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Let H0 = -d 2 dx 2 + V0 be an infinite band Schrödinger operator on L 2 (R) with a real-valued potential V0 ∈ L ∞ (R). We study its complex perturbation H = H0 +V , defined in the form sense, and obtain the Lieb-Thirring type inequalities for the rate of convergence of the discrete spectrum of H to the joint essential spectrum. The assumptions on V vary depending on the sign of Re V .

Introduction

Different characteristics of the distribution of the discrete spectrum for non-self-adjoint perturbations of model differential self-adjoint operators, e.g., a Laplacian on R d , a discrete Laplacian on Z d , etc., were studied in a number of papers (see Frank-Laptev-Lieb-Seiringer [START_REF] Frank | Lieb-Thirring inequalities for Schrödinger operators with complex-valued potentials[END_REF], Borichev-Golinskii-Kupin [START_REF] Borichev | A Blaschke-type condition and its application to complex Jacobi matrices[END_REF], Demuth-Hansmann-Katriel [START_REF] Demuth | On the discrete spectrum of non-selfadjoint operators[END_REF]). This paper focuses on complex perturbations of one dimensional Schrödinger operators with infinite band spectrum and certain behavior of the lengths of its gaps (the case of finite band Schrödinger operators was studied in [START_REF] Golinskii | On discrete spectrum of a complex perturbations of finite band Schrödinger operators[END_REF]).

So, consider a real-valued measurable function V 0 on R and denote by M V 0 a maximal multiplication operator by V 0 . The standing assumption is that the Schrödinger operator (0.1)

H 0 = -∆ + M V 0 , ∆ := d 2 dx 2
. is self-adjoint, H * 0 = H 0 , and its spectrum σ(H 0 ) is infinite band, i.e., (0.2)

σ(H 0 ) = σ ess (H 0 ) = I = ∞ k=1 [a k , b k ], a k → +∞.
We say that the gaps are relatively bounded if

(0.3) r = r(I) := sup k r k b k < ∞, r k := a k+1 -b k
is the length of k' gap in (0.2). A typical example here is the Hill operator with a periodic potential (see [START_REF] Reed | Methods of modern mathematical physics[END_REF]Section XIII.16]). It is well known (see [START_REF] Marchenko | A Characterization of the Spectrum of the Hill Operator[END_REF]) that r k → 0 as k → ∞ for potentials V 0 from L 2 on a period, so (0.3) obviously holds for such potentials. Furthermore, consider the form sum (0.4)

H = H 0 + M V ,
where V is a complex-valued potential. If M V is a relatively compact perturbation of H 0 , that is, dom(M V ) ⊃ dom(H 0 ), and M V (H 0 -z) -1 is a compact operator for z ∈ ρ(H 0 ), then, by the celebrated theorem of Weyl (see, e.g., [8, Section IV.5.6]), σ ess (H) = σ ess (H 0 ) and

σ(H) = I ∪ σ d (H) (disjoint union), the discrete spectrum σ d (H) of H, i.e.
, the set of isolated eigenvalues of finite algebraic multiplicity, can accumulate only on I. The main goal of the paper is to obtain certain quantitative bounds for the rate of this accumulation.

The assumption on the background V 0 looks as follows (0.5)

V 0 ≥ 0, V 0 ∈ L ∞ (R).
As for the perturbation V the conditions will vary depending on the sign of Re V . Precisely, for general V 's we assume that

(0.6) V ∈ L p (R), p ≥ 2,
and for accretive perturbations with Re V ≥ 0 we put

(0.7) V ∈ L p (R), p > 1.
Under assumptions (0.5)-(0.7) H is a well-defined, closed and m-sectorial operator, and there is a number ω 1 ≤ 0 such that

(0.8) σ(H) ⊂ N (H) ⊂ {z : Re z ≥ ω 1 },
where Theorem 0.1. Let H 0 be the Schrödinger operator (0.1) with V 0 satisfying (0.5). Assume that H 0 is the infinite band operator with the spectrum

N (H) = {(Hf, f ) : f ∈ dom(H), f 2 ≤ 1}
σ(H 0 ) = σ ess (H 0 ) = ∞ k=1 [a k , b k ], 0 ≤ a 1 < b 1 < a 2 < b 2 < . . . , a n → +∞,
and the lengths of gaps are relatively bounded (0.3). Then for the perturbation H (0.4) with V (0.6) and for each ω < ω 1 (0.8) the following Lieb-Thirring type inequality (0.9)

z∈σ d (H) d p (z, I) (|z -ω| + |ω|) 2p ≤ C(p, I) V p p (ω 1 -ω) p |ω| p-1/2 1 + V 0 ∞ a 1 + |ω| p ,
holds, where a positive constant C(p, I) depends on p and I = σ(H 0 ). Remark 0.2. If we take ω < ω 1 -1, bound (0.9) can be simplified. Indeed, now ω

1 -ω > 1, |z -ω| < |ω|(1 + |z|), 1 < a 1 + |ω| < |ω|(1 + a 1 ),
and so (0.10)

z∈σ d (H) d p (z, I) (1 + |z|) 2p ≤ C(p, I)|ω| p+1/2 (1 + V 0 ∞ ) p V p p .
There is an elementary way to specify ω and eliminate it from the final expression. The price we pay is an additional factor in the right hand side.

Theorem 0.3. Under assumptions (0.5), (0.6) (0.11)

z∈σ d (H) d p (z, I) (1 + |z|) 2p ≤ C(p, I)(1 + V 0 ∞ ) p (1 + V p ) p 2p+1 2p-1 V p p ,
where a positive constant C(p, I) depends on p and I = σ(H 0 ).

Denote D + = {|z| < 1}, D -= {|z| ≥ 1}.
Theorem 0.4. Let Re V ≥ 0. Under assumptions (0.5), (0.7) the following Lieb-Thirring type inequality holds for each 0 < ε < 1 (0.12)

z∈σ d (H)∩D + d p (z, I) |z| 1/2-ε + z∈σ d (H)∩D - d p (z, I) |z| 1/2+ε ≤ C(p, I, ε) V p p .
Remark 0.5. The only reason we restricted ourselves with the case of one dimensional Schrödinger operator H 0 as a background is that the class of multidimensional Schrödinger operators with spectra (0.2) is not well understood. Our technique works for any dimension d ≥ 1, and the corresponding problem will be elaborated on elsewhere.

Distortion for linear fractional transformations

The main analytic tool in the proof of Theorem 0.1 is the following distortion lemma for linear fractional transformations of the form

(1.1) λ ω (z) := 1 z -ω , ω ∈ R.
The argument here is quite elementary (though, rather lengthy).

Lemma 1.1. Let (1.2) I = I z = ∞ k=1 [a k , b k ], 0 ≤ a 1 < b 1 < a 2 < b 2 < . . . , a n → +∞,
and let λ ω (I) = I λ be its image under the linear fractional transformation (1.1)

λ ω (I) = I λ = ∞ k=1 [β k (ω), α k (ω)], β k (ω) = 1 b k -ω , α k (ω) = 1 a k -ω .
Then for ω < a 1 the following bounds hold: for Re z < a 1 or Re z ∈ I

(1.3) d(λ ω (z), λ ω (I) d(z, I z ) > 1 3|z -ω|(|z -ω| + a 1 -ω) ; for b k < Re z < a k+1 , k = 1, 2, . . . (1.4) d(λ ω (z), λ ω (I) d(z, I z ) ≥ 1 2|z -ω| 2 1 + a k+1 -b k b k -ω -1
.

Moreover, if ω ≤ 0 and the gaps are relatively bounded (0.3), then the unique bound is valid

(1.5) d(λ ω (z), λ ω (I) d(z, I z ) ≥ 1 5(1 + r(I)) 1 |z -ω|(|z -ω| + a 1 -ω) , z ∈ C\I.
Proof. With no loss of generality we can assume that a 1 > 0.

We begin with the case ω = 0 and put

λ 0 = λ = z -1 . If z = x + iy and x = Re z ≤ 0, then Re λ = x|z| -2 ≤ 0 and so (1.6) d(λ, I λ ) d(z, I z ) = |λ| |z -a 1 | = 1 |z||z -a 1 | ≥ 1 |z|(|z| + a 1 )
.

Similarly, if x ∈ I z , then x ≥ a 1 and 0 < Re λ = x |z| 2 ≤ 1 x ≤ a -1 1 = α 1 , d(λ, [0, α 1 ]) = |Im λ| = |y| |z| 2 .
Since now d(z, I z ) = |y|, we have

(1.7) d(λ, I λ ) d(z, I z ) ≥ d(λ, [0, α 1 ]) d(z, I z ) = 1 |z| 2 > 1 |z|(|z| + a 1 )
. Consider now the case when

x = Re z / ∈ I z . Fix x in k's gap, (1.8) b k < x < a k+1 , k = k(x) = 0, 1, . . .
(we put b 0 = 0 and treat (b 0 , a 1 ) as a number zero gap). Then

d(z, I z ) = min(|z-b k |, |z-a k+1 |), k = 1, 2, . . . , d(z, I z ) = |z-a 1 |, k = 0.
Define two sets of positive numbers

u j = u j (x), v j = v j (x), j = k + 1, k + 2, . . . by equalities Re (λ(x + iu j )) = x x 2 + u 2 j = α j , Re (λ(x + iv j )) = x x 2 + v 2 j = β j ,
or, equivalently,

u j (x) = x(a j -x), v j (x) = x(b j -x).
We also put v k = 0, so

0 = v k < u k+1 < v k+1 < u k+2 < v k+2 < . . . , u n , v n → ∞, n → ∞.
While the point z traverses the line x + iy, y ∈ R, its image λ(z) describes a circle with diameter [0, 1/x]. We discern the following two cases.

Case 1. Assume that λ lies over the "gaps for λ". For each k = 0, 1, . . . there are two options for λ: interior gaps For gaps (1.9) we have

(1.9) Re λ ∈ (α j+1 , β j ) ⇐⇒ v j < |y| < u j+1 , j = k + 1, k + 2, . . .
(1.11) d(λ, I λ ) = min(|λ-α j+1 |, |λ-β j |) = 1 |z| min |z -a j+1 | a j+1 , |z -b j | b j .
Define an auxiliary function h on the right half-line

h(t) = h(t, z) := |z -t| t = x t -1 2 + y 2 , t > 0.
Clearly, h is monotone increasing on (x, +∞) and decreasing on (0, x) with the minimum h(x) = |y|. Hence (1.11) and (1.8) give

d(λ, I λ ) = min(h(a j+1 , z), h(b j , z)) |z| ≥ h(b j , z) |z| ≥ h(b k+1 , z) |z| ≥ h(a k+1 , z) |z| = |z -a k+1 | a k+1 |z| . Since by (1.8) d(z, I z ) ≤ |z -a k+1 |, we see that (1.12) d(λ, I λ ) d(z, I z ) ≥ 1 a k+1 |z| .
For gaps (1.10) let first k ≥ 1. Then as above in (1.11)

d(λ, I λ ) = 1 |z| min |z -a k+1 | a k+1 , |z -b k | b k , but it is not clear now which term prevails. If |z -a k+1 | ≤ |z -b k | then d(z, I z ) = |z -a k+1 | and d(λ, I λ ) d(z, I z ) = 1 |z| min 1 a k+1 , |z -b k | b k |z -a k+1 | = 1 a k+1 |z| . Otherwise |z -a k+1 | > |z -b k | implies d(λ, I λ ) d(z, I z ) = 1 |z| min 1 b k , |z -a k+1 | a k+1 |z -b k | ≥ 1 a k+1 |z| .
Next, for k = 0 one has 0 < x < a 1 , and in case (1.10)

d(λ, I λ ) = |λ -α 1 | = |z -a 1 | a 1 |z| , d(z, I z ) = |z -a 1 |,
and so

(1.13) d(λ, I λ ) d(z, I z ) = 1 a 1 |z| .
Finally, in the case of "gaps for λ" we come to the bound

(1.14) d(λ, I λ ) d(z, I z ) ≥ 1 a k+1 |z| , k = 0, 1, . . . .
A modified version of (1.14) will be convenient in the sequel.

For k ≥ 1 in view of |z| ≥ x > b k we have 1 a k+1 |z| ≥ b k a k+1 |z| 2
and so for k = 1, 2, . . .

(1.15) d(λ, I λ ) d(z, I z ) ≥ 1 |z| 2 1 + a k+1 -b k b k -1 = 1 |z| 2 1 + r k b k -1 , r k = a k+1 -b k is the length of k's gap. Similarly, for k = 0 one has from (1.13) (1.16) d(λ, I λ ) d(z, I z ) ≥ 1 |z|(|z| + a 1 )
.

Case 2. Assume that λ lies over the "bands for λ"

(1.17) Re λ ∈ [β j , α j ] ⇐⇒ u j ≤ |y| ≤ v j , j = k + 1, k + 2, . . . . Now d(λ, I λ ) = |Im λ| = |y| |z| 2 , d(z, I z ) ≤ |z -a k+1 | ≤ |y| + a k+1 -x = |y| + u 2 k+1 x ≤ |y| 1 + u k+1 x = |y| 1 + a k+1 -x x , so that (1.18) d(λ, I λ ) d(z, I z ) ≥ 1 |z| 2 1 + a k+1 x -1 -1
.

For k ≥ 1 (interior gap for z) inequality (1.18) can be simplified in view of

x > b k (1.19) d(λ, I λ ) d(z, I z ) ≥ 1 |z| 2 1 + r k b k -1
.

Let now k = 0, i.e., 0 < x = Re z < a 1 . In our case d(z,

I z ) = |z -a 1 | and |y| ≥ u 1 = x(a 1 -x).
If |y| ≥ 2x then |y| ≥ 2 3 |z| and so

(1.20) d(λ, I λ ) d(z, I z ) = |y| |z| 2 |z -a 1 | ≥ 2 3 1 |z|(|z| + a 1 )
.

Otherwise, |y| < 2x implies 2 √ x > √ a 1 -x, x > a 1 5 .
It follows now from (1.18) with k = 0 that

(1.21) d(λ, I λ ) d(z, I z ) ≥ 1 3|z| 2 > 1 3 1 |z|(|z| + a 1 )
.

We can summarize the results obtained above in the following two bounds from below. A combination of (1.6), (1.7), (1.16) 

) d(z, I z ) ≥ 1 γ k |z| 2 , γ k = max 1 + r k b k , 1 + r k b k , b k < Re z < a k+1 , k = 1, 2, . . . . (1.23) Since γ k < 2(1 + r k /b k )
, the latter can be written as

(1.24) d(λ, I λ ) d(z, I z ) ≥ 1 2|z| 2 1 + r k b k -1 , b k < Re z < a k+1 , k = 1, 2, . . . .
To work out the general case ω = 0 and prove (1.3) and (1.4), it remains only to shift the variable and apply the results just obtained to the shifted sequence of bands

I z (ω) = k≥1 [a k -ω, b k -ω].
The final statement follows from a simple observation

r k b k -ω ≤ r k b k ≤ r.
The proof is complete.

Lieb-Thirring type inequalities

The key ingredient of the proof of our main statements is the following result of Hansmann [START_REF] Hansmann | Variation of discrete spectra for non-selfadjoint perturbations of selfadjoint operators[END_REF]Theorem 1]. Let A 0 = A * 0 be a bounded self-adjoint operator on the Hilbert space, and let A be a bounded operator with A-A 0 ∈ S p , p > 1. Then (2.1)

λ∈σ d (A) d p (λ, σ(A 0 )) ≤ K p A -A 0 p Sp ,
K p is an explicit (in a sense) constant, which depends only on p. We set

A 0 (ω) = R(ω, H 0 ) = (H 0 -ω) -1 , A(ω) = R(ω, H) = (H -ω) -1 ,
ω is defined above, and ω ∈ ρ(H 0 ) ∩ ρ(H) in view of (0.2) and (0.8). Let λ = λ ω (z) = (z -ω) -1 . The Spectral Mapping Theorem implies that

λ ∈ σ d (A(ω)) (λ ∈ σ(A 0 (ω))) ⇐⇒ z ∈ σ d (H) (z ∈ σ(H 0 )) .
Proof of Theorem 0.1. The second resolvent identity reads

R(z, H) -R(z, H 0 ) = -R(z, H)M V R(z, H 0 ), z ∈ ρ(H) ∩ ρ(H 0 ).
We wish to show that this difference belongs to S p and to obtain the bound for its S p -norm. First, we have

W = W (z) := M V R(z, H 0 ) = M V (-∆ -z) -1 (-∆ -z)(H 0 -z) -1 = M V (-∆ -z) -1 (1 -M V 0 (H 0 -z) -1 ), (2.2) 
and so

W (z) Sp ≤ M V R(z, -∆) Sp I -M V 0 R(z, H 0 ) , z ∈ ρ(H) ∩ ρ(H 0 ).

It is clear that

I -M V 0 R(z, H 0 ) ≤ 1 + V 0 ∞ d(z, I) = 1 + V 0 ∞ |a 1 -z| , Re z < 0.
Next, write

M V (-∆ -z) -1 = V (x)g z (-i∇), g z (x) = (x 2 -z) -1 , x ∈ R.
By [START_REF] Simon | Trace ideals and their applications[END_REF]Theorem 4.1]

M V (-∆ -z) -1 Sp ≤ (2π) -1/p V p g z p , p ≥ 2. 
Since 2|t -z| 2 ≥ (t + |z|) 2 for t ≥ 0 and Re z < 0, we have

g z p ≤ √ 2 g -|z| p
and so

M V (-∆ -z) -1 Sp ≤ C 1 |z| 1-1/2p V p , C 1 = C 1 (p) = √ 2 1 2π ∞ -∞ dx (x 2 + 1) p 1/p . (2.3) Thus, (2.4) W (z) Sp ≤ C 1 (p) V p |z| 1-1/2p 1 + V 0 ∞ |a 1 -z| , Re z < 0.
We put z = ω < ω 1 . Relation (0.8) implies in view of [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]Theorem V.3.2] (2.5)

R(ω, H) ≤ 1 d(ω, N (H)) ≤ 1 ω 1 -ω ,
and the combination of (2.4) and (2.5) leads to the following bound for each

ω < ω 1 R(ω, H) -R(ω, H 0 ) p Sp ≤ R(ω, H) p W (ω) p Sp ≤ C 2 (p) V p p (ω 1 -ω) p |ω| p-1/2 1 + V 0 ∞ a 1 + |ω| p . (2.6)
We go back to (2.1) with

A 0 = A 0 (ω) = R(ω, H 0 ), A = A(ω) = R(ω, H),
so by the Spectral Mapping Theorem, in the notation of Lemma 1.1 we have (2.7)

λ∈σ d (A(ω)) d p (λ, σ(A 0 (ω)) = z∈σ d (H) d p (λ ω (z), λ ω (I)) ≤ K p R(ω, H)-R(ω, H 0 ) p Sp .
We apply Lemma 1.1 in the form (1.5) to obtain

z∈σ d (H) d p (z, I) |z -ω| p (|z -ω| + a 1 + |ω|) p ≤ C 3 (p, I) V p p (ω 1 -ω) p |ω| p-1/2 1 + V 0 ∞ a 1 + |ω| p ,
and (0.9) follows. The proof is complete.
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The proof of Theorem 0.1 shows that bound (0.9) essentially depends on the parameter ω. Roughly speaking, it comes from a bound from below of inf Re σ(H), and so it seems to be rather important to estimate this quantity in terms of V 0 and V only.

Proof of Theorem 0.3.

Put Ω = {Re z < 0} {|a 1 -z| > (1 + V 0 ∞ )} |z| 1-1/2p > 4C 1 (p)(1 + V p ) , C 1 is defined in (2.
3). We wish to show that Ω ⊂ ρ(H 0 ) ∩ ρ(H). Indeed, by

) W (z) ∞ ≤ W (z) Sp ≤ V p 2(1 + V p ) < 1 2 , z ∈ Ω, so I + W (z) is invertible and (I + W (z)) -1 < 2. An application of the identity H -z = (1 + W (z))(H 0 -z) completes the proof of our claim. (2.4), (2.8 
Next, write the difference of the resolvents in another way

R(z, H) -R(z, H 0 ) = -R(z, H 0 )(1 + W (z)) -1 W (z) to obtain for z ∈ Ω R(z, H) -R(z, H 0 ) Sp ≤ R(z, H 0 ) (1 + W (z)) -1 W (z) Sp ≤ V p |a 1 -z|(1 + V p ) ≤ V p (1 + V 0 ∞ )(1 + V p ) .
It is clear by the definition of Ω that if t ∈ Ω, t < 0, then {Re z ≤ t} ⊂ Ω. Take z = ω < 0 so that (2.9)

|ω | 2 = a 1 2 + 1 + V 0 ∞ + (4C 1 (1 + V p )) 1/(1-1/2p) .
It is easy to check that {z : Re z < ω 2 } ⊂ Ω, so, in particular, ω ∈ Ω and hence

R(ω , H) -R(ω , H 0 ) Sp ≤ V p (1 + V 0 ∞ )(1 + V p ) .
Once again, (2.1) says (2.10)

λ∈σ d (A(ω )) d p (λ, σ(A 0 (ω ))) ≤ K p V p (1 + V 0 ∞ )(1 + V p )
p for p > 1 and, using Lemma 1.1, we come to

z∈σ d (H) d p (z, I) |z -ω | p (|z -ω | + a 1 + |ω |) p ≤ C 4 (p, I) V p (1 + V 0 ∞ )(1 + V p ) p .
By the choice of ω (2.9), we have Re z ≥ ω /2 for z ∈ σ d (H), and so

|z -ω | ≥ |ω | 2 > |a 1 | + |ω | 4 , and 
|z -ω | + a 1 + |ω | < 5|z -ω |, |z -ω |(|z -ω | + a 1 + |ω |) < 5|z -ω | 2 .
Next As for the upper bound, we follow the line of reasoning from [6, Proof of Theorem 3.2], where such bound was proved in the case V 0 = 0. As a matter of fact, the argument goes through under assumption (0.5) as well. At any rate, we have and then integrate the latter inequality with respect to a ∈ (0, ∞). The proof is complete.
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Figure 1 .

 1 Figure 1. Sets I = σ(H 0 ) and λ ω (I) with map λ ω (z) = 1 z-ω .

and the rightmost gap ( 1 . 10 )

 110 Re λ ∈ (α k+1 , 1/x) ⇐⇒ 0 < |y| < u k+1 .
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 2 , |z -ω | ≤ (1 + |z|)(1 + |ω |) ≤ 2|ω |(1 + |z|) and hence z∈σ d (H) d p (z, I) (1 + |z|) 2p ≤ C 5 (p, I)|ω | 2p V p (1 + V 0 ∞ )(1 + V p ) p ≤ C 6 (p, I)(1 + V 0 ∞ ) p (1 + V p )Proof of Theorem 0.4. For accretive perturbations we have σ(H) ⊂ {z : Re z ≥ 0}, so one can take ω 1 = 0.The lower bound for the difference of resolvents is the same as above in Theorem 0.1. It is a consequence of the result of Hansmann and Lemma 1.1R(ω, H) -R(ω, H 0 ) p Sp ≥ z∈σ d (H) d p (z, I) (|z -ω| -ω) 2p , p > 1.

R

  (-a, H) -R(-a, H 0 ) p Sp ≤ C 5 (p) a 2p-1/2 V p p , a := -ω > 0.Since √ 2|z + a| ≥ |z| + a for Re z > 0 and a > 0, we come to the following inequality(2.11) z∈σ d (H) d p (z, I) (|z| + a) 2p ≤ C 6 (p) a 2p-1/2 V p p , a > 0.As in [6, Proof of Theorem 3.3], we multiply (2.11) through by (1 + a) 2ε , ε > 0, to obtainz∈σ d (H) d p (z, I) a 2p-3/2+ε (|z| + a) 2p (1 + a) 2ε ≤ C 6 (p) V p p a 1-ε (1 + a) 2ε , a > 0,
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