMOTE

The MLP was then learned using the BLL SMOTE method. In this experiment,
BLL SMOTE is parametrized using a query budget limitation σ of 950, a query
size of α = 50 and a neighborhood size k of 6. Different learning tasks were carried
out using either:



Figure 5. Baseline learning curve of the MLP on LIG-SPHAD (left) and ExtraSensory Dataset
(right).

Figure 6. MLP + Active Learning on LIG-SPHAD (left) and ExtraSensory Dataset (right).

• A random AL : the instances are picked up randomly from U and added
in S.

• AL without oversampling : only the most uncertain instances with largest
entropy are chosen and added to S.

• AL with SMOTE : the most uncertain instances are chosen, then new
instances of the minority classes are created without taking (non-)convexity
of the instances space into account. Then they are added to U .

• AL with BLL SMOTE: our method.

Unless specified otherwise, the parameter values are the same for all methods.
The Figure 6 shows the F1 score curves of the four methods on the test set

of the two datasets. For LIG-SPHAD on the left side of Figure 6, BLL SMOTE
gave the best performances reaching 80% far better than the original 68%. For
the ExtraSensory dataset, BLL SMOTE also gave the best result reaching 76%,
which is better than the previous performance of 65%. However the difference
wrt the other methods is less pronounced. In any case, these results show that
AL and oversampling greatly improve global performances in case of imbalanced
data.



BLL SMOTE also has an effect on the classification performance of each class.
On Figure 7, the MLP performance on LIG-SPHAD at the last step of active
learning with oversampling BLL SMOTE, demonstrates that the minority classes
such as Jump, Unstable can achieve nearly 0.7 and 0.65 F1 score respectively, that
is much higher than the MLP performance in the Figure 5 where F1 score are 0.6
and 0.5 respectively. On the ExtraSensor dataset, the right side of Figure 7 also
illustrates that minority classes such as Running, Stairs can reach an F1 score of
69% and 65% respectively higher than in the right side of Figure 5, where the same
classes achieved 60% and 50% F1 score respectively. Hence, BLL SMOTE makes
it possible to increase minority class performance in a discriminative setting.

Figure 7. Last step of Multilayer Perceptron after last query of Active Learning and Oversam-
pling BLL SMOTE on LIG-SPHAD (left) and ExtraSensory Dataset (right)

5. Conclusion

In this paper we introduced a generic framework which integrates active learn-
ing with oversampling method based on MLP to overcome the class imbalance
problem. We also introduce a new oversampling method, called BLL SMOTE -
an extension of SMOTE [3] - which can be applied to non-convex spaces.

The experiments carried out on two different datasets demonstrated that
using active learning with oversampling to tackle the imbalance distribution of
class can increase the global F1 score of the two datasets by about 15% absolute
over the baselines. In each case BLL SMOTE shows slightly higher performances
than using SMOTE plus Active learning. In addition, BLL SMOTE is able to
increase the classification performance of minority classes. Another important
point of this study is the fact that our method prevents the mis-generation of
synthetic sample, thanks to its capacity to manage non-convex datasets.

These results show two advantages over classical approaches: the method
makes it possible to improve overall and local performances and does not require
extra external data. This last advantage is important in a domain such as smart-
phone HAR were data collection is costly and where available datasets might
differ too much in term of target, features or time resolution.
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