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Introduction

The distribution of the discrete spectrum for a complex perturbation of a model differential self-adjoint operator (e.g., a Laplacian on R d , a discrete Laplacian on Z d , etc.) were studied, for instance, in Frank-Laptev-Lieb-Seiringer [START_REF] Frank | Lieb-Thirring inequalities for Schrödinger operators with complex-valued potentials[END_REF], Borichev-Golinskii-Kupin [START_REF] Borichev | A Blaschke-type condition and its application to complex Jacobi matrices[END_REF], Laptev-Safronov [START_REF] Laptev | Eigenvalues estimates for Schrödinger operators with complex potentials[END_REF], Demuth-Hansmann-Katriel [START_REF] Demuth | On the discrete spectrum of non-selfadjoint operators[END_REF], Hansmann [START_REF] Hansmann | An eigenvalue estimate and its application to non-self-adjoint Jacobi and Schrödinger operators[END_REF] and Golinskii-Kupin [START_REF] Golinskii | On discrete spectrum of complex perturbations of finite band Schrödinger operators[END_REF][START_REF] Golinskii | On complex perturbations of infinite band Schrödinger operators[END_REF]. Subsequent results in this direction can be found in Frank-Sabin [START_REF] Frank | Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates[END_REF], Frank-Simon [START_REF] Frank | Eigenvalue bounds for Schrödinger operators with complex potentials[END_REF], and Borichev-Golinskii-Kupin [START_REF] Borichev | New Blaschke-type conditions on zeros of analytic functions from certain classes[END_REF]. Similar techniques were applied to non-selfadjoint perturbations of other model operators of mathematical physics in Sambou [START_REF] Sambou | Lieb-Thirring type inequalities for non-self-adjoint perturbations of magnetic Schrödinger operators[END_REF], Dubuisson [START_REF] Dubuisson | On quantitative bounds on eigenvalues of a complex perturbation of a Dirac operator[END_REF][START_REF] Dubuisson | Notes on Lieb-Thirring type inequality for a complex perturbation of fractional Schrödinger operator[END_REF], Cuenin [START_REF] Cuenin | Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex potentials[END_REF], and Dubuisson-Golinskii-Kupin [START_REF] Dubuisson | New versions of Lieb-Thirring inequalities for complex perturbations of certain model operators[END_REF].

The present paper deals with the case when the model self-adjoint Schrödinger operator with the bounded potential has an infinite band spectrum. Consider a real-valued, measurable and bounded function V 0 on R d , d ≥ 1, such that the Schrödinger operator (0.1)

H 0 = -∆ + V 0 is self-adjoint in L 2 (R d ), H * 0 = H 0 .
We suppose throughout the paper that the spectrum σ(H 0 ) is infinite band, i.e., (0.2)

σ(H 0 ) = σ ess (H 0 ) = I = ∞ k=1 [a k , b k ],
where a k < b k < a k+1 and a k → +∞. With no loss of generality, it is convenient to assume, that a 1 > 0. The gaps of the spectrum are called relatively bounded if

(0.3) r = r(I) := sup k r k b k < ∞,
where r k := a k+1 -b k is the length of k' gap in (0.2). For d = 1, a generic example is a Hill operator with a periodic potential (see [START_REF] Reed | Methods of modern mathematical physics[END_REF]Section XIII.16]).

It is well known (see [START_REF] Marchenko | A characterization of the spectrum of the Hill operator[END_REF]) that r k → 0 as k → ∞ for potentials V 0 from L 2 on a period, and, consequently, (0.3) obviously holds for these potentials. Consider now (0.4)

H = H 0 + V,
where V is a complex-valued potential, and the operator H is defined by means of the Kato method. The Kato method is accepted nowadays to be the most powerful (compared to the operator and form sums methods) technique in abstract perturbation theory, see [START_REF] Kato | Wave operators and similarity for some non-selfadjoint operators[END_REF][START_REF] Gesztesy | Nonselfadjoint operators, infinite determinants, and some applications[END_REF]. It always works in our cases of interest, and it is completely compatible with the operator and the form sums whenever one or both of the latter are applicable.

A key feature of Kato's method is the following resolvent identity, see

[19, Theorem 1.5, (2.3)], [12, Lemma 2.2, (2.13)] (0.5) R(z, H) = R(z, H 0 ) -R(z, H 0 )V 1 • [I + V 2 R(z, H 0 )V 1 ] -1 • V 2 R(z, H 0 ),
where R(z, T ) := (T -z) -1 is the resolvent of a closed, linear operator T , T denotes the operator closure of T , and z lies in ρ(H 0 )∩ρ(H), the intersection of the resolvent sets. Above,

(0.6) V 1 = |V | 1/2 , V 2 = signV |V | 1/2 .
As a matter of fact, in Kato's method the operator H (0.4) is defined by identity (0.5). If the difference R(z, H) -R(z, H 0 ) is a compact operator at least for one value of z, the celebrated theorem of H. Weyl (see, e.g., [START_REF] Davies | Linear Operators and their Spectra[END_REF]Corollary 11.2.3]) claims that σ ess (H) = σ ess (H 0 ) and

σ(H) = I ∪ σ d (H)
where the discrete spectrum σ d (H) of H, i.e., the set of isolated eigenvalues of finite algebraic multiplicity, can accumulate only on I. The symbol ∪ stays for the disjoint union of two sets.

The main purpose of this paper is to obtain certain quantitative information on the rate of the above accumulation to σ ess (H). We require that the potentials at hand satisfy the following conditions:

(0.7) V 0 ∈ L ∞ (R d ), V ∈ L p (R d ), p > max(d/2, 1).
Under these assumptions, H is a well-defined, closed and sectorial operator in L 2 (R d ), and Dom H = Dom H 0 = W 2,2 (R d ). Similarly to the case V 0 ≡ 0, the operator H is well defined as the form sum for V 0 satisfying (0.7) (cf. [START_REF] Hansmann | On the discrete spectrum of linear operators in Hilbert spaces[END_REF]Section 6.1]). Moreover, the difference of resolvents of H and H 0 appears to be compact.

Put q := 1 -d/(2p) > 0, and take ω 0 < 0 as

(0.8) -ω 0 = |ω 0 | := 1 + a 1 + 2 V 0 ∞ + (4η 2 (p, d) V p ) 1/q , see (1.
3) for the definition of the constant η(p, d). Above, a 1 is the leftmost edge of σ(H 0 ).

Theorem 0.1. Let H 0 be an infinite band Schrödinger operator in L 2 (R d ), d ≥ 1, with relatively bounded spectrum (0.2)-(0.3), and V 0 , V satisfy (0.7).

Then, for 0 < τ < (q + 1)p -1 (0.9) 

z∈σ d (H) d p (z, I) (|ω 0 | + |z|) d/2+τ ≤ C(p, d, I, τ ) V p p |ω 0 | τ ,
z∈σ d (H) d p (z, I) (1 + |z|) d/2+τ ≤ C (1 + |ω 0 |) d/2 V p p and (0.11) z∈σ d (H) d p (z, I) (1 + |z|) d/2+τ ≤ C (1 + V 0 ∞ )(1 + V p ) d/2q V p p ,
where 

λ∈σ d (A) d p (λ, σ(A 0 )) ≤ K A -A 0 p Sp ,
K is an explicit (in a sense) constant, which depends only on p.

We are going to apply this result to

A 0 = A 0 (ω) = R(ω, H 0 ), A = A(ω) = R(ω, H),
where ω ∈ ρ(H 0 ) ∩ ρ(H) is an appropriate negative number. An operatortheoretic argument in this section gives the upper bound of the right-hand side of (1.1). The lower bound for the left-hand side of (1.1) is obtained in the next section by using an elementary function-theoretic reasoning. Generically, we are in the case ω ≤ ω 0 , see (0.8).

Lemma 1.1. Under assumptions (0.7) the following holds.

i) for ω < 0 and q

= 1 -d/(2p) > 0 (1.2) max V 2 R 1/2 (ω, -∆) S 2p , R 1/2 (ω, -∆)V 1 S 2p ≤ η(p, d) V p |ω| q 1/2 with (1.3) η(p, d) := Γ p -d 2 2 d π d/2 Γ(p) 1 2p
.

ii) for ω < ω 0 ,

(1.4) V 2 R(ω, H 0 )V 1 ≤ 1 2 ,
and so

(1.5) (I + V 2 R(ω, H 0 )V 1 ) -1 ≤ 2.
iii) for ω < ω 0 ,

(1.6) ||R(ω, H) -R(ω, H 0 )|| Sp ≤ 4η 2 (p, d) V p |ω| q+1 .
Proof. To prove i), write

V 2 R 1/2 (ω, -∆) = V 2 (x)g ω (-i∇), g ω (x) = (|x| 2 -ω) -1/2 , x ∈ R d .
By [24, Theorem 4.1] (sometimes called the Birman-Solomyak (or Kato-Seiler-Simon) inequality)

(1.7) V 2 R 1/2 (ω, -∆) S 2p ≤ (2π) -d/(2p) V 2 2p g ω 2p , p ≥ 1. Of course, V j 2p = V 1/2
p , and it is clear that

g ω 2p 2p = (|x| 2 -ω) -1 p p = 1 |ω| p-d/2 R d dx (|x| 2 + 1) p < ∞ for p > max(d/2, 1
). The computation of the latter integral along with (1.7) gives

(1.8) V 2 R 1/2 (ω, -∆) S 2p ≤ η(p, d) V p |ω| q 1/2 . The bound for R 1/2 (ω, -∆)V 1 S 2p is the same, since R 1/2 (ω, -∆)V 1 = (V 1 R 1/2 (ω, -∆)) * .
Turning to ii), let us begin with the following equality

(1.9) R(ω, H 0 ) = R 1/2 I + R 1/2 V 0 R 1/2 -1 R 1/2 ,
where R := R(ω, -∆). Indeed, it is clear that

(1.10) R 1/2 V 0 R 1/2 ≤ V 0 ∞ |ω| ≤ 1 2
due to the choice of ω 0 (0.8), and so

(1.11) I + R 1/2 V 0 R 1/2 -1 ≤ 2.
Hence

I + R 1/2 V 0 R 1/2 -1 = ∞ k=0 (-1) k (R 1/2 V 0 R 1/2 ) k , R 1/2 I + R 1/2 V 0 R 1/2 -1 R 1/2 = ∞ k=0 (-1) k R(V 0 R) k = R I + V 0 R -1 .
On the other hand, we have

R(ω, H 0 ) = R -R(ω, H 0 )V 0 R, R(ω, H 0 ) = R I + V 0 R -1 .
Note that under assumption on p (0.7) Dom(-∆) 1/2 ⊂ DomV 2 by the Sobolev embedding theorem, so we can write

V 2 R(ω, H 0 )V 1 = V 2 R 1/2 I + R 1/2 V 0 R 1/2 -1 R 1/2 V 1 ,
and ii) follows from (1.8), (1.11) and the choice of ω 0 (0.8).

To prove iii), we apply the basic resolvent identity (0.5). In view of the Schatten norm version of Hölder's inequality (see, e.g., [START_REF] Simon | Trace ideals and their applications[END_REF]Theorem 2.8]) and (1.5), we have

R(ω, H) -R(ω, H 0 ) Sp ≤ 2 V 2 R(ω, H 0 ) 2 S 2p . Next, it follows from (1.9) that V 2 R(ω, H 0 ) = V 2 R 1/2 I + R 1/2 V 0 R 1/2 -1 R 1/2 ,
and so in view of (1.8)

V 2 R 1/2 (ω, H 0 ) 2 S 2p ≤ 4 |ω| V 2 R 1/2 (ω, -∆) 2 S 2p ≤ 4η 2 (p, d) V p |ω| q+1 .
The proof is complete.

Distortion for linear fractional transformations

To obtain the lower bound for the left-hand side of (1.1), we proceed with the following distortion lemma for linear fractional transformations of the form (2.1)

λ ω (z) := 1 z -ω , ω ∈ R.
Despite the fact that proof of the below lemma is rather computational, we include it for the completeness of the exposition.

Lemma 2.1. Let (2.2) I = I z = ∞ k=1 [a k , b k ], 0 < a 1 < b 1 < a 2 < b 2 < . . . , a n → +∞,
and let λ ω (I) = I λ be its image under the linear fractional transformation (2.1)

λ ω (I) = I λ = ∞ k=1 [β k (ω), α k (ω)], β k (ω) = 1 b k -ω , α k (ω) = 1 a k -ω .
Then for ω < a 1 the following bounds hold: for Re z < a 1 or Re z ∈ I

(2.3) d(λ ω (z), λ ω (I) d(z, I z ) > 1 3|z -ω|(|z -ω| + a 1 -ω) ; for b k < Re z < a k+1 , k = 1, 2, . . . (2.4) d(λ ω (z), λ ω (I) d(z, I z ) ≥ 1 2|z -ω| 2 1 + a k+1 -b k b k -ω -1
.

Moreover, if ω < 0 and the gaps are relatively bounded (0.3), then the unique bound is valid

(2.5) d(λ ω (z), λ ω (I) d(z, I z ) ≥ 1 5(1 + r(I)) 1 |z -ω|(|z -ω| + a 1 -ω)
, z ∈ C\I.

Proof. Let us begin with the case ω = 0 and put λ 0 = λ = z -1 . If z = x + iy and x = Re z ≤ 0, then Re λ = x|z| -2 ≤ 0 and so

(2.6) d(λ, I λ ) d(z, I z ) = |λ| |z -a 1 | = 1 |z||z -a 1 | ≥ 1 |z|(|z| + a 1 )
.

Similarly, if x ∈ I z , then x ≥ a 1 and

0 < Re λ = x |z| 2 ≤ 1 x ≤ a -1 1 = α 1 , d(λ, [0, α 1 ]) = |Im λ| = |y| |z| 2 .
Since now d(z, I z ) = |y|, we have

(2.7) d(λ, I λ ) d(z, I z ) ≥ d(λ, [0, α 1 ]) d(z, I z ) = 1 |z| 2 > 1 |z|(|z| + a 1 )
. 

Consider now the case when

x = Re z / ∈ I z . Fix x in k's gap, (2.8) b k < x < a k+1 , k = k(x) = 0, 1, . . .
(λ(x + iu j )) = x x 2 + u 2 j = α j , Re (λ(x + iv j )) = x x 2 + v 2 j = β j ,
or, equivalently,

u j (x) = x(a j -x), v j (x) = x(b j -x).
We also put v k = 0, so

0 = v k < u k+1 < v k+1 < u k+2 < v k+2 < . . . , u n , v n → ∞, n → ∞.
While the point z traverses the line x + iy, y ∈ R, its image λ(z) describes a circle with diameter [0, 1/x]. We discern the following two cases.

Case 1. Assume that λ lies over the "gaps for λ". For each k = 0, 1, . . . there are two options for λ: interior gaps

(2.9) Re λ ∈ (α j+1 , β j ) ⇐⇒ v j < |y| < u j+1 , j = k + 1, k + 2, . . .
and the rightmost gap

(2.10) Re λ ∈ (α k+1 , 1/x) ⇐⇒ 0 < |y| < u k+1 .
For gaps (2.9) we have

(2.11) d(λ, I λ ) = min(|λ-α j+1 |, |λ-β j |) = 1 |z| min |z -a j+1 | a j+1 , |z -b j | b j .
Define an auxiliary function h on the right half-line

h(t) = h(t, z) := |z -t| t = x t -1 2 + y 2 , t > 0.
Clearly, h is monotone increasing on (x, +∞) and decreasing on (0, x) with the minimum h(x) = |y|. Hence (2.11) and (2.8) give

d(λ, I λ ) = min(h(a j+1 , z), h(b j , z)) |z| ≥ h(b j , z) |z| ≥ h(b k+1 , z) |z| ≥ h(a k+1 , z) |z| = |z -a k+1 | a k+1 |z| . Since by (2.8) d(z, I z ) ≤ |z -a k+1 |, we see that (2.12) d(λ, I λ ) d(z, I z ) ≥ 1 a k+1 |z| .
For gaps (2.10) let first k ≥ 1. Then as above in (2.11)

d(λ, I λ ) = 1 |z| min |z -a k+1 | a k+1 , |z -b k | b k , but it is not clear now which term prevails. If |z -a k+1 | ≤ |z -b k | then d(z, I z ) = |z -a k+1 | and d(λ, I λ ) d(z, I z ) = 1 |z| min 1 a k+1 , |z -b k | b k |z -a k+1 | = 1 a k+1 |z| . Otherwise |z -a k+1 | > |z -b k | implies d(λ, I λ ) d(z, I z ) = 1 |z| min 1 b k , |z -a k+1 | a k+1 |z -b k | ≥ 1 a k+1 |z| .
Next, for k = 0 one has 0 < x < a 1 , and in case (2.10)

d(λ, I λ ) = |λ -α 1 | = |z -a 1 | a 1 |z| , d(z, I z ) = |z -a 1 |,
and so

(2.13) d(λ, I λ ) d(z, I z ) = 1 a 1 |z| .
Finally, in the case of "gaps for λ" we come to the bound

(2.14) d(λ, I λ ) d(z, I z ) ≥ 1 a k+1 |z| , k = 0, 1, . . . .
A modified version of (2.14) will be convenient in the sequel.

For k ≥ 1 in view of |z| ≥ x > b k we have 1 a k+1 |z| ≥ b k a k+1 |z| 2
and so for k = 1, 2, . . .

(2.15) d(λ, I λ ) d(z, I z ) ≥ 1 |z| 2 1 + a k+1 -b k b k -1 = 1 |z| 2 1 + r k b k -1 , r k = a k+1 -b k is the length of k's gap. Similarly, for k = 0 one has from (2.13) (2.16) d(λ, I λ ) d(z, I z ) ≥ 1 |z|(|z| + a 1 )
.

Case 2. Assume that λ lies over the "bands for λ"

(2.17) Re λ ∈ [β j , α j ] ⇐⇒ u j ≤ |y| ≤ v j , j = k + 1, k + 2, . . . . Now d(λ, I λ ) = |Im λ| = |y| |z| 2 , d(z, I z ) ≤ |z -a k+1 | ≤ |y| + a k+1 -x = |y| + u 2 k+1 x ≤ |y| 1 + u k+1 x = |y| 1 + a k+1 -x x , so that (2.18) d(λ, I λ ) d(z, I z ) ≥ 1 |z| 2 1 + a k+1 x -1 -1
.

For k ≥ 1 (interior gap for z) inequality (2.18) can be simplified in view of

x > b k (2.19) d(λ, I λ ) d(z, I z ) ≥ 1 |z| 2 1 + r k b k -1
.

Let now k = 0, i.e., 0 < x = Re z < a 1 . In our case d(z,

I z ) = |z -a 1 | and |y| ≥ u 1 = x(a 1 -x).
If |y| ≥ 2x then |y| ≥ 2 3 |z| and so

(2.20) d(λ, I λ ) d(z, I z ) = |y| |z| 2 |z -a 1 | ≥ 2 3 1 |z|(|z| + a 1 )
.

Otherwise, |y| < 2x implies 2 √ x > √ a 1 -x, x > a 1 5 .
It follows now from (2.18) with k = 0 that

(2.21) d(λ, I λ ) d(z, I z ) ≥ 1 3|z| 2 > 1 3 1 |z|(|z| + a 1 )
.

We can summarize the results obtained above in the following two bounds from below. A combination of (2.6), (2.7), (2.16) 

) d(z, I z ) ≥ 1 γ k |z| 2 , γ k = max 1 + r k b k , 1 + r k b k , b k < Re z < a k+1 , k = 1, 2, . . . . (2.23) 
Since γ k < 2(1 + r k /b k ), the latter can be written as

(2.24) d(λ, I λ ) d(z, I z ) ≥ 1 2|z| 2 1 + r k b k -1 , b k < Re z < a k+1 , k = 1, 2, . . . .
To work out the general case ω = 0 and prove (2.3) and (2.4), it remains only to shift the variable and apply the results just obtained to the shifted sequence of bands

I z (ω) = k≥1 [a k -ω, b k -ω].
The final statement follows from a simple observation

r k b k -ω ≤ r k b k ≤ r.
The proof is complete.

Lieb-Thirring type inequalities

We continue with Hansmann's inequality 

z∈σ d (H) d p (z, I) |z -ω| p (|z -ω| + a 1 -ω) p ≤ C 1 V p p |ω| (q+1)p , ω ≤ ω 0 .
Proof. Recalling the spectral mapping theorem, we apply (1.1) with

A 0 = A 0 (ω) = R(ω, H 0 ), A = A(ω) = R(ω, H).
So, by Lemma 1.1, with

I λ = λ ω (I) = σ(A 0 ) λ∈σ d (A) d p (λ, I λ ) = λ∈σ d (A) d p (λ, σ(A 0 )) ≤ K R(ω, H) -R(ω, H 0 ) p Sp ≤ C 2 V p p |ω| (q+1)p . (3.2) 
Lemma 2.1 completes the proof of (3.1) as

z∈σ d (H) d p (z, I) |z -ω| p (|z -ω| + a 1 -ω) p ≤ C 3 (1 + r(I)) p V p p |ω| (q+1)p = C 4 V p p |ω| (q+1)p .
Proof of Theorem 0.1. The idea of the proof is to use the above proposition and a "convergence improving trick" from [5, p. 2754].

Put α := p(q + 1) -1 -τ > 0, and rewrite inequality (3.1) in the form 

z∈σ d (H) d p (z, I) • s α |z + s| p (|z + s| + a 1 + s) p ≤ C 1 V p p s 1+τ ,
as claimed. Reminding that q < 1 and (0.8), we have 

1 + s 0 ≤ C 3 (1 + V 0 ∞ )(1 + V 1/q p ) ≤ C 3 (1 + V 0 ∞ )(1 + V p )

  where a positive constant C(p, d, I, τ ) depends on p, d, I, and τ . Corollary 0.2. Under assumptions of Theorem 0.1 we have (0.10)

1 .

 1 positive constants C = C (p, d, I, τ ), C = C (p, d, I, τ ) depend on p, d, I, and τ . Resolvent difference is in the Schatten-von Neumann class The first key ingredient of the proof is the following result of Hansmann [17, Theorem 1]. Denote by S p , p ≥ 1 the so called Schatten-von Neumann class of compact operators, see [13, Ch. 3], [24, Ch. 2]. Let A 0 = A * 0 be a bounded self-adjoint operator on the Hilbert space, A a bounded operator with A -A 0 ∈ S p , p > 1. Then (1.1)

(

  we put b 0 = 0 and treat (b 0 , a 1 ) as a number zero gap). Then d(z, I z ) = min(|z-b k |, |z-a k+1 |), k = 1, 2, . . . , d(z, I z ) = |z-a 1 |, k = 0. Define two sets of positive numbers u j = u j (x), v j = v j (x), j = k + 1, k + 2, . . .

Figure 1 .

 1 Figure 1. Sets I = σ(H 0 ) and λ ω (I) with map λ ω (z) = 1 z-ω .

( 1 . 1 )Proposition 3 . 1 .

 1131 and the upper (lower) bounds for its right (left) hand sides obtained in previous sections. In what follows, C k = C k (p, d, I), k = 1, 2, . . ., denote positive constants, which depend on p, d, and the set I (0.2). Under conditions of Theorem 0.1, for ω ≤ ω 0 defined in (0.8), we have (3.1)

1 V p p τ s τ 0 .≤

 10 where s := |ω| ≥ s 0 := |ω 0 |. Observe that |z + s| ≤ |z| + s, |z + s| + a 1 + s ≤ 2s + |z| + a 1 , and soz∈σ d (H) d p (z, I) • s α (s + |z|) p (2s + |z| + a 1 ) p ≤ C 1 V p p s 1+τ .Next, integrate the latter inequality with respect to s from s 0 to infinity and change the order of summation and integrationz∈σ d (H) d p (z, I) ∞ s 0 s α ds (s + |z|) p (2s + |z| + a 1 ) p ≤ CThe integral in the left-hand side converges, sinceα > 0, 2p -α -1 = d/2 + τ > 0.Making the change of variables s = (|z| + s 0 )t + s 0 and noticing that2s + |z| + a 1 = 2(|z| + s 0 )t + 2s 0 + |z| + a 1 ≤ 3(|z| + s 0 )(t + 1) (see (0.8)), we come to ∞ s 0 s α ds (s + |z|) p (2s + |z| + a 1 ) p ≥ 1 3 p (|z| + s 0 ) 2p-α-1 ∞ 0 t α dt (1 + t) 2p = C(p, d, τ ) (|z| + s 0 ) d/2+τ, which gives (0.9). The proof of the theorem is complete.Proof of Corollary 0.2. Certainly, |z|+s 0 ≤ (1+s 0 )(1+|z|), and (1+s 0 )/s 0 ≤ 2. Hence z∈σ d (H) d p (z, J) (1 + |z|) d/2+τ ≤ C 2 (1 + s 0 ) d/2 1 + ω 0 C(p, d, I, τ )(1 + |ω 0 |) d/2 V p p ,

  1/q . So, inequality(3.3) reads z∈σ d (H) d p (z, I) (1 + |z|) d/2+τ ≤ C(p, d, I, τ ) (1 + V 0 ∞ ) d/2 (1 + V p ) d/2q V p p .It remains to note that d/2 < d/2q, so (1.5) follows. The proof of corollary is complete. 2Let us mention that inequality (1.5) is better (regarding the powers) than the corresponding result in [14, Theorem 0.2].
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