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Abstract: Deep learning-based methods have reached state of the art performances, relying on a large
quantity of available data and computational power. Such methods still remain highly inappropriate
when facing a major open machine learning problem, which consists of learning incrementally new
classes and examples over time. Combining the outstanding performances of Deep Neural Networks
(DNNs) with the flexibility of incremental learning techniques is a promising venue of research.
In this contribution, we introduce Transfer Incremental Learning using Data Augmentation (TILDA).
TILDA is based on pre-trained DNNs as feature extractors, robust selection of feature vectors in
subspaces using a nearest-class-mean based technique, majority votes and data augmentation at both
the training and the prediction stages. Experiments on challenging vision datasets demonstrate the
ability of the proposed method for low complexity incremental learning, while achieving significantly
better accuracy than existing incremental counterparts.

Keywords: transfer learning; incremental learning; computer vision

1. Introduction

Humans have the ability to incrementally learn new pieces of information through time,
building over previously acquired knowledge. This process is, most often, nondestructive, and
results in what is often referred to as “curriculum learning” in the literature [1]. On the contrary, it has
been known for decades that neural networks’ learning procedures, despite the fact they originally
were proposed as a simplifying model for brain mechanisms, suffer from “catastrophic forgetting” [2,3],
or the fact that previously learned knowledge is destroyed when learning a new one.

In recent years, deep learning has become the golden standard in many supervised learning
challenges, especially in the field of computer vision [4–6]. Deep Learning relies on the use of a large
number of trainable parameters, that are carefully adjusted using stochastic gradient descent based
algorithms. Learning novel data using the same set of parameters inevitably leads to the loss of
the previously acquired knowledge. This is why many techniques have proposed learning distinct
deep learning systems over the course of time, letting another algorithm decide which one to use at
prediction stage [7,8]. Such methods can quickly result in very complex systems, that are likely to fail
in adversarial conditions [9].

Formally, an incremental learning approach would satisfy the following criteria [10]:

1. An ability to learn data using one (or a few) example(s) at a time, in any order, without requiring
to reconsider or store previous ones.
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2. An ability to sustain a classification accuracy comparable to state-of-art methods while traversing
successive incremental learning stages, thus avoiding catastrophic forgetting.

3. Low computation and memory footprints, during training and classifying phases, that should
remain sublinear in both of number of examples and their dimension.

Satisfying these three criteria while maintaining a competitive accuracy of the proposed systems
has remained a key open challenge so far.

A promising venue of research lies in “transfer learning” methods [7], which make use of
very efficient pre-trained deep neural networks previously obtained using huge datasets of signals
related to the tasks at hand. As a result, very high quality feature vectors can be used to feed the
incremental learning techniques, which can then achieve reasonable performances despite using
simplistic mechanisms [8].

In this paper, we introduce Transfer Increment Learning with Data Augmentation (TILDA),
an incremental learning method that provides (a) a robust selection of feature vectors in subspaces,
and (b) prediction procedures making use of data-augmentation. We stress the method using
challenging vision datasets, namely CIFAR10, CIFAR100 and ImageNet ILSVRC 2012. As a result the
proposed method allows us to:

• Perform incremental learning following the above-mentioned definition,
• Approach state-of-the-art performances on vision datasets,
• Reduce memory usage and computation time by several order of magnitude compared to other

incremental approaches.

2. Related Work

There has been an interest in incremental learning for a long time [11–13]. For example,
methods have been proposed [14–16] to address this problem with the aim at bounding memory
footprint (see criterion 3). These approaches perform learning one subset at a time using Support Vector
Machines (SVMs). More precisely, a new SVM is trained for each batch of new data, exploiting previous
support vectors. Since the latter are not conveying the full extent of previous data, the newly trained
SVM suffers from catastrophic forgetting [2,3], and thus violate criterion 2 defined in the introduction.

Another incremental learning algorithm, called “Learn++” was introduced [17,18]. This algorithm
adds weak one-vs-all classifiers to accommodate new classes. Therefore, it may result in an excessive
computational complexity and memory usage, disobeying criterion 3. It also needs training data for
all classes to occur repeatedly, which contradicts criterion 1.

Research showed also the possibility for the sequential learning of data [19]. However, this
requires to choose a correct ordering of the whole dataset, which does not fulfil criterion 1. In [20],
the authors proposed use of a pre-trained and unchanged DNN as a feature extractor followed by the
Nearest Class Mean classifier (NCM). NCM summarises each class using the average feature vector of
all examples observed for the class so far. Classification processes by assigning the class of the most
similar average vector using a metric that can be learned from data. Compared to other parametric
classifiers [20–22], NCM showed better performances in incremental learning scenarios. However,
NCM gives a lower accuracy than state-of-art methods even when it uses all the dataset, hence does
not fulfil criterion 2.

In [23], a quite different incremental method called Budget Restricted Incremental Learning (BRIL)
was proposed. BRIL combines “transfer learning” [7,8] with binary associative memories. A pre-trained
DNN is used as feature extractor, as mentioned in [20], while binary associative memories act as a
classifier. A product random sampling is performed as an intermediate between the pre-trained DNN
and the classifier. Despite being compliant with criteria 1 and 3, the accuracy remains significantly
lower than existing counterparts, which violates criterion 2.

Kuzborskij et al. [24] showed that new classes can be added to a multi-class classifier with
limited impact on accuracy when the classifiers can be retrained from at least a small amount of data
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belonging to all classes. Using this, in [10] the authors proposed an incremental learning method called
“Incremental Classifier and Representation Learning” (iCaRL), based on a trainable DNN feature
extractor, followed by a single classification layer. The classification process is inspired by NCM:
it computes the mean of feature vectors for each class, and assigns the label of the nearest prototype.
However, memory usage can easily increase, especially when the dataset is made of high resolution
images such as ImageNet, which may violate criterion 3. Moreover, the iCaRL method, when trained
on data streams containing only a few classes at a time, provides low accuracy as shown in [10],
hence iCaRL does not respect criterion 2. To reach good performances and a comparable accuracy to
state-of-art methods, iCaRL thus needs to be trained over batches of data containing a large part of the
dataset, which does not correspond to an incremental learning scenario and infringes 1.

In this paper, we introduce TILDA that builds upon previously proposed work, attempting
to cover all three criteria for efficient incremental learning. As in iCaRL and BRIL, TILDA uses a
pre-trained DNN as feature extractor. TILDA also uses an NCM-inspired classifier over the feature
vectors obtained from by the pre-trained DNN. Data augmentation is performed on both training
and classification datasets, aiming to improve accuracy. Consequently, there is no need to retrain
the system with previous data, nor to perform computationally intensive processing when new data
comes in. In addition, learning new data does not damage previously learned information.

3. Proposed Method

In this section, we describe the TILDA method. We start by giving a high level overview of the
process, and then we explain the details.

3.1. Overview of the Proposed Method

TILDA is built upon four main steps: (1) a pre-trained DNN to perform feature extraction,
(2) a technique to project features into low dimensional subspaces, (3) an assembly of NCM-inspired
Classifiers (NCMC) applied independently in each subspace (see Figure 1) and (4) a data augmentation
inspired scheme to increase accuracy of the classifying process. We develop these steps in the
following paragraphs.

The first step consists of using the internal layers of a pre-trained DNN [25] as a generic feature
extractor on which subsequent learning is performed. This process has become increasingly popular in
the past few years and is often referred to as “Transfer Learning” [26]. The aim is to transfer acquired
knowledge on a dataset to another related problem [8].

In the following step we project feature vectors into multiple low dimensional subspaces.
More precisely, we split feature vectors into P subvectors. For each class and each subspace, we produce
k anchor vectors conveying robust statistical properties about corresponding feature subvectors.

Then, in each subspace, anchor vectors are exploited to perform weak classification of the
input data. We use here a NCM inspired method. A majority vote is then performed to obtain
an aggregate decision.

Finally, we perform data augmentation on the input signals, thus obtaining multiple decisions
for each input data as well as more robust classifiers in each subspace. A second majority vote is
performed using these decisions to generate a global prediction.

3.2. Details of the Proposed Method

3.2.1. Pre-Trained Deep Neural Networks

To obtain features from an input signal, TILDA relies on using DNNs that are pre-trained on a
large number of examples. Consequently, using the pre-trained inner layers of the DNN acts as a
generic feature extractor [8,26,27]. As a matter of fact, inner layers of a deep DNN offer a good generic
description of an input image, even when it does not belong to the learning domain [26].
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Figure 1. Overview of the proposed method. Given an input signal s, we first use data augmentation
to generate a multiple version of the input signal (sr)1≤r≤R. Then we use a pre-trained DNN for
feature extraction and obtain the corresponding feature vectors (xr)1≤r≤R. Subsequently, we split
each feature vector xr into P equal parts

(
xr,p

)
1≤p≤P, and classify each part xr,p using a NCM-inspired

classifiers (NCMC) containing anchor vectors
(
Yc,p

)
1≤c≤C. We obtain a class for each part cr,p and do a

majority vote to get the class of xr. Finally, a second majority vote is done thanks to the obtained classes
(cr)1≤r≤R of all generated signals to get assigned class C̃ to the original input signal s.

Using “Transfer Learning” ideas, we are not interested in this work in the network’s architecture
details, as we simply use the appropriate layers to extract features from a given input.

In the remainder of this paper, we denote by sm the m-th input training signal and by xm its
corresponding feature vector, where 1 ≤ m ≤ M and M is the total number of training signals.

3.2.2. Projection to Low Dimensional Subspaces

Feature extraction allows us to consider the feature vector xm instead of the input signal sm.
Formally, let us denote xm

c the fact that feature vector xm belongs to class c. We split each xm
c

into P parts, denoted
(

xm
c,p

)
1≤p≤P

. For each class and each subspace, we create k anchor vectors

initialised with 0, each of them associated with a counter, also initialised by 0. Considering the p-th
subspace and the c-th class, we denote by Yc,p = [yc,p,1, ..., yc,p,k] the corresponding anchor vectors and
Nc,p = [nc,p,1, . . . , nc,p,k] their associated counters.

For each c and p, we aim at using the corresponding anchor vectors as centroids of a clustering of
{xm

c,p}. To this end, at each step of the training process, we ensure that each anchor vector is a centroid
of a clustering of already processed input subvectors, and the associated counter accounts for the
cardinality of the corresponding cluster.

Then, each time an input training vector is processed, we identify an anchor vector to be updated.
The update simply consists of computing a new anchor vector obtained as a barycenter of the old one
with weight given by its counter and the input subvector with weight 1, then incrementing the counter.
This procedure is detailed in Algorithm 1. Namely, rather than simply associating the new subvector
with the closest anchor vector, which would inevitably lead to unbalanced counters and thus poor
performance in prediction, we prefer to take into account counters while performing this association.
More precisely, we linearly penalize anchor vectors that are already made of the combination of many
subvectors. Note that when two or more anchor vectors gives the same results (distances multiplied
by counters), we choose uniformly, at random, one of these anchor vectors.
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Note that the learning process is independent on the order of streaming data, and is performed
one example at a time, thus enforcing criterion 1 of incremental learning methods described in
the introduction.

Algorithm 1 Incremental Learning of Anchor Subvectors
Input: streaming feature vector xm

c

for p := 1 to P do
for i := 1 to k do

di = ‖xp − yc,p,i‖2
Ri = dinc,p,i

end for
k̃ = arg min

i
Ri

yc,p,k̃ ← yc,p,k̃nc,p,k̃ + xm
c,p

nc,p,k̃ ← nc,p,k̃ + 1
yc,p,k̃ ← yc,p,k̃/nc,p,k̃

end for

3.2.3. Aggregation of Subspaces Weak Classifiers

At the prediction stage, consider an input signal s and the associated feature vector x. We split
x into the corresponding P parts and obtain

(
xp

)
1≤p≤P. We compute Euclidean distances between

each xp and all anchor subvectors yc,p,i for which the counter is not 0. Note that there are at most kC
such distances, where C is the number of classes seen so far. The class of the closest average anchor
subvector is considered as the decision for the p-th subspace. Finally, we apply a majority vote over
all subspaces to achieve an aggregate decision (see Algorithm 2). Note that more elaborate strategies
can result in higher accuracy but may require more computation during the learning phase as well as
memorisation of previously seen examples.

Algorithm 2 Predicting the Class of a Test Input Signal
Input: input signal s

Compute the feature vector x associated with s
Initialize the vote vector v as the 0 vector with dimension C
for p := 1 to P do

vp = arg min
c

[
min

i
‖xp − yc,p,i‖2

]
vvp = vvp + 1

end for
C̃ = arg max

c
(vc)

Output: class C̃ attributed to s

3.2.4. Data Augmentation

We use two data augmentation methods to improve the accuracy and robustness during training
and classification.

Data Augmentation during Training

To improve the accuracy without increasing memory usage, data augmentation is applied to the
training dataset. We generate multiple version of each training input signal, and we consider the
resulting dataset as an input to train the model.

Data Augmentation during Classification
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In addition, we propose to obtain multiple predictions for each input signal s using data
augmentation [28]. The idea is to generate multiple versions of the input signal s that we denote
(sr)1≤r≤R. We perform a prediction of the class associated with each sr independently, and then
perform a majority vote to obtain the final prediction.

3.2.5. Remarks

We point out multiple facts about the proposed method:

(a) The learning procedure performs learning one example at a time,
(b) The learning procedure is computationally light as it only requires performing of the order of

d operations where d is the dimension of feature vectors,
(c) The learning procedure has a small memory footprint, as it only stores averages of feature vectors,
(d) The learning procedure is such that adding new examples can only increase robustness of the

method, so that there is no catastrophic forgetting,
(e) During prediction stage, memory usage is of the order of kCd and thus is independent on the

number of examples and grows linearly with the number of classes,
(f) During prediction stage, computations are of the order of kCdR elementary operations.

From these facts we derive that TILDA is compliant with criteria 1 and 3 defined in the
introduction. In the next section, we devise a set of experiments to evaluate the classification accuracy
of the proposed method on challenging datasets (criterion 2).

4. Experiments

In this section we describe the protocol used to test the proposed method and compare its accuracy
and memory usage with other incremental learning methods.

4.1. Benchmark Protocol

We propose an incremental learning scenario in which we have streaming data containing
new classes or examples. We test and compare Budget Restricted Incremental Learning (BRIL),
Nearest Neighbour search (NN), Nearest Class Mean classifier (NCM), Learn++, incremental Classifier
and Representation Learning (iCaRL), and finally the proposed method (TILDA). Learn++ uses
Classification And Regression Trees (CART) as weak classifiers.

We evaluate the different methods using CIFAR10, CIFAR100 and ImageNet ILSVRC 2012 [29].
We also use 50 ImageNet classes which have not been used to train the CNN (denoted ImageNet50),
and which contains 900/100 training/test images per class. All methods take the same feature vectors
extracted from Inception V3 [6] as input and use the whole dataset for training, unless explicitly
mentioned. This requires to modify iCaRL method by replacing its CNN with a fully connected
network. In the following, and for the iCaRL method, we use a MultiLayer Perceptron (MLP) with one
hidden layer containing 1024 neurons, and output layer containing C neurons, where C is the number
of classes.

The non-incremental learning methods (NI) used are denoted by TMLP and TSVM. TMLP uses
transfer learning to compute feature extractors of input data through Inception V3, and then trains a
MLP over feature vectors, using the hyperparameters previously described for iCaRL. TSVM method
uses Inception V3 to get feature vectors as well, and uses them to train an SVM using Radial Basis
Function kernel.

Data augmentation used in TILDA generates a horizontal flip of the original image, and shifts the
pixels of the image by one pixel at a time (to the left, right, top, bottom, and on the four diagonals).
Thus we generate R = 10 images (eight generated by shifting pixels on the image, one generated by
horizontal flip and the original one).
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4.2. Results

As a preliminary experiment, we aim to show that replacing the last layers of Inception V3 by
the proposed method does not compromise the performances obtained on Imagenet ILSVRC 2012.
The 5-top accuracy is 94.4% when we use TILDA with p = 16 and k = 30, and 96.5% when we use
the last layers of Inception V3 to classify data. The accuracy obtained by TILDA approaches the one
obtained by Inception V3, thus our method does not bring a considerable decrease in performances.

The second experiment is performed on CIFAR10/100, ImageNet50 and ImageNet ILSVRC
2012, in which we show the contribution of data augmentation, NCM-inspired classification,
and subspace division on classification accuracy. Therefore, we define three methods: TILDA-DA
does not use data augmentation and classifies only the original image, TILDA-NCM disregards
NCM inspired classification and uses k feature vectors randomly chosen per class, and TILDA-P,
which is TILDA method with no splitting of vectors. Table 1 summarises the accuracy of TILDA,
TILDA-DA, TILDA-NCM and TILDA-P, when performing one-shot learning (learn one example at
a time). We notice that TILDA-DA, TILDA-NCM and TILDA-P reach lower accuracy than TILDA,
which confirms that the combination of data augmentation with NCM-inspired classification and
subspace division can achieve good performances.

Table 1. Accuracy on CIFAR10/100, ImageNet50 and ImageNet ILSVRC 2012. TILDA uses the
following parameter: P = 16 and k = 30 . We learn incrementally one example at a time.

TILDA TILDA-DA TILDA-NCM TILDA-P

CIFAR100 69.6% 65.3% 60.7% 67%
CIFAR10 88.7% 86.6% 84.11% 87%
ImageNet50 76% 74.4% 69.2% 72%
ILSVRC 2012 94.4% 91% 89.6% 90%

In the third experiment, we study the effect of both quantization parameters P and k on the
accuracy of TILDA (see Figure 2). This experiment demonstrates that TILDA reaches best performances
for P = 16. In the following, we perform experiments using TILDA with P = 16 and k = 30. Note that
in order to be fair in comparison with other techniques, we do not perform data-augmentation during
training or prediction in TILDA in the upcoming experiments.
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Figure 2. Evolution of the accuracy as a function of P and k for CIFAR10 (left), CIFAR100 (middle) and
ImageNet50 (right).

The fourth experiment stresses the effect of class-incremental learning. We adopt a
class-incremental scenario (CI), in which methods are trained over streaming data providing all
examples from one class simultaneously, one class at a time. We test and compare TILDA-DA, NCM,
Learn++ and iCaRL on CIFAR10/100 and ImageNet50 (c.f. Figure 3). Learn++ adds one weak classifier
each time a novel class is introduced, and iCaRL stores 30 feature vectors per class. We can see that
TILDA-DA outperforms the other methods in this setting.
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Figure 3. Evolution of the accuracy as a function of number of classes for CIFAR10 (left),
CIFAR100 (middle) and ImageNet50 (right).

The next experiment illustrates the behaviour of the accuracy when trying to obtain incremental
information from new examples of the same class. We adopt an example-incremental scenario (EI),
in which we train the method over streaming data providing new examples without introducing
new classes. We test and compare TILDA-DA, NCM, NN, Learn++ and BRIL on CIFAR10/100 and
ImageNet50. We divide these datasets into 10 equal size parts, each part containing 5000 examples
(500/50 example per class) for CIFAR10/100 and 4500 examples (90 per class) for ImageNet50,
and learn one part at a time. Learn++ adds one weak classifier each time a new part is learned.
Figure 4 shows that all methods handle example-incremental learning and improve their accuracy each
time they learn new information provided by new examples. TILDA-DA consistently obtains higher
accuracy than Learn++, NCM, NN and BRIL regardless of the quantity of provided data. Note that
Learn++ needs large number of examples to perform, and obtains a low accuracy when only few
examples are provided.
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Figure 4. Evolution of the accuracy as a function of number of learning examples for CIFAR10 (left),
CIFAR100 (middle) and ImageNet50 (right).

Table 2 presents the different incremental learning methods, obtained accuracies and memory
footprints. Learn++ uses either class-incremental scenario (CI) or example-incremental scenario (EI).
iCaRL performs learning process using CI. TILDA, NN, NCM, and BRIL use one-shot learning to
process one example at a time providing a novel class or additional information, thus they handle both
class-incremental and example-incremental at the same time. TILDA outperforms all other incremental
learning methods on both accuracy and memory usage.

The last evaluation we perform aims to compare TILDA with a non incremental learning method
such as TMLP and TSVM. To do this, we store and train these methods on the whole dataset.
The parameters used for TILDA are P = 16 and k = 30 for CIFAR10/100 and ImageNet50. Table 3
shows that TILDA reaches an accuracy comparable to state-of-art methods.

As shown by the different evaluation, the TILDA method can at any instant classify data with a
good accuracy (see Figures 3 and 4), outperforms other incremental learning methods (see Table 2),
and approaches state-of-art accuracy (see Table 3). Consequently, TILDA fulfils criterion 2.
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Table 2. Comparison of accuracy (Acc) and memory usage (M) relative to full dataset (corresponding
to 100%) for the different methods. Note that memory usage of Learn++ method represents the size
of weak classifiers, and for iCaRL represents the stored feature vectors and the size of the trainable
neural network.

Only CI Both CI and EI Only EI

Learn++ iCaRL TILDA TILDA-DA NN NCM BRIL Learn++

Acc (CIFAR100) 34% 30% 69.6% 65.3% 60.2% 58.25% 57% 34%

M (CIFAR100) 10.5% 8% 6% 6% 100% 0.2% 6% 6.8%

Acc (CIFAR10) 79.8% 41% 88.7% 86.6% 85% 83% 82% 79.5%

M (CIFAR10) 0.65% 2.7% 0.6% 0.6% 100% 0.02% 0.6% 0.65%

Acc (ImageNet50) 54.2% 64% 76% 74.4% 69.7% 67.2% 67.4% 50%

M (ImageNet50) 4.7% 5.6% 3.3% 3.3% 100% 0.11% 3.3% 3%

Table 3. Comparison of TILDA with non-incremental learning methods.

TILDA TILDA-DA TMLP TSVM

Acc (CIFAR100) 69.6% 65.16% 68.6% 67.6%
Acc (CIFAR10) 88.7% 86.6% 90% 89.2%
Acc (ImageNet50) 76% 74.4% 75.2% 75%

5. Conclusions

In this paper, we have introduced TILDA, a new incremental learning approach inspired by
recently proposed methods. TILDA relies on a pre-trained DNN to process data, a projection technique
that defines low-dimensional subspaces, NCM inspired classifiers, and data augmentation at both the
training and prediction phases. This addresses previous concerns from previous methods, specifically:
(a) iCaRL as TILDA reaches a good accuracy when the streamed data contains one class at a time,
(b) BRIL as TILDA provides a good accuracy comparable to state-of-art method, (c) NCM as TILDA
uses k anchor vectors instead of one and other methods to increase the accuracy, and (d) Learn++
as TILDA still performs well even if steam data does not contains examples of all classes each time.
Experiments on challenging datasets show that: (a) TILDA does not suffer from catastrophic forgetting,
(b) TILDA approaches state-of-art accuracy, (c) TILDA uses much less memory usage and gets the
same accuracy as nearest neighbour search or even better, (d) TILDA still gives a good accuracy even
in the case where we have only one class each time, and (e) finally, to our knowledge, TILDA is the
incremental method that reaches the best accuracy. This method is also promising for embedded
devices, since it is not necessary to train a DNN or compute extensive operations for learning.

In future work, we plan to explore further the methods for splitting feature vectors,
data augmentation strategies and a weighted majority vote to improve the accuracy. We also plan to
propose a hardware architecture of TILDA for incremental learning on chip.
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