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An arithmetical function related to
Báez-Duarte’s criterion for the Riemann hypothesis

Michel Balazard

To the memory of my friend, Luis Báez-Duarte.

Abstract

In this mainly expository article, we revisit some formal aspects of Báez-Duarte’s criterion for the Riemann
hypothesis. In particular, starting from Weingartner’s formulation of the criterion, we define an arithmetical
function ν , which is equal to the Möbius function if, and only if the Riemann hypothesis is true. We record the
basic properties of the Dirichlet series of ν , and state a few questions.
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1 The spaces D and D0

We will denote by N (resp. N∗) the set of non-negative (resp. positive) integers, by H the Hilbert
space L2(0,∞; t−2dt), with inner product

〈 f ,g〉=
∫

∞

0
f (t)g(t)

dt
t2

,

and by Vect(F ) the set of finite linear combinations of elements of a family F of elements of H.
For k ∈ N∗, we define

ek(t) = {t/k} (t > 0),

where {u} = u−buc denotes the fractional part of the real number u, and buc its integer part. The
functions ek belong to H, as do the functions χ and κ defined by

χ(t) = [t ≥ 1] ; κ(t) = t[0 < t < 1]

(here, and in the following, we use Iverson’s notation : [P] = 1 if the assertion P is true, [P] = 0 if it
is false).

Let D be the closed subspace of functions f ∈ H of the type

f (t) = λ t +ϕ(t), (1)
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where ϕ is constant on each interval [ j, j + 1[, j ∈ N (for j = 0, the constant must be 0). The
functions ek belong to D.

Let D0 be the subspace of D defined by taking λ = 0 in (1), that is, the subspace of func-
tions ϕ ∈ H which are constant on each interval [ j, j + 1[, j ∈ N. The functions χ and ek− e1/k
belong to D0.

A hilbertian basis for D0 is given by the family of step functions εk defined by

εk(t) =
√

k(k+1) · [k ≤ t < k+1] (k ∈ N∗, t > 0).

The mapping h 7→
(
h( j)

)
j≥1 is a Hilbert space isomorphism of D0 onto the sequence space h of

complex sequences (x j) j≥1 such that

∑
j≥1

|x j|2

j( j+1)
< ∞·

Observe that, for f ∈ D, written as (1), one has

λ = 〈 f ,κ〉 (2)
f = λe1 +h, where h ∈ D0. (3)

Thus, the subspace D is the (non orthogonal) direct sum of Vect(e1) and D0.
In formula (2), the function κ could be replaced by its orthogonal projection κ ′ on D. The

definition of the families (ψn) of Proposition 2 and (gn) of Proposition 4 below could be modified
accordingly. We compute κ ′ in the appendix.

To every function in D, one can associate certain arithmetical functions. Let f ∈ D, with λ and h
as in (2), (3). We first define the arithmetical function

u(n) = u(n; f ) =−λ +h(n)−h(n−1) (n ∈ N∗). (4)

With this definition, we see that the function ϕ of (1) is given by

ϕ(t) =−λ t + f (t) =−λ t +λ{t}+h(t) = ∑
n≤t

u(n).

Thus, f (t) is the remainder term in the approximation of the sum function ϕ(t) of the arithmetical
function u by the linear function −λ t. The fact that f belongs to H implies, and is stronger than, the
asymptotic relation f (t) = o(t).

For f ∈D, we will also consider the arithmetical function w = µ ∗u, where µ denotes the Möbius
function,

w(n) = w(n; f ) = ∑
d|n

µ(n/d)u(d; f ) (n ∈ N∗).

For instance,
u(n; χ) = [n = 1] ; w(n; χ) = µ(n) (n ∈ N∗).

The arithmetical functions u and w depend linearly on f and the correspondences are one-to-one.

Proposition 1 For f ∈ D,
f = 0⇔ u = 0⇔ w = 0.
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Proof
The second equivalence follows from w = u∗µ and u = w∗1 (Möbius inversion). It remains to

prove that u = 0⇒ f = 0. By (4), u = 0 implies h(n) = λn for all n, hence λ = 0 since h ∈ D0,
and h = 0. �

Since u = w∗1, one has

f (t) = λ t + ∑
n≤t

u(n) = λ t + ∑
n≥1

w(n)bt/nc.

In Proposition 7 below, we will prove the identity

∑
n≥1

w(n)
n

=−λ , (5)

so that, for every f in D and every t > 0, one has

f (t) =−∑
n≥1

w(n)en(t). (6)

Of course, it does not mean that the series ∑n≥1 w(n; f )en converges in H (in fact, it diverges
if f = χ , cf. [1], Theorem 2.2, p. 6), but, if it does, its sum is − f .

2 Vasyunin’s biorthogonal system
In Theorem 7 of his paper [7], Vasyunin defined a family ( fk)k≥2, which, together with the

family (ek− e1/k)k≥2, yields a biorthogonal system in D0, which means that

〈e j− e1/ j, fk〉= [ j = k] ( j ≥ 2, k ≥ 2). (7)

We will recall Vasyunin’s construction, which can be thought of as a Hilbert space formulation
of Möbius inversion, and add several comments.

2.1 The sequence (ϕk)

First one defines, for k ∈ N∗, a step function ϕk ∈ D0 by

ϕk(t) = k(k−1)[k−1≤ t < k]− k(k+1)[k ≤ t < k+1]

(Vasyunin’s ϕk have the opposite sign, according to his definition for ek). Thus

ϕk =
√

k(k−1) · εk−1−
√

k(k+1) · εk (k ∈ N∗),

with ε0 = 0 by convention. One sees that the family (ϕk)k≥1 is total in D0.
One checks that

〈h,ϕk〉= h(k−1)−h(k) (k ∈ N∗), (8)

for h ∈ D0 with constant value h(k) on [k,k+1[ (h(0) = 0). In particular,

〈e j− e1/ j,ϕk〉= [ j | k]−1/ j ( j ≥ 1, k ≥ 1).

Using the family (ϕk), one can write the values u(n; f ), for f ∈ D, as scalar products.
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Proposition 2 For f ∈ D, with λ and h as in (2), (3), one has

u(n; f ) = 〈 f ,ψn〉,

where
ψn = (〈e1,ϕn〉−1)κ−ϕn (n ∈ N∗).

In particular, f 7→ u(n; f ) is a continuous linear form on D, for every n ∈ N∗.

Proof
By (2), (4) and (8), one has

u(n; f ) =−〈 f ,κ〉−〈h,ϕn〉
=−〈 f ,κ〉−〈 f −〈 f ,κ〉e1,ϕn〉
=−〈 f ,κ〉−〈 f ,ϕn〉+ 〈e1,ϕn〉〈 f ,κ〉
= 〈 f ,ψn〉 (n ∈ N∗). �

We compute the scalar product 〈e1,ϕn〉 in the appendix.
The next proposition describes the behavior of the series ∑k ϕk/k.

Proposition 3 The series

∑
k≥1

ϕk

k

is weakly convergent in D0, with weak sum −χ .

Proof
The partial sum

∑
k≤K

ϕk

k

is the step function with values

0 on (0,1) and (K +1,∞)

−1 on (1,K)

−(K +1) on (K,K +1)

This partial sum is thus equal to −χ on every fixed bounded segment of (0,∞), if K is large
enough, and the norm of this partial sum in H is the constant

√
2. The result follows. �

2.2 The sequence ( fk)

Vasyunin defined
fk = ∑

d|k
µ(k/d)ϕd (k ∈ N∗).

Equivalently,
ϕk = ∑

d|k
fd (k ∈ N∗),
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by Möbius inversion ; this implies that the family ( fk)k≥1 is also total in D0.
A slightly more general form of (7), namely

〈e j− e1/ j, fk〉= [ j = k]− [k = 1]/ j ( j,k ∈ N∗), (9)

is proved by means of the identity
∑
j|d|k

µ(k/d) = [ j = k].

Using the family ( fk), one can write the values w(n; f ), for f ∈ D, as scalar products.

Proposition 4 For f ∈ D, with λ and h as in (2), (3), one has

w(n; f ) = 〈 f ,gn〉,

where
gn = (〈e1, fn〉− [n = 1])κ− fn (n ∈ N∗).

In particular, f 7→ w(n; f ) is a continuous linear form on D, for every n ∈ N∗.

Proof
By Proposition 2, one has

w(n; f ) = ∑
d|n

µ(n/d)u(d; f )

= 〈 f ,∑
d|n

µ(n/d)ψd〉 (n ∈ N∗).

Now,

∑
d|n

µ(n/d)ψd = ∑
d|n

µ(n/d)
(
(〈e1,ϕd〉−1)κ−ϕd

)
= (〈e1, fn〉− [n = 1])κ− fn. �

We compute the scalar product 〈e1, fn〉 in the appendix.
In order to study the series ∑k fk/k, we will need the following auxiliary proposition.

Proposition 5 Let
f (x) = ∑

k≤x
η(k) (x > 0),

where η is a complex arithmetical function such that η(k) = O(1/k), for k ≥ 1.
Then, for every fixed α > 1,

∑
k≥1

∣∣ f (x/k)− f
(
x/(k+1)

)∣∣α = O(1) (x > 0).

Proof
The series is in fact a finite sum, as

f (x/k) = f
(
x/(k+1)

)
= 0 (k > x).
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We will use the estimate

f (y)− f (x)� ∑
x<k≤y

1
k
� 1

x
+ ln(y/x) (y > x≥ 1).

Thus,

f (x/k)− f
(
x/(k+1)

)
� k

x
+

1
k
� 1

k
(k ≤

√
x),

and

∑
k≤
√

x

∣∣ f (x/k)− f
(
x/(k+1)

)∣∣α � ∑
k≥1

1
kα
� 1 (x > 0).

If k >
√

x, then
x
k
− x

k+1
< 1,

so that the interval ]x/(k+1),x/k] contains at most one integer, say n, and, if n exists, one has k= bx/nc
and

f (x/k)− f
(
x/(k+1)

)
= η(n)� 1

n
·

Hence

∑
k>
√

x

∣∣ f (x/k)− f
(
x/(k+1)

)∣∣α � ∑
n≥1

1
nα
� 1 (x > 0).

The result follows. �

Proposition 6 The series

∑
k≥1

fk

k

is weakly convergent in D0 (hence in H), with weak sum 0.

Proof
Let K ∈ N∗. One has

SK = ∑
k≤K

fk

k
= ∑

d≤K

m(K/d)
d

ϕd ,

where

m(x) = ∑
n≤x

µ(n)
n

(x > 0).

Hence,

SK = ∑
d≤K

m(K/d)
d

(√
d(d−1) · εd−1−

√
d(d +1) · εd

)
= ∑

d≤K−1

(m
(
K/(d +1)

)
d +1

− m(K/d)
d

)√
d(d +1) · εd−

√
1+1/K · εK
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For every fixed d ∈N∗, the fact that 〈SK ,εd〉 tends to 0 when K tends to infinity follows from this
formula and the classical result of von Mangoldt, that m(x) tends to 0 when x tends to infinity.

It remains to show that ‖SK‖ is bounded. One has

‖SK‖2 = ∑
d≤K−1

d(d +1)
(m(K/d)

d
−

m
(
K/(d +1)

)
d +1

)2
+1+1/K

≤ 2 ∑
d≤K−1

d(d +1)
(m(K/d)−m

(
K/(d +1)

)
d

)2

+2 ∑
d≤K−1

d(d +1)
(m
(
K/(d +1)

)
d(d +1)

)2
+1+1/K

� 1+ ∑
d≤K−1

(
m(K/d)−m

(
K/(d +1)

))2

The boundedness of ‖SK‖ then follows from Proposition 5. �

We are now able to prove (5).

Proposition 7 Let f ∈ D, with λ and h as in (2), (3). The series

∑
n≥1

w(n; f )
n

is convergent and has sum −λ .

Proof
Putting βN = ∑n≤N fn/n for N ∈ N∗, one has

∑
n≤N

gn

n
= ∑

n≤N

(〈e1, fn〉− [n = 1])κ− fn

n

=
(
〈e1,βN〉−1

)
κ−βN ,

which tends weakly to −κ , as N tends to infinity, by Proposition 6.
Hence,

∑
n≤N

w(n; f )
n

= ∑
n≤N

〈 f ,gn〉
n

= 〈 f , ∑
n≤N

gn/n〉 → −〈 f ,κ〉=−λ (N→ ∞). �

3 Dirichlet series
For f ∈ D we define

F(s) = ∑
n≥1

u(n; f )
ns

,

and we will say that F is the Dirichlet series of f .
We will denote by σ the real part of the complex variable s. The following proposition summa-

rizes the basic facts about the correspondance between elements f of D and their Dirichlet series F .
We keep the notations of (2) and (3).
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Proposition 8 For f ∈D, the Dirichlet series F(s) is absolutely convergent in the half-plane σ > 3/2,
and convergent in the half-plane σ > 1. It has a meromorphic continuation to the half-plane σ > 1/2
(we will denote it also by F(s)), with a unique pole in s = 1, simple and with residue −λ . In the
strip 1/2 < σ < 1, one has

F(s)/s =
∫

∞

0
f (t)t−s−1dt. (10)

If f ∈ D0, that is λ = 0, there is no pole at s = 1, and the Mellin transform (10) represents
the analytic continuation of F(s)/s to the half-plane σ > 1/2. Moreover, the Dirichlet series F(s)
converges on the line σ = 1.

Proof
If h = 0 in (3), the arithmetical function u is the constant −λ , and F = −λζ . In this case, the

assertion about (10) follows from (2.1.5), p. 14 of [6].
If λ = 0, then f = h ∈ D0 and u(n) = h(n)−h(n−1) by (4). Therefore,

∑
n≥1

|u(n)|
nσ

≤ 2 ∑
n≥1

|h(n)|
nσ

≤ 2
(
∑
n≥1

|h(n)|2

n2

)1/2(
∑
n≥1

1
n2σ−2

)1/2

≤ 2ζ (2σ −2)1/2‖h‖< ∞,

if σ > 3/2, where we used Cauchy’s inequality for sums.
The convergence of the series F(1) follows from the formula u(n) =−〈h,ϕn〉 and Proposition 3.

It implies the convergence of F(s) in the half-plane σ > 1.
Using the Bunyakovsky-Schwarz inequality for integrals, and the fact that h = 0 on (0,1), one

sees that the integral (10) now converges absolutely and uniformly in every half-plane σ ≥ 1/2+ ε

(with ε > 0), thus defining a holomorphic function in the half-plane σ > 1/2. It is the analytic
continuation of F(s)/s since one has, for σ > 3/2,∫

∞

0
h(t)t−s−1dt =

1
s ∑

n≥1
h(n)

(
n−s− (n+1)−s)

=
1
s ∑

n≥1

h(n)−h(n−1)
ns =

F(s)
s
·

Finally, the convergence of the Dirichlet series F(s) on the line σ = 1 follows from the conver-
gence at s = 1 and the holomorphy of F on the line, by a theorem of Marcel Riesz (cf. [5], Satz I,
p. 350).

One combines the two cases, h = 0 and λ = 0, to obtain the statement of the proposition. �

The Dirichlet series F(s) of functions in D0 are precisely those which converge in some half-
plane and have an analytic continuation to σ > 1/2 such that F(s)/s belongs to the Hardy space H2

of this last half-plane. As we will not use this fact in the present paper, we omit its proof.
We now investigate the Dirichlet series

F(s)
ζ (s)

= ∑
n≥1

w(n; f )
ns ·
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Proposition 9 Let f ∈D, and let F(s) be the Dirichlet series of f . The Dirichlet series F(s)/ζ (s) is
absolutely convergent if σ > 3/2, and convergent if σ ≥ 1.

Proof
The Dirichlet series F(s) converges for σ > 1, and converges absolutely for σ > 3/2 (Proposi-

tion 8). The Dirichlet series 1/ζ (s) converges absolutely for σ > 1. The Dirichlet product F(s)/ζ (s)
thus converges absolutely for σ > 3/2, and converges for σ > 1.

If s = 1, the series is convergent by Proposition 7. Since the function F(s)/ζ (s) is holomorphic
in the closed half-plane σ ≥ 1, Riesz’ convergence theorem applies again to ensure convergence on
the line σ = 1. �

4 Báez-Duarte’s criterion for the Riemann hypothesis
We now define

B = Vect(en, n ∈ N∗) ; B0 = Vect(en− e1/n, n ∈ N∗, n≥ 2).

Since en ∈ D and en− e1/n ∈ D0 for all n ∈ N∗, one sees that

B ⊂ D ; B0 ⊂ D0 ; B0 = B ∩D0.

The subspace B is the (non orthogonal) direct sum of Vect(e1) and B0.
We will consider the orthogonal projection χ̃ (resp. χ̃0) of χ on B (resp. B0). In 2003, Báez-

Duarte gave the following criterion for the Riemann hypothesis.

Proposition 10 The following seven assertions are equivalent.

(i) B = D ; (i)0 B0 = D0

(ii) χ ∈B ; (ii)0 χ ∈B0

(iii) χ̃ = χ ; (iii)0 χ̃0 = χ

(iv) the Riemann hypothesis is true.

In fact, Báez-Duarte’s paper [2] contains the proof of the equivalence of (ii) and (iv) ; the other
equivalences are mere variations. The statements (i)0, (ii)0 and (iii)0 allow one to work in the
sequence space h instead of the function space H; see [3] for an exposition in this setting.

The main property of Dirichlet series of elements of B is given in the following proposition.

Proposition 11 If f ∈B, the Dirichlet series F(s)/ζ (s) has a holomorphic continuation to the half-
plane σ > 1/2.

Proof
Write f = λe1 +h, with λ ∈ R and h ∈ D0. If h = 0, one has F = − λζ and the result is true.
Now suppose λ = 0. The function h is the limit in H of finite linear combinations, say h j ( j≥ 1),

of the ek− e1/k (k ≥ 2), when j→ ∞. The Dirichlet series of ek− e1/k is

(k−1− k−s)ζ (s),
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so that the result is true for each h j. It remains to see what happens when one passes to the limit.
By the relation between the Dirichlet series of h j and the Mellin transform of h j, one sees that the

Mellin transform of h j must vanish at each zero ρ of ζ in the half-plane σ > 1/2, with a multiplicity
no less than the corresponding multiplicity of ρ as a zero of ζ . Thus∫

∞

1
h j(t)t−ρ−1 lnk t dt = 0 (11)

for every zero ρ of the Riemann zeta function, such that ℜρ > 1/2, and for every non-negative
integer k smaller than the multiplicity of ρ as a zero of ζ . When j → ∞, one gets (11) with h j
replaced by h, which proves the result for h.

One combines the two cases, h = 0 and λ = 0, to obtain the statement of the proposition. �

5 The ν function

5.1 Weingartner’s form of Báez-Duarte’s criterion
For N ∈ N∗, we will consider the orthogonal projections of χ on the subspaces Vect(e1, . . . ,eN)

and Vect(e2− e1/2, . . . ,eN− e1/N) :

χN =
N

∑
k=1

c(k,N)ek (12)

χ0,N =
N

∑
k=2

c0(k,N)(ek− e1/k), (13)

thus defining the coefficients c(k,N) and c0(k,N). In [8], Weingartner gave a formulation of Báez-
Duarte’s criterion in terms of the coefficients c0(k,N) of (13). The same can be done with the c(k,N)
of (12). First, we state a basic property of these coefficients.

Proposition 12 For every k∈N∗, the coefficients c(k,N) in (12) and c0(k,N) in (13) (here, with k≥ 2)
converge when N tends to infinity.

Proof
With the notations of §4,

χ̃ = lim
N→∞

χN

χ̃0 = lim
N→∞

χ0,N ,

where the limits are taken in H.
Using the identity (6), we observe that, for every N ∈ N∗,

c(k,N) =−w(k; χN) (k ≥ 1)
c0(k,N) =−w(k; χ0,N) (k ≥ 2),
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Therefore, Proposition 4 yields, for every k,

c(k,N)→−w(k; χ̃) (N→ ∞)

c0(k,N)→−w(k; χ̃0) (N→ ∞). �

�

Definition 1 The arithmetical functions ν and ν0 are defined by

ν(n) = w(n; χ̃)

ν0(n) = w(n; χ̃0).

Note that

ν0(1) = lim
N→∞

∑
2≤k≤N

c0(k,N)

k
=−∑

k≥2

ν0(k)
k

,

by Proposition 7.
We can now state Báez-Duarte’s criterion in Weingartner’s formulation.

Proposition 13 The following assertions are equivalent.

(i) ν = µ

(ii) ν0 = µ on N∗ \{1}
(iii) the Riemann hypothesis is true.

Proof
By Báez-Duarte’s criterion, (iii) is equivalent to χ = χ̃ . By Proposition 1, this is equivalent

to w(n; χ) = w(n; χ̃) for all n≥ 1, that is, µ = ν .
Similarly, (iii) implies µ = ν0. Conversely, if µ(n) = ν0(n) for all n≥ 2, then w(n; χ− χ̃0) = 0

for n ≥ 2, which means that χ − χ̃0 is a scalar multiple of e1. This implies χ = χ̃0 since χ and χ̃0
belong to D0. � �

5.2 The Dirichlet series ∑n ν(n)n−s

Since ν(n) = w(n; χ̃), the following proposition is a corollary of Propositions 9 and 11.

Proposition 14 The Dirichlet series

∑
n≥1

ν(n)
ns

is absolutely convergent for σ > 3/2, convergent for σ ≥ 1, and has a holomorphic continuation to
the half-plane σ > 1/2.
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6 Questions
Here are three questions related to the preceding exposition.

Question 1 Is it true that χ̃ = χ̃0?

Question 2 Let f ∈ D such that the Dirichlet series F(s)/ζ (s) has a holomorphic continuation to
the half-plane σ > 1/2. Is it true that f ∈B ?

A positive answer would be a discrete analogue of Bercovici’s and Foias’ Corollary 2.2, p. 63
of [4].

Question 3 Is the Dirichlet series

∑
n≥1

ν(n)
ns

convergent in the half-plane σ > 1/2?

Another open problem is to obtain any quantitative estimate beyond the tautologies ‖χ̃− χ̃N‖= o(1)
and ‖χ̃0− χ̃0,N‖= o(1) (N→ ∞).

Appendix : some computations

Scalar products
1. One has

〈e1,εk〉=
√

k(k+1)
∫ k+1

k
(t− k)

dt
t2 =

√
k(k+1)

(
ln(1+1/k)−1/(k+1)

)
. (14)

2. For k ∈ N∗, one has

〈e1,ϕk〉=
∫ k

k−1
k(k−1)(t− k+1)

dt
t2 −

∫ k+1

k
k(k+1)(t− k)

dt
t2

= 2k2 lnk− k(k−1) ln(k−1)− k(k+1) ln(k+1)+1
=−ω(1/k),

where

ω(z) = z−2((1− z) ln(1− z)+(1+ z) ln(1+ z)
)
−1

= ∑
j≥1

z2 j

( j+1)(2 j+1)
(|z| ≤ 1).

3. For n ∈ N∗, one has

〈e1, fn〉= ∑
k|n

µ(n/k)〈e1,ϕk〉=−∑
k|n

µ(n/k)ω(1/k)

=−∑
j≥1

∑k|n µ(n/k)k−2 j

( j+1)(2 j+1)
=−∑

j≥1

n−2 j
∏p|n(1− p2 j)

( j+1)(2 j+1)
·
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In particular,

sup
n∈N∗
|〈e1, fn〉|= ∑

j≥1

1
( j+1)(2 j+1)

= ln4−1.

Projections
By (14), the orthogonal projection e′1 of e1 on D0 is

e′1 = ∑
k≥1
〈e1,εk〉εk = ∑

k≥1

√
k(k+1)

(
ln(1+1/k)−1/(k+1)

)
εk.

Since e′1(k) has limit 1/2 when k tends to infinity, one sees that e1− e′1 ”interpolates” between
the fractional part (on [0,1[ ) and the first Bernoulli function (at infinity). One has the hilbertian
decomposition

D = D0⊕Vect(e1− e′1).

Since κ⊥D0 and 〈κ,e1〉= 1, the orthogonal projection of κ on D is

κ
′ =

e1− e′1
‖e1− e′1‖2 ·
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