N
N

N

HAL

open science

ON ZEROS OF ANALYTIC FUNCTIONS
SATISFYING NON-RADIAL GROWTH
CONDITIONS
A. Borichev, L Golinskii, Stanislas Kupin

» To cite this version:

A. Borichev, L Golinskii, Stanislas Kupin. ON ZEROS OF ANALYTIC FUNCTIONS SATISFYING
NON-RADIAL GROWTH CONDITIONS. Revista Math. Iberoamericana, 2018, 34 (3), pp.1153-

1175. hal-01950428

HAL Id: hal-01950428
https://hal.science/hal-01950428
Submitted on 10 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01950428
https://hal.archives-ouvertes.fr

ON ZEROS OF ANALYTIC FUNCTIONS SATISFYING
NON-RADIAL GROWTH CONDITIONS

A. BORICHEV, L. GOLINSKII, AND S. KUPIN

ABSTRACT. Extending the results of Borichev—Golinskii-Kupin [2009], we ob-
tain refined Blaschke-type necessary conditions on the zero distribution of
analytic functions on the unit disk and on the complex plane with a cut along
the positive semi-axis satisfying some non-radial growth restrictions.

To Peter Yuditskii on occasion of his 60-th anniversary

INTRODUCTION AND MAIN RESULTS

The study of relations between the zero distribution of an analytic function and
its growth is likely to be one of the most basic problems of complex analysis. We
have no intention to review a vast literature on it, but just give several references
related to the points of our interest. Perhaps, the first results in this direction were
obtained in the second half of 19-th century by Hadamard, Borel, Weierstrass and
others, see Levin [22, Ch. 1] for a modern presentation. These results completely
described the behavior of zeros of an entire function of finite type. Later, Blaschke
[2], Nevanlinna [23] and Smirnov [27] described the zero sets of functions from the
Hardy spaces HP(D), p > 0, or, more generally, the Nevanlinna class V(D). Here,
as usual, D = {|z| < 1}. Namely, for f € N(D), f # 0, one has

2m

O Y -k s g [ log" £ o oz |F(O).

cez(f) 0<r<1

where Z(f) stands for the zero set of f counting multiplicities. Hence, a discrete
subset Z(f) of the unit disk is a zero set of a function from H?(D) (or N (D)) if and
only if the series at the LHS of (0.1) converges. This condition is usually called the
“Blaschke condition” after [2].

Let A(D) be the set of analytic functions on the unit disk. An argument similar
to the proof of (0.1), shows that if f € A(D), |f(0)] = 1, satisfies the growth
condition

K
log |f(2)| € 75>
(1—z])P
where p > 1, then for any € > 0
(0.2) S (- [C)rHe < G- K,
Cez(f)

where the constant Cy = Cy(p, ) depends on p and e, see, e.g., Golubev [16].

Of course, the study of the zero distribution of analytic functions from other
classes is much more involved; see, for instance, papers of Korenblum [18, 19] on
the zero distribution for functions from spaces A~?(D), A~°°(D). Interesting results
on zeros of functions from some Bergman-type spaces are given in Seip [26].
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2 A. BORICHEV, L. GOLINSKII, AND S. KUPIN

The above mentioned spaces of analytic functions are defined with the help of a
radial (i.e., invariant with respect to rotations of the unit disk) growth conditions.
However, it turns out that one often needs to deal with classes of analytic func-
tions subject to non-radial growth relations. These classes appear, in particular,
if one wants to study the distribution of the discrete spectrum of non-self-adjoint
perturbations for certain self-adjoint or unitary operators.

The study of such classes was initiated in [3], and the main result therein looks
as follows, see [3, Theorem 0.2]. Given a finite set F' = {{,}7; on the unit circle
T = {|z| =1}, let d(z, F) = ming |z — &k| denote the Euclidian distance between a
point z € D and F. In what follows, a4 := max(a,0), a_ := max(—a,0), and K is
a positive constant.

Theorem A. Let f € AD), |f(0)| =1, satisfy the growth condition
log |f(2)| < K zeD, p,qg>0
=Tl G ) L pasl

Then, for each € > 0 there is a positive number C; = C1(F,p,q,e) such that the
following Blaschke-type condition holds:

(0.3) S @ —f¢pptte gl Py <0y K
cez(f)
Moreover, in the case p =0 the term (1 — |¢|)PT1+¢ can be replaced by (1 — |C]).

Theorem A effectively applies to the study of the discrete spectrum of complex
perturbations of certain self-adjoint operators of mathematical physics in Demuth—
Hansmann-Katriel [5, 6], Golinskii-Kupin [13, 14, 15], Dubuisson [7, 8], and Sam-
bou [25]. We also mention recent interesting papers by Cuenin—Laptev—Tretter [4],
Frank—Sabin [11], Frank [12], and Laptev—Safronov [20] in this connection. For some
extensions of this result to the case of arbitrary closed sets F' and subharmonic on D
functions f, and applications in perturbation theory see Favorov—Golinskii [9, 10].

Let us go over to the main results of the present paper which extend Theorem A.
Let E = {(;}}_; and F' = {{;}}L, be two disjoint finite sets of distinct points on
the unit c1rcle T.

Theorem 0.1. Let f € A(D), |f(0)] = 1, satisfy the growth condition

K d"(z,E)
(1 —[z[)p d?(z, F)’
Then for every € > 0, there is a positive number Co = Co(E| F,p,q,7,£) such that
the following Blaschke-type condition holds:

(D)
(0.5) A= 1P =
Z TG

(0.4) log|f(2)] <

zeD, p,qr>0.

<(Cy-K

Of course, Theorem A is exactly Theorem 0.1 with r» = 0.
An obvious inequality for an arbitrary finite set B = {8;}7_; C T

H|zfﬂj|<d(zB ) < C(B H|zfﬁj

j=1

along with Theorem 0.3 from [3] prompt a more general statement.

Theorem 0.2. Let f € AD), |f(0)] = 1, satisfy the growth condition
K H;:l ‘z_gj‘rg

(1 —1[2l)P TIizy 12 — &klex

0.6)  loglf(2)| <

zeD, p,q,r; >0.
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Then for every e > 0, there is a positive number Cs = C3(E, F,p,{qr},{r;},€) such
that the following Blaschke-type condition holds:

(0.7) Z (1— |¢|yptite [Tiei 1€ — £k|(QkI—1+E)+ ok
Cez(f) Hjlzl I — <j|mm(1’77'j) =

Once again, in the case p = 0 the factor (1 — [¢|)!™ in (0.5) and (0.7) can be
replaced by (1 — [¢]).

Remark. An observation due to Hansmann—Katriel [17] applies in our setting. It
turns out that the stronger assumption
Kz Il = = ¢l7
(1= lzDP TTezy |2 = &elon
implies the stronger conclusion
(1 — [¢|)ptite I, ¢ — gk‘(Qk—l"FE)Jr
2 o L e g

log[f(2)] <

Z€D7 p7qka7‘ja’720a

< C(Ea F7p7 {qk}7 {7’]‘},5) - K.
Cez(f)
The result of Theorem 0.1 can be extended in another direction involving arbi-
trary closed subsets F' of the unit circle. A key ingredient in such extensions is the
following quantitative characteristic of F' known as the Ahern—Clark type [1]:
af(F) =sup{aeR: |{teT: d(t, F) <z} =O0(z%), =z — +0}.
Here |A| denotes the Lebesgue measure of a measurable set A C T.

Theorem 0.3. Let E = {(; i—1 be a finite subset of T, F' C T be an arbitrary
closed set, and ENF = 0. Let f € AD), |f(0)| =1, satisfy the growth condition
(0.4). Then for every e > 0, there is a positive number Cy = C4(E, F,p,q,r,€) such
that the following Blaschke-type condition holds:

0.) > (e L

min(p,r) < 04 K.
CEZ(S) d (Cv E)

Clearly, Theorem 0.1 is a special case of the latter result, since a(F) = 1 for
finite sets F'.

As we will see later in Section 3, inequalities (0.5), (0.7) are in some sense “local”
with respect to the singular points {(;}/_; and {£;}}L, on the unit circle, so we can
restrict ourselves to the case n =m =1 and F = {{y}, F = {&}. The following
“one-point” version of the main result will be crucial in the sequel.

Theorem 0.4. Let (y,& € T, (o # &, and let f € AD), |f(0)] = 1, satisfy the
growth condition

K |Z — go‘r
0.9 log|f(2)] < ,
(09 IO T =g
Then for every e > 0, there is a positive number Cs = C5(Co, &0, D,q,7,€) such that
the following inequality holds:

(0.10) > (=gt

CeZ(f)

z€D, pqr=>0.

= 50\(q—1+a)+

G =5

The paper is organized in a straightforward manner. The preliminaries are given
in Section 1. In Sections 2 and 3 we prove Theorem 0.4 and then deduce the
general statements in Theorems 0.2 and 0.3 from this one-point version. Some
further results (the analogs for the upper half-plane and the plane with a cut) are
given in Section 4.
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To keep the notation reasonably simple and consistent, we usually number the
constants C, appearing in the formulations of theorems, propositions, etc. The con-
stants C' arising in the proofs are generic, i.e., the same symbol does not necessarily
denote the same constant in different occurrences.

1. CONFORMAL MAPPINGS, POMMERENKE LEMMA AND STOLZ ANGLES

We start with some general preliminaries from Complex Analysis.
The known distortion inequalities [24, Corollary 1.4] play a key role in what
follows.

Lemma 1.1. Let Q be a bounded, simply connected domain with the boundary OS2,
and ¢ be a conformal mapping of Q) onto D. Then

(1.1) %ﬂwamﬂdﬁﬂSl—WWNS4ﬂmeW¢WN w €

This result will be applied in the following situation, wherein the bounds on
derivatives can be specified. It is related to the Stolz angle with the vertex at
(o € T, that is, a domain inside the unit disk of the form

|z — Col
1 —|2]

(1.2) Sa(Co) == {ZE]D): <A}, A>1.

When (o = 1, we use the abbreviation S4 := Sa(1), see Figure 1. The interior
angle of S4 at 1 equals 2w, 0 < w := arccos A~! < 7/2. The Stolz angles {Sa}as1
form an increasing family of sets which exhaust the unit disk as A — oo. The
boundary of S, is denoted by 0S4.

FIGURE 1. Stolz angle Sy = Sa(1), A > 1, w = arccos A~L.

Let w4 denote the conformal mapping w4 : Sa — D, va(0) = 0, pa(1) = 1.
The following result provides a local uniform bound for its derivative ¢/;.

Lemma 1.2. Let

T T
a=qay: a > 1.

T 2w 2arccos A1’
Then the following bounds hold uniformly for A > 2:

1 ¥4 ()] o 1
(13) T6<m<48, ZESA.—SAm |Z*1|<1*6 .
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Proof. We just sketch the proof which is rather standard. Let ¢ : D — C,. := {z :
Re z > 0} be the linear-fractional mapping of I onto the right half-plane, 1(0) = 1,
(1) = co. A crucial observation is that ¢ maps S4 onto the interior H; of the
right branch of the hyperbola !

1‘2 y2

D co?w  sinfw
Set C; = {2z : £Imz > 0}, Hy = H; N Cy, and define ¢1(2) = 2+ V22 -1 =
exp(archz), ¢ : Hr — Ax = {re?? : v > 1,40 € (0,w)}, ¢2(2) = (2™* +
279 )2, ¢y Ay — Ca, h3(2) = V1+ 2, ¢3: CL — C1 NC,. Since ¢3 0 ¢y 0 Py
extends continuously to H;NR, we obtain a conformal map ¢ : H; — C,., ¢(1) = /2,
#(00) = co. Finally, if ¢4(2) = (2 — v/2)/(z + v/2), then
ﬂiﬁf—ﬂ¢ﬁfy 41— 2)°
= O O = = 1 —
pA=aodoy ((1iﬁ)a+(1¢\/§)a (L+Vz)r + (1 F V2)2)?
(see also Lavrent’ev—Shabat [21, Chapter 2.3.36]). Next,
dafl — 2271 (A £ V2)* - (L F VZ)%
(1.4) a2 = - .
N I (Fo L (e

Since a < 3/2 for A > 2, the elementary bounds

=1

, Z=x+1y.

1
- < <1
27 |Z‘77

1< Q£ V)" + (1FV2)Y <4,
1< |(1£VE) - (LFVE) <4
valid for z € S} yield (1.3). O

The following simple relation between two Stolz angles is casted as a lemma for
convenience only; its elementary proof is omitted.

Lemma 1.3. Let A< B, so Sa C Sg. Then, for z € Sa,
B-A

(1.5) B+1

(1—1z]) < d(z,08g) <1-—|z|.

For 0 < a < 1, consider a nested family of domains (curvilinear quadrangles)
{L.}, see Figure 2,
(1.6) L, C L,, CD, 0<ar <ag <.
We denote by n = 1, the conformal mapping of L, onto D with normalization
n(0) = 0, n(1) = 1, and write ;, j = 1,2 for the domains L,,. Although there is

no explicit formula for 7, it is easily seen from [24, Theorem 3.9] that both 7 and
1’ have continuous extensions on the closure L, and so

(1.7) In'(2)| < c(a), z € L.
The relations below follow directly from (1.7) and Lemma 1.1. First,
(1.8) L—|m(2)] < cilag)(1 = [2]), 2 € La,,

holds with some positive constant ¢;(az). Next, since 1 is a regular point for 7 (n
is analytic at some neighborhood of 1),

< Lm2)

(19) 02(a2 ~ |1 — Z‘

S 03(a2)7 z E La27

We thank D. Tulyakov for this remark.



6 A. BORICHEV, L. GOLINSKII, AND S. KUPIN

FIGURE 2. Domains Ly, , L,,,0 < a1 < ag.

holds with some positive constants c¢;j(az), j = 2,3. Finally, there are positive
constants ¢; = ¢;(a1,a2), j = 4,5, such that

1—
(1.10) cq(ar,a2) < 1|—172|,§Z)| < cs(ay,az), 2z € Lg,.

We will exploit these relations later in Section 3.

2. PROOF OF THEOREM 0.4 FOR ¢ =0
Without loss of generality we assume that (o = 1. By (0.9),
2"K

log|f(2)] < —————, z €D,
|f(2)] A=

and, by (0.2), for each € > 0,

(2.1) > A-lghrE < Clpre) - K.

CeZ(f)
To clarify the local character of the problem, put

22) 2= 20N {k-1< 55} 2 0= 20N {112 5}

so that with s := min(p,r) we have

3 (1 —[ehrette DY (1—[gpyrrt+e oy

1-_|5 1— (s
CEZ(S) | ¢l CEZH(f) <C€Z(f) | ¢l
The bound for ¥~ follows directly from (2.1) and the inequality |1 — ¢| > 1/16:
1— p+1+e
(23) X = Z (1|C|)<.|S < C(pa T, E) . Ka b, T > 0.
¢ez=(f)
Thus, the main problem is to prove (0.10) for XF.
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2.1. Case p < r. Given a function f € A(D) and a number A > 2, put (see (2.2)
and (1.3))
(2.4) Za(f) =2 (f)NSa=Z(f)NS}.

Step 1. Let ¥4 = @fq_l) be the conformal mapping from D onto S4, ¥4(0) = 0.
Set fa = f(pa). Then fa € A(D), |fa(0)] =1 and by (0.9) we have

11— a(w)]” -
lo w)| <K ————— <2"PAP . K| w € D.
N I
The Poisson—Jensen formula implies
(2.5) > (—|w)<27PAP - K.
weZ(fa)

However, Z(fa) = va(Z(f) NSa), and so
(2.6) Yo A-lwh= Y (I-lealQl) £277PA"-K.

wEZ(fa) CEZ(f)NSa

By Lemma 1.1,
S IPAQ] d(C,aSa) < 2P AY K,
CEZ(fINSa
and, since Z(f) NSa D Za(f) = Z(f) NS, it follows from Lemma 1.2 that for
A>2

ST 1ehQ1-d(C.08) = Y (O] - d(C.0Sa)

CeZ(f)NSa CEZA(S)
1 a—1
> D K1 d(C,08a).
CEZA(S)
Hence,
2.7 1-¢le 1.4 <orPHOAP | =
(27) Do =t d(C08a) < L a= gy
CeZA(S)

Step 2. In what follows A = A;, = 2% k € N, so the Stolz angles S := S, (with
a little abuse of notation) exhaust the unit disk, as k& — co. Relation (2.7) with
A = A1 takes the form

ST =T d(C, 08 k4) < 2K, Zy o= Za (f) = Z7(f) N Sk
CE€EZky1
see (2.2), (2.4), or, since Zy C Z11,
(28) Y L= (P d(C08ks) S 2PHOR, Bryy = g — L
CEZy
To apply Lemma 1.3 with A = 2%, B = 2¥*1 notice that
B—A 2F1_2k 2
B+1 2k141 =57

so (2.8) entails

(29) S (L= [CDIL = ¢+ < 5 -2 = O(r) 2 - K,
CEZk

for k € N. It is convenient to deal with a chain of inequalities

S A-Kh ¢ <02 K, keN,  Zy:=0.
CE€EZp\Zy—1
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Take an arbitrary 0 < & < 1/16 and write

1 _
(2:10) o 2 (== <o K.
CEZK\ZK-1

On the set Zx\Z;_1 we have

_ _ pte p+e
T [ P ST S AL
1=¢l ’ 11— = 2kpte)

and so
1— pte+1 B
(211) > (|1|_§|<)|p+ 1= ¢l <Cpr)27* - K.
CEZK\ZK-1
Step 3. We have
T arcsin 2%

« Br=ar—1=

k = ————
2 arccos 2—k’ arccos 2=k’

and as x < arcsinz < 7z/2 for 0 < x < 1, and arccos 1/2 = w/3, we see that

2
(2.12) 2 <o <l

T 2
By definition, B \, 0 as kK — co. Now, choose kg = ko(e) from the relations
(2.13) 2 ko=l <o < 270,
and hence
(2.14) Sk C Sl/a C Sky+1,  Zi, C Z+(f) ﬂSl/E C Zig+1 -
By (2.12) and (2.13), one has for k > ko + 1

3 3
Bi+1 < Pro+2 < 3 9 ko=2 1c

Let z € ZT(f). Since |1 — z| < 1/16, we see that |1 — z|fx+1 > |1 — z|°.

(2.11) implies that
1— pte+1
(2.15) > (|1|C—)CIP <Cp,r)27% K, k>ko+1.
CEZK\Zk-1
Summation over k from k = kg + 1 to infinity gives
(1 —[¢rtert
(2.16) —— < (C(p,me) K.
cez%%\zko L =cP

Next, write
Z+(f) = (Z+(f) N Sl/s) U(Z+(f> N Slc/s)? 816/5 = D\Sl/s
By (2.14), Z*(f)\Zk, > Z*(f) N Sf ., so (2.16) provides

17 g pte+1
(2.17) > (|1|—|)CP < C(p,re)- K.
CEZH(H)NSS,.

Hence,

On the other hand, put k = ko + 1 in (2.9). By (2.13), Br,4+2 < €, and (2.14)

implies that

(2.18) Yo A-lhi-¢F< D>, A-lh—¢F <Clre)- K.

CEZH(fINSy1 /e C€EZky+1
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The sum of (2.17) and (2.18) gives

(1 |¢)rrert o |
219) Y N DI (R S B R S

CeZ+(f)NSy,, CEZT(f)NS1/e
and it remains to note again that the inequality |1 — z| > 1 — |z| for z € D implies
(1 — [z)rrert

1)l —zf > =B

(1= lala - 2 > S
Finally,

1
+_ (1 —fgprrer .

(2.20) ot= ) 1o < C(p,re) - K.

CEZH(f)

Note that now p = s = min(p, r). A combination of (2.20) and (2.3) completes the
proof of Theorem 0.4 in the case ¢ =0, p < r.

2.2. Case p>r. Let f € AD), |f(0)| =1, satisfy

|1 —z["
(2.21) log|f(2)| < K ————, z €D,
(1—z[)P
with 0 < r < p. Recalling the notation f4 = f(14) (see Section 2.1) we have
1-— " 1 KA"
log | fa(w)| < K L= ¥al0l” <

(1= [a))” (1= [a@))”" = (1= |a@)]))” "

By the Schwarz lemma, |94 (w)| < |w|, and so

K A"
(2.22) log [fa(w)] £ ———-
(= T qape—
As above in (2.1), we get for each € > 0
(2.23) > Q- |w)<Cpre) A K,

weZ(fa)
where v = y(p,r,e) :=p—r+1+¢e. So we come to (2.5) with exponent v instead
of 1.
The rest is essentially the same as in the argument for the case p < r. For
instance, (2.7) becomes

(2.24) > =@ d7(¢,084) < Clp,r) AT K,
¢eZa(f)
and (2.11) turns into
(1 — JgyrHi+ee ek
2.25 D 1P < C(p,r) 27K K.
e 3 Splned (v.1)
K\ Zk—1
The choice of kg is somewhat different from (2.13):
gkl = ogho
and again 7041 < ¢ for k > kg + 1. Thereby we come to
1— p+1+42¢
(2.26) Z (|1|<—|)CT <C(p,re)- K;
CEZF(f)\Zk,
compare this inequality to (2.16). Finally,
1— p+142¢

CEZF(f)
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A combination of (2.27) and (2.3) completes the proof of Theorem 0.4 for ¢ = 0.

3. PROOFS OF THEOREM 0.4 WITH ¢ > 0, THEOREMS 0.2 AND 0.3

We proceed with a local version of the result obtained in Section 2, see also
Favorov—Golinskii [10].
Proposition 3.1. Given the quadrangle Lo, on Figure 2, let g € A(Lq,,) satisfy
1 —w|"
(1= Jwl)p’
Then for every € > 0 and every 0 < a1 < ag there exists a positive constant
C =C(p,r,e;a1,a2) such that

(1 —[¢|yptite
(3.2) Z ———<C"K,
¢€Z(9)NLa, ¢ =1l

(3.1) log lg(w)| < K w € Lg,, p,r>0.

s = min(p, ).

Proof. Recall that 7y stands for the normalized conformal map from L,, onto D.
Put f ::gongl, SO
L=y ' (2)]"

log|£(2)l < K = =

z € D.

In view of (1.8), (1.9) we have
L=z
(1 —1z)p’
By the result obtained in Section 2, for every € > 0
3 (1 —Jofpire 3 (1 = Jm(Q)PH!*e
11—l 11 —n2(Q)]*

log|f(2)] < CK zeD, p,r>0.

S C(pa T,E;ag)‘K, s = min(p, T)a
veZ(f) CEZ(g)
and moreover, for 0 < a1 < as

(1 — |m2(Q)|)Pt1te
cez%:rmal 1= n2(Q)f

The result now follows from (1.9) and (1.10). O

S C(pa 7“’55611,@2) K.

Proof of Theorem 0.4. Recall that, by convention, (5 = 1. To complete the proof
of Theorem 0.4, we note that (0.9) implies (3.1) locally inside the domain L, with
4da = |1 — &| and with K replaced by C(¢o,&) - K. Put p:=(¢—1+¢)y. By
Proposition 3.1,

— &l (1 — [ghPrt*e
1— p+14e |< £0| < 9p
3) D O D
: CeZ(f)NLay2 CEZ(f)NLay2
S C(p7QaTa 50)5) K.
On the other hand, condition (0.9) implies the global bound

2'K
lglf&)l < g =g

z €D,

and so
¢ —&ol? .
D LI D R S e G
(3.4) CGZ(f)\La/Z CGZ(f)\La/2

< c Z (1 - |<|)p+1+€|C - SO‘P < C(pv(Iara 5076) K.
Cez(f)
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The latter inequality follows from Theorem A. The combination of (3.3) and (3.4)
completes the proof of Theorem 0.4. O

Proof of Theorem 0.2. We follow the line of reasoning of the above proof. In view
of (0.6) one has the bound, which holds inside the turned quadrangle

Lo(C)=C Lo a=— min d(G, E\(G)):

T2 1<j<n
Precisely,
|z —Gil™
(1—[z])r’
By Proposition 3.1, for i = 1,2,...,n and s; = min(p, ;)

1— pt+l+e 1— p+1l+e
(3.6) > lSI" KCD o <C-. > (e |<|C|é|5' <C-K.
CEZ(f)NLaya(Ci) ~ =1 ! CEZ(f)NLas2(Gi) ’

On the other hand, if we “ignore” the product in the numerator of (0.6), we get
the global bound

log |f(2)] <

(3.5) log|f(2)| < CK 2€ La(&), i=1,2,...,n.

K
(1= 12)P TTi=y |2 = &elo

zeD,

and [3, Theorem 0.2] gives

(3.7) > eyt T I - &l <o K.

Cez(f) k=1
As above, the combination of (3.6) and (3.7) yields (0.7), as claimed. m|
Proof of Theorem 0.3. The argument is close to the one above. Within the domain
La(Ci) with

ji<n

the effect of the second factor in the denominator of (0.4) is negligible. Therefore,
as above in (3.6), we have with s = min(p, )

(1 —|¢)reite (1 —|¢)reite
3.8 ——— < —— < (C-K.
S P D o D
CEZ(f)NLay2(Ci) CEZ(f)NLay2(Si)
The global bound now looks as
K
(3.9) log |f(2)| < z €D,

(1= 2P d(z, F)

The Blaschke-type condition for f in (3.9) with p = 0 is a particular case of [10,
Theorem 3]:

(3.10) ST - AP SCK, pi=(q—alF) +e)s
CEZ(S)

There is a standard way to carry the later result over to the case p > 0, see the
proof of Theorem 0.2 in [3]. For the sake of completeness we outline the idea of
this method.

Consider the sequence of functions

fu(2) == f(An2), Ap=1-2"" neN
By (3.9) and elementary inequality d(z, F') < 2 d(A,z, F) we have
9P+ ¢

log | fu(z)] < 22 D.
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The latter is (3.9) with p = 0, so, in view of (3.10),

(3.11) Yo (= IgGUfa) (G (fa) F) < C277 - K,
&G (HISAn—1

where (;(f), ¢;(fn) are the zeros of f and f,, respectively, so (;(f) = MG (fn)-
To obtain the lower bound of the LHS in (3.11), we note that |(;(f)] < An—1

implies that

GO S 1= 1G]
2

ot 4G, ),

N =

1_|<j(fn)|:1_ ) d(cj(fn)vF)Z

and hence

S -G dgS). F) < e K.

)‘7L<‘<j(f)‘g>‘n+l

Since now
LGN < 1= A =27 (=[Gt < 27w,
the summation over n leads to
(3.12) Z (1= [c])r+i+e ga—atP+a+ (¢ Py < O - K,
Cez(f)

which is the Blaschke-type condition for the functions f in (3.9) with p > 0. Again,
a combination of (3.8) and (3.12) gives (0.8), as claimed. O

4. SOME FURTHER BLASCHKE-TYPE CONDITIONS

4.1. Generalized Stolz domains. There is a seemingly more general form of the
Blaschke-type condition (0.5) which states that, under assumption (0.4), for every
0 <7’ < 7 there is a positive constant C = C(FE, F, p,q,r,7,7') such that

da—1+7)+ (¢, F)

- ; <C-K.
dmln(p,r)Jr'r (<7E)

(4.1) Yo (=gt

cez(f)
In fact, it is a direct consequence of (0.5) with e =7 — 7/, since
-l

(¢, E)

However, it turns out that in some instances (4.1) holds with 7/ = 7, see Corollary
4.3.

¢eD.

Recall the notation S4(¢p), ¢o € T,A > 0 introduced in (1.2). In the proof of
Theorem 0.4, we actually obtained a little stronger conclusion than the claimed
one.

Proposition 4.1. Let f € A(D) be a function satisfying the assumptions of The-
orem 0.4. Then for each 0 < 7/ <7 and e =7 — 7" > 0 there is a positive number
Cs = Cs(Co, 0,0, 9,7, 7, 7") such that the following condition holds:

3 (1= [¢PPrH¢ — | e+

4.2 - ;
( ) |<' _ Co|m1n(p,r)+'r

CeZ(HNS;,. (o)

+D (=P = &l < G- K.
CEZ(£)NS1/:(Co)
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Obviously, inequality (4.2) reads as
1— p+7+1
Z ( |<|) + Z (1 _ |C|)p+l+€ < CG K.

_ min(p,r)+7’
CEZ()NSS,. (Co) €= Gl CEZ(F)NS1 /e (Co)

when ¢ = 0. Of course, the above remark also holds for Theorems 0.1, 0.2.

To get sharper results we could replace summation along the Stolz angles by that
along larger approach domains. For simplicity, we formulate here just the result for
one point (p = 1.

Theorem 4.2. Let f € AD), |f(0)| = 1, satisfy the growth condition

K|l —z|"
log |f(2)| < — v,
(1—z[)P
where 0 < p < r+1. Then for each 7 > 0 there is a positive number C7 = Cr(p,r, T)
such that

(4.3) ) (1— ¢ + 3 AT

|1 _ Clmin(p,r)+1+r —

CEZ(f), e >1-¢|? cez(f), e <i—¢|s

z €D,

where
ﬁ_ 1/(p+7-)a p<r;
Tl (r+1-p)/(p+T), T<p<r+1

Corollary 4.3. Under the same conditions,

DR o

‘1 _ Clmin(p,'r‘)-&-‘r -

Cez(f)
Proof. We use that (1 —|¢|)/(|]1 —¢|) <1 and that 1 — || < 1. Then
(1 —|¢hrrttr
Z |1 _ <|min(p,r)+7- < Z (1 - |§|)
CEZ(f), g >11—¢? CEZ(f), T >11—¢|P
It remains to use (4.3). O

Proof of Theorem 4.2. Let (z) = 132, F(2) = f(¢(2)). Then F is analytic in the
right half-plane C, and

2"

(4.4) log|f(2)] < C'K - z€C,, |z| < C,

P’
where z = x + iy, C > 1 is arbitrary and C’ depends on p,r, C.
Let A > 1 be fixed later on. Consider the domain

Qo = {z+iy: x>y}

Let ¢ be a conformal map of Qy onto C,. such that ¢o(QoNR) = C,.NR. To obtain
good asymptotic information on ¢g at 0, we use the results of Warschawski [28]
(see also [24], Theorem 11.16). For some C' and C’ depending only on A we obtain

|¢0(2)]
E
Furthermore, the same results show that given v € (0, 1] we have
Re ¢o(z + iy)
x

(4.5) 0<C< < ' < oo, 2z €, |2 < 1.

(46) 0<C< < (' < o0, x> max(ylyl, 2ly|M), |z +iy| < 1,

with C,C" depending only on v and .
Next, we need a similar estimate for

1
(4.7) 2y <z <yl iyl <4
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For y € [—1/4,1/4] we consider the points

A=y]*/2+i(y —Iyl), B=y|*/2+i(y +7y)),
A =3Jy1* 2+ i(y — ylyl), B =3y 2+ i(y + ),
A" =2yl +i(y —lyl), B" =2y +i(y +lyl)

and the rectangles ABB"” A", A'B'B" A" see Figure 3. From now on we fix v = ()
as the maximal number in (0, 1] such that

A/BIB//A// C ABB/IA// nm
for all y € [-1/4,1/4].

B BI BII
2lyl*+iy Yyl +iy
I ——
| a2,n(ABB'A")
A A A"

FIGURE 3. Rectangles ABB"”A”, A’B'B"”A”, and the part of the
boundary 99y N (ABB'A’).

Fix x + iy satisfying (4.7), the corresponding points A, B, A’, B’; A”, B"” and the

rectangles ABB" A", A’B'B"A”. Then
(A", B"] € {z + iy : « > max(vlyl, 2|yl*), @ +iy| < 1}.
Set u = Re ¢g. By (4.5) and (4.6) we have
0 < u(w) < C"yl, w € ABB" A" N Qy,
C'yl <u(w),  we A", B,

with C"”’s depending only on .

Since 0 < z < |y, d(z + iy,[A",B']) > z/4, d(z + iy,[A",A"]) = d(z +
iy, [B’, B"]) =7y, d(z + iy, [A”, B"]) < 2|y|, an elementary estimate of harmonic

measure shows that

w(z + iy, [AN7BH],A/B/BNA”) > o ﬁ’
Y

with C” depending only on A. Hence,
u(z +iy) > C - x.

Since 0 < & < |yl, d(z+iy, [A, B]) < z, d(z+iy, [A, A"]) = d(z+iy, [B, B"]) = yl,
d(x +1iy,[A”, B"]) > |y|, another elementary estimate of harmonic measure gives
that

w(z + iy, 0(ABB" A" N Q) \ 000, ABB" A” N Q)
X

< wla iy, O(ABB"A") \ [4, B ABB'A") < 0"
Yy
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with C” depending only on A. Hence,
u(z +iy) < C-x.
As a result, we obtain

Re ¢o(z + iy) -

4.
(4.8) 0<C< -

C'<oo, w2y |z +iyl <1,

with C,C" depending only on .
Now, for n > 1 we define
Qn = {z+iy:a>27"y"},
and ¢, : Q, — C,,
dn(z) = 2OV (27O 1z),
By (4.5) and (4.8), for some C,C" and for n > 1, z € Q,, |z| < 1 we have

O<C<mgﬂ<0<m,
Re o, j
e dn (T + iy) -

T

0<C< C' < 0.

Next, we define
Gn:FO¢;1, n > 1.
Then |G, (¢, (1))| = 1. Set @ = max(2|¢,(1)|,1). By (4.4) we have
log|Gn(iy)] < CK - 2"7|y|"™", y€[-Q,Q),
log |G (e“Q)| < CK - 2", 0 €[-m/2,7/2]
with C' depending only on A.
From now on we suppose that 7 — Ap > —1. By the Poisson—Jensen formula in
the right half-disk {z € C, : |z| < Q} we obtain that
Z < CK 2", n>1,
G, (z+iy)=0, \z+iy|<%
and hence,
> r<C'K-2"", n>1,
F(z+iy)=0,z>21—"|y|*, |z+iy|<C
with C' and C’ depending only on A, p,r. Theorem 0.4 implies that
Z < C'K. 2", n>1,
F(z+iy)=0,z>21—"|y|*, C<|z+iy|<1
with C' and €’ depending only on A, p, . Hence,
Z < CK-2"P, n>1,
F(z+iy)=0,z>21-7|y|* |z+iy|<1

with C depending only on A, p,r.
Let 6 > 1. Then
x1+5p

F(z+iy)=0,2>|y|*, |Ja+iy|<1 F(z+iy)=0,z<|y|*, |z+iy|<1
with C depending only on A\, p,7,§. If p < r, then, given 7 > 0, we can choose
d=1+7/p,A=1+1/(p+7) to get
:Ep+1+'r

> z+ 2 g = Ok

F(z+iy)=0, z>|y|*, |[z+iy|<1 F(z+iy)=0, <|y|*, |z+iy|<1
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If r < p < r+1, then, given 7 > 0, we can choose 6 = 1+7/p, A = (r+14+7)/(p+71)
to get
P+
D D L D DI g = oK
F(z+iy)=0, z>|y|*, |[z+iy|<1 F(z+iy)=0, z<|y|*, |[z+iy|<1

Returning to the zeros of f and estimating those far from the point 1 as in the
proof of Theorem 0.4 we obtain (4.3). O

4.2. Upper half-plane and plane with a cut. A version of Theorem 0.2 for the
upper half-plane looks as follows. We use a convenient notation

{u}ee = (u—- —1+¢); —min(c, uy), c>0, £>0.
Recall that here and later on u; = max(u,0), u— = max(—u,0), and so u =
Uy —uU—.
Theorem 4.4. Let X = {z;}]_; and X' = {z}}], be two disjoint finite sets

of distinct points on the real line. Let g € A(Cy), |g(i)] = 1, satisfy the growth
condition

(1+ w))?® [Tj=; [w— 2]

4.9 1 <K
( ) Og |g(w)‘ — (Imw)a H’I];ﬂ:1 |w _ l’;g|dk Y

wG(C+,

and a,b, cj,dy > 0. Denote

n

l::2a72b—ch+idk:l+fl_.
k=1

j=1
Then for each € > 0 there exists a positive number Cy = Co(X, X', a,b,c;,dy, €)
such that the following Blaschke-type condition holds:

Z (Im Q) t+e T, ¢ — g [k —1re)s <Co- K
l n _ o .|min(a,c; — !
c€Z(9) (L+[¢)n Hj:l ¢ — ] (ae;)

where the parameter 1 is defined by the relation

(4.10)

hi=2(a+1+e)+ {I}ac— Y min(a,c;)+ Y (dp —1+e).
j=1 k=1

Proof. Since the result follows directly from Theorem 0.2, we give only a sketch of
the proof. Consider the standard conformal mappings

w—1 142
4.11 = = :CL —D = =1 :D—C
(@11)  z=aw) =t tiC D, w=w() =i +
and the following elementary relations between the corresponding quantities in C
and D:

2 2V/2 21 81
<|1-z < vz o<l <
1+ |w 1+ |wl (1+ |w|) (1+ |w|)
We have
|w—xj|= Z‘Z_le ’ 2|w_1"j‘ SIZ_<]|S Qﬂ‘w_‘xﬂ.
1—z|1 =Gl A+ [w])]z; +i (1 + [w])]z; + 1

with ¢ = z(x;). Similar inequalities hold for |w — 2| and |z — z(z})|. Then, we
map C; onto D using w(z) defined in (4.11), and rewrite inequality (4.9) in terms
of z € D. To complete, we apply Theorem 0.2 and go back to C using z(w) defined
in (4.11). 0

In view of applications to the spectral theory we give yet another version of
Theorem 0.2 related to the domain C\R...
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Theorem 4.5. Let T = {t;}_, and T" = {t}}}L, be two disjoint finite sets
of distinct positive numbers. Let h € A(C\Ry), |h(=1)| = 1, satisfy the growth
condition

E (14+ )" Iho A=l
A" d* (N Ry) TRy [A =t
and a,b,c;j,di > 0, r € R. Denote

log [A(V)] < e C\Rs,

s = 3a—2b—|—2r—220j—|—22dk:5+—s_.
j=1 k=1

Then for each € > 0 there is a positive number C which depends on all parameters
involved such that the following inequality holds:

a I¢]° TT7, ¢ — t | (e =1te)s
(4.12) d H“(C,R ) . L . Yok
ce;h) TFIEDE Ty [C — ty[minteen)

where the parameter sy, so are defined by the relations

{-2r—a}lge—a—-1-¢
§1 = ’

2

m

{—2r —a}ee+{sta S
atlded ;5 ae_;m1n(a,cj)+;(dk—l+e)+.

S92 1

The result is a direct consequence of Theorem 4.4 applied to the function g(w) :=
h(w?), w € Cy, and the elementary inequalities

lw|Imw < d(w?,Ry) < 2Jw|Imw, weCyh.
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