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DISTRIBUTED LEARNING WITH SPARSE COMMUNICATIONS BY IDENTIFICATION

DMITRY GRISHCHENKO∗, FRANCK IUTZELER∗,
JÉRÔME MALICK�, AND MASSIH-REZA AMINI†

Abstract. In distributed optimization for large-scale learning, a major performance limitation comes from the communica-
tions between the di�erent entities. When computations are performed by workers on local data while a coordinator machine
coordinates their updates to minimize a global loss, we present an asynchronous optimization algorithm that e�ciently
reduces the communications between the coordinator and workers. This reduction comes from a random sparsi�cation of the
local updates. We show that this algorithm converges linearly in the strongly convex case and also identi�es optimal strongly
sparse solutions. We further exploit this identi�cation to propose an automatic dimension reduction, aptly sparsifying all
exchanges between coordinator and workers.

1. Introduction

1.1. Context and contributions. We consider a distributed learning setup where observations are scattered over
many machines. We assume that the machines, also referred to as workers, have a private subset of the examples,
perform their computations independently, and communicate with a coordinator machine. Standard learning ap-
proaches would consider that the entire training set is moved and stored in one single machine or in a datacenter. In
contrast, we consider the approach consisting in learning collaboratively a shared prediction model without moving
the training data, as for instance in federated learning (see e.g. the recent review articles [22] and [29]). In this context,
communications are typically the practical bottleneck of the learning process; see e.g. [28, 24, 34, 68, 37].

Recently, several approaches to mitigate this communication issue have been proposed, including di�erent forms
of gradient or model compression, which reduces representation size by quantization (reduce precision on elements)
or sparsi�cation (send only most signi�cant gradient entries); we refer e.g. to early works [55, 61] and more recent
developments [23, 59, 1, 4, 66] among many others.

In this paper, we address the question of reducing the size of communications with an approach complementary
to existing compression techniques. We propose to adaptively sparsify the model updates using its progressively
uncovered sparse structure. More precisely, we �rst propose an asynchronous distributed algorithm featuring a
sparsi�cation of upwards communications (worker-to-coordinator) by randomly zeroing the local update entries. This
randomized technique is adjustable to various levels of communication costs, machines’ computational powers, and
data distribution evenness. Also, an attractive and original property of this algorithm is the possibility to use a �xed
learning rate that does not depend neither on communication delays nor on the number of machines. However, this
random sparsi�cation technique provably works only for i.i.d. sparsi�cations with either almost-uniform distributions,
or well-conditioned problems. This makes aggressive sparsi�cation or adaptation to the sparsity structure of the
model impossible with such an algorithm.

To tackle this issue, we use a proximal reconditioning scheme wrapping up the previously mentioned algorithm as
an inner minimization method. This allows us to perform much more aggressive sparsi�cations. Furthermore, we
show that when using a sparsity-inducing regularizer, our reconditioned algorithm generates iterates that identify the
optimal sparsity pattern of the model in �nite time. This progressively uncovered pattern can be used to adaptively
update the sparsi�cation distribution of the inner method. All in all, this method only features sparse communications:
the downward communications (coordinator-to-worker) consists in sending the (eventually) sparse model, and the
the upwards communications (worker-to-coordinator) are adaptively and aggressively sparsi�ed.
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Finally, we show theoretically and numerically that our method has better performance than its non-sparsi�ed
version, in terms of suboptimality with respect to the quantity of information exchanged.

1.2. Related literature on sparsi�cation. A popular way of sparsifying models is to use proximal methods: they
consist in using a sparsity-inducing penalty 𝑟 (typically ℓ1 or ℓ1,2 norms, see e.g. [3]), and handling it with a proximity
operator de�ned as the ℝ𝑑 → ℝ𝑑 mapping

prox𝑟 (𝑥) = argmin
𝑦∈ℝ𝑑

{
𝑟 (𝑦) + 1

2 ‖𝑦 − 𝑥 ‖
2
}
. (1.1)

For many popular regularizations, this operator has an explicit formulation or can be e�ciently computed. For
example, the proximity operator of the ℓ1-norm (with parameter 𝜆) is given coordinate-wise1 as(

prox𝜆 ‖ · ‖1 (𝑢)
)
[ 𝑗 ]

=


0 if 𝑢 [ 𝑗 ] ∈ [−𝜆, 𝜆]
𝑢 [ 𝑗 ] − 𝜆 if 𝑢 [ 𝑗 ] > 𝜆
𝑢 [ 𝑗 ] + 𝜆 if 𝑢 [ 𝑗 ] < −𝜆

for all 𝑗, (1.2)

which has a clear sparsi�cation e�ect. This kind of proximal sparsi�cation was successfully used in machine learning
(see e.g. the seminal work [12]), for algorithmic algorithmic perspectives (see e.g. [25]) and in the case of synchronous
distributed systems (see e.g. [67, 56]).

Block coordinate descent algorithms, which knew a rebirth in the context of huge-scale learning [43, 51], can also
be interpreted as speci�c sparsi�cation of gradient updates. In the context of ℓ1-regularized problems, they can be
combined with screening techniques for e�ciently solving high-dimensional problems [39]. We also mention that
the idea of randomly selecting some entries has been already applied in distributed algorithms: random selection is
used to sparsify local gradients in the synchronous algorithm of [68], to sparsify the variance-reducing term in the
stochastic algorithm of [47], or to sparsify updates in �xed-point iterations [48].

Our proposed algorithm combines these three approaches (proximal methods, coordinate descent, and random
selection): the output of a proximal step is sent downwards (coordinator-to-workers) and random coordinate updates
are sent upwards (workers-to-coordinator); see details in Section 3. Beyond the original combination of known
ingredients, the speci�city of our work is the study of the adaptive sparsi�cation and its interplay with identi�cation
properties.

Identi�cation of optimal structure has been extensively studied in the context of constrained convex optimization
(e.g. [69]) and nonsmooth nonconvex optimization (e.g. [19]). Although many deterministic algorithms have been
proved to have identi�cation properties, the situation is less clear for randomized algorithms: in particular (proximal)
stochastic gradient methods are known to be unable to identify substructure (see e.g. [26]), while it has been recently
proved that (proximal) variance-reduced stochastic gradient methods do have such identi�cation properties [50, 13].
No identi�cation results have yet been reported for asynchronous distributed optimization algorithms.

For our algorithm, we use identi�cation to show that the iterates produced by the coordinator become sparse
when the regularization 𝑟 is a sparsity-inducing norm [3] and also leverage the sparsity pattern identi�ed by the
coordinator to adapt the sparsi�cation at the workers. Finally note that, though identi�cation has already been used
to accelerate algorithms (by e.g. a better tuning of parameters [30]), it is the �rst time that it is used for an automatic
exchange reduction and sparsi�cation.

2. Preliminaries: problem, notations, and recalls

We consider a distributed learning setup where 𝑛 observations are scattered over 𝑀 machines; each machine 𝑖
having a private subset S𝑖 of the examples. This leads to optimization problems of the form

min
𝑥 ∈ℝ𝑑

𝐹 (𝑥) =
𝑀∑︁
𝑖=1

𝛼𝑖 𝑓𝑖 (𝑥) + 𝑟 (𝑥), (P)

with 𝑓𝑖 (𝑥) = 1
|S𝑖 |

∑
𝑗 ∈S𝑖

𝑙 𝑗 (𝑥) the local empirical risk at machine 𝑖 (𝑙 𝑗 standing for the smooth loss function for example
𝑗 ). The 𝛼𝑖 are the proportion of observations locally stored in machine 𝑖 , hence:

𝛼𝑖 = |S𝑖 |/𝑛 and
𝑀∑︁
𝑖=1

𝛼𝑖 = 1.

1We denote by 𝑥 [ 𝑗 ] ∈ ℝ the 𝑗-th coordinate of vector 𝑥 .
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The function 𝑟 is a regularization term introducing a prior on the structure of the model 𝑥 , improving both its
interpretability and its stability. One of the �rst and most well-known instances of such a prior is the sparsity
sought in the parameters of least-squares regression with ℓ1-regularization 𝑟 = ‖·‖1), leading to the well-known
lasso problem [64]. The notation related to sparsity is the following: we denote the support of a vector 𝑥 ∈ ℝ𝑑 by
supp(𝑥) = {𝑖 ∈ {1, . . . , 𝑑} : 𝑥 [𝑖 ] ≠ 0}, and its size by |supp(𝑥) |. Oppositely, we de�ne the sparsity pattern of a vector
𝑥 ∈ ℝ𝑑 by the set null(𝑥) = {𝑖 ∈ {1, . . . , 𝑑} : 𝑥 [𝑖 ] = 0}, and denote its size by |null(𝑥) |. Note that these two index sets
are complementary; supp(𝑥) = null(𝑥).

We consider the problem (P) in a standard convex setting, with the function 𝑟 convex and lower-semicontinuous
(lsc), and all the functions (𝑓𝑖 ) 𝐿-smooth and 𝜇-strongly convex (with 𝜇 ≥ 0). We then de�ne the condition number of
the smooth part of (P) as 𝜅(P) = 𝜇/𝐿.

On asynchronous distributed optimization. The general computation framework is the following: one machine
gets the current model from the coordinator, improves it from its own data which produces a local model update;
only this update is sent to the coordinator, which computes a new shared model. There exist many methods for
solving problems of this type by iteratively sending small messages or model updates during the training process
(as opposed to sending raw data); see e.g. [70, 2, 48]. The literature on distributed optimization methods without
shared memory usually use on restrictive assumptions on the computing system delays, which in turn impact the
obtained convergence rates. Asynchronous coordinate descent methods which are able to handle unbounded delays
were recently proposed in [18, 62] but use decreasing stepsizes. In contrast, the asynchronous proximal-gradient
algorithm of [41, 40] allows the use of �xed stepsizes (the same as in the vanilla proximal gradient algorithm), and
their delay-independent analysis technique result an linear convergence in the strongly convex case. We present
below the notation and the asynchronous algorithm of [41], which is going to be the baseline for our developments.

Notation: time, delays, and epochs. As asynchronous distributed setup allows the algorithm to carry on computa-
tions without waiting for slower machines: the machines work on outdated versions of the main variable, and the
coordinator gathers the workers’ inputs on the �y to produce the updates. The following notation formalizes this
framework:

• For the coordinator. We de�ne the time 𝑘 , as the number of updates the coordinator has received from any of
the workers. At time 𝑘 , the coordinator receives some input from an agent, denoted by 𝑖𝑘 , updates its global
variable, and sends it to worker 𝑖𝑘 .
• For worker 𝑖 . At time 𝑘 , we introduce 𝑑𝑘𝑖 as the time elapsed since the last time the coordinator received
an update from worker 𝑖 . In particular, we have 𝑑𝑘𝑖𝑘 = 0. We also consider 𝐷𝑘

𝑖 as the elapsed time since
the penultimate update. This means that, at time 𝑘 , the last two moments when the worker 𝑖 updates the
coordinator are 𝑘 − 𝑑𝑘𝑖 and 𝑘 − 𝐷𝑘

𝑖 . .
We consider a totally asynchronous as per the classi�cation of the book [7, Chap. 6.1], meaning that all workers are
responsive. However the worker responses can have arbitrary delays. Following [40] we introduce the notion of
epochs, as the sequence of stopping times (𝑘𝑚) de�ned as 𝑘0 = 0 and

𝑘𝑚+1 = min
{
𝑘 : 𝑘 − 𝐷𝑘

𝑖 ≥ 𝑘𝑚 for all 𝑖
}
. (2.1)

This sequence fully captures the asynchronicity and allows us to analyze algorithms independently of the computing
system. All our convergence results involve this notion of epochs.

Asynchronous proximal-gradient and its rate for strongly convex objectives. As explained above, our baseline
is the asynchronous proximal-gradient algorithm of [41], called DAve-PG, which solves distributed problems of the
form (P) represented by the triplet ((𝛼𝑖 ), (𝑓𝑖 ), 𝑟 ) for (workers weights, workers functions, global regularization); see
Algorithm 2.1. This algorithm converges linearly at a rate that only depends on the function properties but neither on
the number of machines nor on the delays, directly embedded in the sequence (𝑘𝑚).

Theorem 2.1 (Th. 3.2 of [40]). Let the functions (𝑓𝑖 ) be 𝜇-strongly convex (𝜇 > 0) and 𝐿-smooth. Let 𝑟 be convex lsc.

Using 𝛾 ∈ (0, 2
𝜇+𝐿 ], DAve-PG converges linearly on the epoch sequence (𝑘𝑚). More precisely, for all 𝑘 ∈ [𝑘𝑚, 𝑘𝑚+1)


𝑥𝑘 − 𝑥★


2 ≤ 


𝑥𝑘 − 𝑥★


2 ≤ (1 − 𝛾𝜇)2𝑚 max

𝑖



𝑥0𝑖 − 𝑥★𝑖 

2 ,
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Algorithm 2.1 DAve-PG on ((𝛼𝑖 ), (𝑓𝑖 ), 𝑟 ) with stopping criterion C

Coordinator

Initialize 𝑥0
while C is not veri�ed do

ReceiveΔ𝑘 from agent 𝑖𝑘
𝑥𝑘 ← 𝑥𝑘−1 + 𝛼𝑖Δ𝑘

𝑥𝑘 ← prox𝛾𝑟 (𝑥𝑘 )
Send 𝑥𝑘 to agent 𝑖𝑘
𝑘 ← 𝑘 + 1

end

Worker 𝑖

Initialize 𝑥𝑖 = 𝑥+𝑖 = 0
while not interrupted do

Receive 𝑥 from the coordinator
𝑥+𝑖 ← 𝑥 − 𝛾∇𝑓𝑖 (𝑥)
Δ← 𝑥+𝑖 − 𝑥𝑖
Send Δ to the coordinator
𝑥𝑖 ← 𝑥+𝑖

end

with the shifted local solutions 𝑥★𝑖 = 𝑥★ − 𝛾𝑖∇𝑓𝑖 (𝑥★) and 𝑥★ =
∑
𝛼𝑖𝑥

★
𝑖 .

Furthermore, using the maximal stepsize 𝛾 = 2
𝜇+𝐿 , we obtain for all 𝑘 ∈ [𝑘𝑚, 𝑘𝑚+1)


𝑥𝑘 − 𝑥★


2 ≤ ( 1 − 𝜅(P)

1 + 𝜅(P)

)2𝑚
max
𝑖



𝑥0𝑖 − 𝑥★𝑖 

2 .
In this result, the stepsize 𝛾 can be taken in the usual range for (proximal) gradient descent (in contrast with

existing asynchronous algorithms, even for the works with the most realistic assumptions; see e.g. [2, 35, 62] and
references therein).

3. Sparsification of upward communications

In this section, we present a �rst distributed algorithm for solving (P) with sparse workers-to-coordinator commu-
nications.

3.1. Random sparsi�cation of local updates. In the proposed method, the coordinator machine asynchronously
gathers sparsi�ed delayed updates from workers and sends back the global variable. More speci�cally, each worker
independently compute a gradient step on its local loss for a randomly drawn subset of coordinates only. The
coordinator machine keeps track of the weighted average of the most recent worker outputs, computes the proximity
operator of the regularizer at this average point, and sends this result back to the updating worker 𝑖𝑘 . At iteration 𝑘 ,
the random subset of entries that worker 𝑖𝑘 updates is denoted by S𝑘 (in bold, emphasizing that it is the only random
variable in the algorithm). The update writes

𝑥𝑘
𝑖 [ 𝑗 ] =


(
𝑥𝑘−𝐷

𝑘
𝑖 − 𝛾∇𝑓𝑖 (𝑥𝑘−𝐷

𝑘
𝑖 )

)
[ 𝑗 ]

if
���� 𝑖 = 𝑖𝑘𝑗 ∈ S𝑘−𝐷𝑘

𝑖

𝑥𝑘−1
𝑖 [ 𝑗 ] otherwise

𝑥𝑘 = prox𝛾𝑟
(
𝑥𝑘

)
with 𝑥𝑘 =

𝑀∑︁
𝑖=1

𝛼𝑖𝑥
𝑘
𝑖 ,

With this sparsi�cation, the local updates correspond to a random block coordinate descent step for the workers.
However, this algorithm does not boil down to an asynchronous stochastic block-coordinate descent algorithm such as
[35, 62, 48, 51], since our method maintains a variable, 𝑥𝑘 , aggregating asynchronously all the workers’ contributions.

Assumption 1 (On the random sparsi�cation). The sparsity selectors (S𝑘 ) are independent and identically distributed
random variables. We select a coordinate in S𝑘 as follows:

ℙ[ 𝑗 ∈ S𝑘 ] = 𝑝 𝑗 > 0 for all 𝑗 ∈ {1, . . . , 𝑑},

with 𝑝 = (𝑝1, . . . , 𝑝𝑑 ) ∈ (0, 1]𝑑 . We denote 𝑝max = max𝑖 𝑝𝑖 and 𝑝min = min𝑖 𝑝𝑖 .

The selectors (S𝑘 ) being the only random variables of the algorithm, it is natural to de�ne the �ltration F𝑘 =

𝜎 ({Sℓ }ℓ<𝑘 ) so that all variables at time 𝑘 (𝑥𝑘𝑖 , 𝑥𝑘 , 𝑥𝑘 , 𝑑𝑘𝑖 , 𝐷𝑘
𝑖 ) are F𝑘 -measurable but S𝑘 is not.
4



3.2. Distributed implementation. The algorithm introduced in the previous section can be naturally distributed.
We formalize this in Algorithm 3.1, that we call Spy. Similarly to DAve-PG, this method is generic in the sense that
none of its ingredients, including the stepsize choice, depend on the computing system. It also shares the feature that
although each coordinator update involves only one agent (and thus part of the data), all the data is always implicitly
involved in the coordinator variable; which allows the algorithm to cope with the heterogeneity of the computing
system (data distribution, agents delays). Its presentation uses the following notation: for a vector of 𝑥 ∈ ℝ𝑑 and
a subset 𝑆 of {1, . . . , 𝑑}, [𝑥]𝑆 denotes the sparse size-𝑑 vector where 𝑆 is the set of non-null entries, for which they
match those of 𝑥 , i.e. ( [𝑥]𝑆 ) [𝑖 ] = 𝑥 [𝑖 ] if 𝑖 ∈ 𝑆 and 0 otherwise.

Algorithm 3.1 Spy on ((𝛼𝑖 ), (𝑓𝑖 ), 𝑟 ; 𝑝) with stopping criterion C

Coordinator

Initialize 𝑥0
while test C not veri�ed do

Receive [Δ𝑘 ]
S
𝑘−𝐷𝑘

𝑖𝑘
from agent 𝑖𝑘

𝑥𝑘 ← 𝑥𝑘−1 + 𝛼𝑖 [Δ𝑘 ]
S
𝑘−𝐷𝑘

𝑖𝑘

𝑥𝑘 ← prox𝛾𝑟 (𝑥𝑘 )
Draw sparsity S𝑘 with prob. 𝑝
Send 𝑥𝑘 , S𝑘 to agent 𝑖𝑘
𝑘 ← 𝑘 + 1

end

Worker 𝑖

Initialize 𝑥𝑖 = 𝑥+𝑖 = 0
while not interrupted do

Receive 𝑥 and S from the coordinator
[𝑥+𝑖 ]S ← [𝑥 − 𝛾∇𝑓𝑖 (𝑥)]S
Δ← 𝑥+𝑖 − 𝑥𝑖
Send [Δ]S to the coordinator
[𝑥𝑖 ]S ← [𝑥+𝑖 ]S

end

The communications per iteration are (i) a blocking send/receive from a worker to the coordinator (in blue) of size
|S|, and (ii) a blocking send/receive from the coordinator to the last updating worker (in red) of the current iterate.
The upward communication is thus made sparse by the algorithm and the downward communication cost depends on
the structure of 𝑥𝑘 , which is the output of a proximal operator on 𝑟 . In the case of ℓ1-regularization, 𝑥𝑘 will become
sparse after some iterations, leading to a two-way sparse algorithm; we will be discussed in Section 5.1.

3.3. Convergence Analysis. We study the convergence properties of Spy under standard assumptions on (P) and
no apriori assumption on the computing system or on data distribution. We emphasize here that we do not put
assumptions on the delays; for instance they do not to need to be bounded or independent of the previous selectors
(S𝑘 ). Let us also notice that the local iterates (𝑥𝑖 ) do not converge to a minimizer of the individual functions (𝑓𝑖 ) but
rather to local shifts of the solution 𝑥★ of (P) (unique from the strong convexity assumption).

Theorem 3.1 (Reaches and Limits of Sparsi�cation). Let the functions (𝑓𝑖 ) be 𝜇-strongly convex (𝜇 > 0) and 𝐿-
smooth. Let 𝑟 be convex lsc. Take 𝛾 ∈ (0, 2

𝜇+𝐿 ]. Suppose that Assumption 1 holds for the probability vector 𝑝 , and that
𝑝min
𝑝max
≥ (1 − 𝛾𝜇)2 .

Then, Spy on ((𝛼𝑖 ), (𝑓𝑖 ), 𝑟 ; 𝑝) veri�es for all 𝑘 ∈ [𝑘𝑚, 𝑘𝑚+1)

𝔼




𝑥𝑘 − 𝑥★


2 ≤ (
𝑝max (1 − 𝛾𝜇)2 + 1 − 𝑝min

)𝑚 max
𝑖



𝑥0𝑖 − 𝑥★𝑖 

2 , (3.2)

with the shifted local solutions 𝑥★𝑖 = 𝑥★ − 𝛾𝑖∇𝑓𝑖 (𝑥★).
Furthermore, using the maximal stepsize 𝛾 = 2

𝜇+𝐿 , we obtain for all 𝑘 ∈ [𝑘𝑚, 𝑘𝑚+1)

𝔼




𝑥𝑘 − 𝑥★


2 ≤ (
𝑝max

( 1 − 𝜅(P)
1 + 𝜅(P)

)2
+ 1 − 𝑝min

)𝑚
max
𝑖



𝑥0𝑖 − 𝑥★𝑖 

2 . (3.3)

Proof. The co-existence of both deterministic and stochastic delays in the algorithm calls for an original mathematical
analysis using the notation introduced in Section 2, and in particular the notion of epoch sequence (2.1). This is
detailed in Supplement SM2. �
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This result establishes bounds that lead to convergence whenever the selection probabilities are well chosen. First,
if all probabilities are equal to 1, the algorithm boils down to DAve-PG and Theorem 3.1 coincides with Theorem 2.1.
In more general cases, this result has to be interpreted more carefully as developed in the following section.

3.4. On the sparsi�cation choice. In the totally distributed setting, all machines are responsive, which means with
our notation:𝑚 →∞ when 𝑘 →∞. Then, Theorem 3.1 gives linear convergence of the mean squared error in terms
of epochs if

𝑝min
𝑝max

> (1 − 𝛾𝜇)2
𝛾= 2

𝜇+𝐿
≥

( 1 − 𝜅(P)
1 + 𝜅(P)

)2
(3.4)

Thus the behavior of the algorithm depends on if the selection is performed uniformly (and thus structure-blind) or
non-uniformly (to encompass some prior information). We distinguish these two cases below.

Ine�ciency of uniform sparsi�cation. If the selection is uniform, i.e. 𝑝𝑖 = 𝜋 ∈ (0, 1] for all 𝑖 , we directly get
convergence from (3.2) as the mean squared error vanishes linearly in terms of epochs with a rate (1 − 𝜋𝛾𝜇 (2 − 𝛾𝜇)),
degraded compared to the (1 − 𝛾𝜇) rate of DAve-PG. Unfortunately, such uniform selection also results in poor
performance in many cases (as illustrated in Supplement SM1). Thus, when Spy is used with uniform sampling, it has
a degraded performance compared to (non-sparsi�ed) DAve-PG, both in theory and in practice. Adaptivity is key for
sparsifying e�ciently.

E�ciency of adaptive sparsi�cation. There exist several adaptation strategies for selecting coordinates. In the
context of coordinate descent, we can mention greedy coordinates selection [11, 45], other heuristics [36, 15], and
importance sampling [71, 52], that can sometimes be used in practice. The idea of adaptive coordinate descent methods
based on the coordinate-wise Lipschitz constants and current values of the gradient is proposed in [49, 42, 60]. The
idea of adaptively using the iterates structure enforced by a non-smooth regularizer was recently developed in [16].

We use here the technique of [16] specialized for the coordinate selection: when some coordinates get null, there is
some hope that they will remain null for subsequent iterations, and it is thus natural to update preferentially the
non-null coordinates. Mathematically, this means that we select coordinates in the active support as follows:

ℙ[ 𝑗 ∈ S𝑘 ] =
{
𝜋 if 𝑥𝑘[ 𝑗 ] = 0
1 if 𝑥𝑘[ 𝑗 ] ≠ 0 for all 𝑗 ∈ {1, . . . , 𝑑} and 𝜋 ∈ (0, 1] .

In words, we communicate the coordinates in the support of the coordinator point 𝑥𝑘 , together with coordinates
outside the support, randomly selected with some exploration probability 𝜋 .

This adaptive sampling often shows tremendous gains in practice compared to uniform sampling; however, it may
not converge in some situations. This is due to two technical points related to Theorem 3.1:

• A good conditioning is necessary to allow for a small 𝜋 = 𝑝min (with 𝑝max = 1). More precisely, from (3.4), we
get that the minimal conditioning to allow for a probability 𝜋 of selection outside the support is:

𝜅(P) > 𝜅min := 1 −
√
𝜋

1 +
√
𝜋
. (3.5)

Since we aim at taking 𝜋 small to communicate little, this is a stringent condition.
• The sampling is not i.i.d. anymore since the probabilities depend on the points generated by the algorithm.
This di�culty could be tackledwith a small algorithmic �x that unfortunately degrades practical performances
and a re�ned analysis (see the discussion to Supplement SM3), but the upcoming methods directly address
this point.

While these two issues appear separate, they can both be overcome by iteratively reconditioning the problem.

4. Proximal reconditioning for adaptive sparsification

The learning problem (P) should be well-conditioned to safely apply the random sparsi�cation technique of Spy
with reasonable exploration probability 𝜋 . The idea is then not to apply Spy directly to (P) but rather to a modi�ed
problem for which we control the condition number and the sparsi�cation potential.

We thus propose to recondition the learning problem (P) using the standard proximal algorithm (see e.g. [54]),
as described in Section 4.1. We present in Section 4.2 our algorithmic choices and the resulting algorithm, called
Reconditioned–Spy.
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4.1. Proximal reconditioning. This type of methods consist in iteratively regularizing the problem with the squared
distance to some center point. We call outer iteration the process of (approximatively) solving such a reconditioned
problem. At outer loop2 ℓ , we de�ne the worker 𝑖’s regularized function as

ℎ𝑖,ℓ = 𝑓𝑖 +
𝜌

2 ‖ · −𝑥ℓ ‖
2
2

where 𝜌 is the regularization factor and 𝑥ℓ the center point at outer loop ℓ . The reconditioned problem for loop ℓ then
writes

min
𝑥 ∈ℝ𝑑

𝐻ℓ (𝑥) :=
𝑀∑︁
𝑖=1

𝛼𝑖

(
𝑓𝑖 (𝑥) +

𝜌

2 ‖𝑥 − 𝑥ℓ ‖
2
2

)
︸                     ︷︷                     ︸

ℎ𝑖,ℓ (𝑥)

+𝑟 (𝑥) . (Rℓ )

For 𝜇-strongly convex 𝐿-smooth (𝑓𝑖 ), the regularized functions ℎ𝑖,ℓ are (𝜇 + 𝜌)-strongly convex and (𝐿 + 𝜌)-smooth.
Hence, the condition number of the smooth part of (Rℓ ) writes

𝜅(Rℓ ) =
𝜇 + 𝜌
𝐿 + 𝜌

(
≥ 𝜅(P) =

𝜇

𝐿

)
.

The optimal solution of (Rℓ ) is exactly the proximal point (1.1) of 𝐹/𝜌 at 𝑥ℓ

prox𝐹/𝜌 (𝑥ℓ ) = argmin
𝑥 ∈ℝ𝑑

𝑀∑︁
𝑖=1

𝛼𝑖 𝑓𝑖 (𝑥) + 𝑟 (𝑥)︸                ︷︷                ︸
=𝐹 (𝑥)

+𝜌2 ‖𝑥 − 𝑥ℓ ‖
2
2 .

Thus, for solving (P), each outer iteration consists in an (inexact) proximal step:
𝑥ℓ+1 ≈ prox𝐹/𝜌 (𝑥ℓ ) (4.1)

The proximal point algorithm is a standard regularization approach in optimization. It was presented in [6, Chap. 5]
to recondition a convex quadratic objective, for which computing the proximal operator (1.1) is easy (it is the unique
solution of a linear system, well-conditioned by construction). The general proximal algorithm was then popularized
by the seminal works [38, 54]. The study of these algorithms, and especially their inexact variants, has attracted a lot
of attention; see e.g. [17, 57, 14, 32, 33].

Practical implementations of such methods require an inner algorithm to compute the proximal point (we will use
Spy here) and a rule to stop this algorithm. Several papers consider the key question of inner stopping criteria for
inexact proximal methods in various contexts; see e.g. [14] in smooth optimization, [27] in nonsmooth optimization,
and [58] in operator theory. In this paper, we use the standard criteria, following [54], which gave the �rst inexact
rules for the proximal point algorithm in the context of monotone operators.

4.2. Reconditioned–Spy. Wepresent ourmain algorithm, which consists in applying the inexact proximal scheme (4.1)
with Spy as inner algorithm to solve (P).

At the outer iteration ℓ , we run Spy for solving (Rℓ ) with i.i.d. non-uniform sparsi�cation probabilities given, for a
�xed 0 < 𝑐 ≤ 𝑑 , by

𝑝 𝑗,ℓ =

 𝜋ℓ := min
(

𝑐

|null(𝑥ℓ ) |
; 1

)
if (𝑥ℓ ) [ 𝑗 ] = 0

1 if (𝑥ℓ ) [ 𝑗 ] ≠ 0
for all 𝑗 ∈ {1, . . . , 𝑑}. (4.2)

The sparsi�cation level over outer iterations is then bounded from below by

𝜋 := 𝑐

𝑑
≤ inf

ℓ
𝜋ℓ .

We now choose the reconditioning parameter 𝜌 from 𝜋 so that Spy converges linearly to the solution of the
reconditioned problem (Rℓ ). We know, from Section 3.4, that this is the case as soon as

𝜅(Rℓ ) =
𝜇 + 𝜌
𝐿 + 𝜌 > 𝜅min ⇐⇒ 𝜌 >

𝜅min𝐿 − 𝜇
1 − 𝜅min

with 𝜅min =
1 −
√
𝜋

1 +
√
𝜋

as in (3.5).

2The quantities related to outer loop ℓ are denoted with a subscript ℓ .
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To properly handle the strict inequality above, we propose to choose a conditioning which guarantees a (1 − 𝛼) rate
for Spy on the reconditioned problems uniformly over ℓ . Mathematically, for 0 < 𝛼 < 𝜋 (for instance 𝛼 = 𝜋/2), we
choose

𝜌 =
𝜅(Rℓ )𝐿 − 𝜇
1 − 𝜅(Rℓ )

with 𝜅(Rℓ ) =
1 −
√
𝜋 − 𝛼

1 +
√
𝜋 − 𝛼

. (4.3)

Then, the contraction factor of Spy with the maximal stepsize (see (3.3)) for the reconditioned problem (Rℓ ) becomes(( 1 − 𝜅(Rℓ )

1 + 𝜅(Rℓ )

)2
+ 1 − 𝜋ℓ

)
= (𝜋 − 𝛼 + 1 − 𝜋ℓ ) = (1 − 𝛼 − (𝜋ℓ − 𝜋))︸                 ︷︷                 ︸

=:(1−𝛼ℓ )

≤ 1 − 𝛼 < 1. (4.4)

This means that Spy is linearly convergent on the reconditioned problem (Rℓ ). Thus, it can safely be used as an inner
method in the inexact proximal algorithm (4.1) to solve the original problem (P).

The remaining part is to the choice of a stopping criterion for the inner loop. We propose to use three di�erent
criteria: epoch budget, absolute accuracy, and relative accuracy (called C1,C2, and C3 respectively). Stopping criteria
based on accuracy are usually more stringent to enforce (see e.g. [32, Sec. 2.3] and references therein), however they
may bring signi�cant performance improvement when the instantaneous rate is better than the theoretical one.

The resulting algorithm, called Reconditioned–Spy, is presented as Algorithm 4.1. Under any of the three stopping
criteria, we recover the same convergence result, formalized in the next theorem.

Algorithm 4.1 Reconditioned–Spy on ((𝛼𝑖 ), (𝑓𝑖 ), 𝑟 )
Initialize 𝑥1, 𝑑 ≥ 𝑐 > 0, and 𝛿 ∈ (0, 1).

Set 𝜌 =
𝜅𝐿 − 𝜇
1 − 𝜅 and 𝛾 ∈

(
0, 2
𝜇 + 𝐿 + 2𝜌

]
with 𝜅 =

1 −
√
𝜋 − 𝛼

1 +
√
𝜋 − 𝛼

;𝜋 =
𝑐

𝑑
and 𝛼 =

𝑐

2𝑑 . (4.5)

while the desired accuracy is not achieved do

Observe the support of 𝑥ℓ , compute 𝑝ℓ as

𝑝 𝑗,ℓ =

{
𝜋ℓ := min

(
𝑐

|null(𝑥ℓ ) | ; 1
)

if [𝑥ℓ ] 𝑗 = 0
1 if [𝑥ℓ ] 𝑗 ≠ 0

for all 𝑗 ∈ {1, . . . , 𝑑}. (4.6)

Compute an approximate solution of the reconditioned problem

𝑥ℓ+1 ≈ prox𝐹/𝜌 (𝑥ℓ ) = argmin
𝑥 ∈ℝ𝑑


𝑀∑︁
𝑖=1

𝛼𝑖

(
𝑓𝑖 (𝑥) +

𝜌

2 ‖𝑥 − 𝑥ℓ ‖
2
2

)
︸                     ︷︷                     ︸

ℎ𝑖,ℓ (𝑥)

+𝑟 (𝑥)


(4.7)

with Spy on
(
(𝛼𝑖 ), (ℎ𝑖,ℓ ), 𝑟 ; 𝑝ℓ

)
with 𝑥ℓ as initial point and with the stopping criterion:

C1 (epoch budget): Run Spy with the maximal stepsize for

Mℓ =


(1 + 𝛿) log(ℓ)

log
(

1
1−𝛼+𝜋−𝜋ℓ

) + log
(

2𝜇+𝜌
(1−𝛿)𝜌

)
log

(
1

1−𝛼+𝜋−𝜋ℓ

)  epochs.

or C2 (absolute accuracy): Run Spy until it �nds 𝑥ℓ+1 such that

‖𝑥ℓ+1 − prox𝐹/𝜌 (𝑥ℓ )‖2 ≤
(1 − 𝛿)𝜌
(2𝜇 + 𝜌)ℓ 1+𝛿

‖𝑥ℓ − prox𝐹/𝜌 (𝑥ℓ )‖2.

or C3 (relative accuracy): Run Spy until it �nds 𝑥ℓ+1 such that

‖𝑥ℓ+1 − prox𝐹/𝜌 (𝑥ℓ )‖2 ≤
𝜌

4(2𝜇 + 𝜌)ℓ2+2𝛿
‖𝑥ℓ+1 − 𝑥ℓ ‖2 .

end
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Theorem 4.1. Let the functions (𝑓𝑖 ) be 𝜇-strongly convex (𝜇 ≥ 0) and 𝐿-smooth. Let 𝑟 be convex lsc. If 𝜇 = 0 and C3 is
used, we furthermore require that 𝐹 has a unique minimizer 𝑥★ and that lim inf𝑥→𝑥★ (𝐹 (𝑥) − 𝐹 (𝑥★))/‖𝑥 − 𝑥★‖2 > 0.

Then, the sequence generated by Reconditioned–Spy on ((𝛼𝑖 ), (𝑓𝑖 ), 𝑟 ) with stopping criterion C1,C2, or C3 converges
almost surely to a minimizer of 𝐹 . Furthermore, if 𝜇 > 0, then we have

3

𝔼

[

𝑥ℓ+1 − 𝑥★

2] = Õ
((
1 − 𝜇

𝜇 + 𝜌/2

) ℓ )
for criterion C1;



𝑥ℓ+1 − 𝑥★

2 = Õ
((
1 − 𝜇

𝜇 + 𝜌/2

) ℓ )
for criteria C2,C3.

Proof. Even though the �nal result is similar for the three cases, the proof techniques are rather di�erent. We thus
present them separated in Supplement SM4. �

This result thus establishes that Reconditioned–Spy converges linearly to a solution of (P). This means that
Reconditioned–Spy has qualitatively the same behavior as DAve-PG, with the additional feature of having sparse
local updates and therefore sparse upward communications. In other words, our algorithm is similar to the baseline
in terms of iterations, but it is expected to be faster in terms of communications (more precisely in terms of quantity
of information exchanged between coordinator and workers) which would result in a wallclock gain in practice, as
shown in Section 6. Before this, we further investigate in the next section the theoretical gain of our sparsi�cation
technique in the case of sparse optimal solutions.
Remark 1 (Acceleration (with respect to iterations)). In this paper, we are interested in sparsifying communications
and we primarily consider the reconditioning aspect of proximal methods, leaving aside other aspects including
acceleration. As proposed in [17], the iterations of the inexact proximal algorithm can indeed be accelerated using
Nesterov’s method [44]. The recent works [32, 33] also propose accelerated and quasi-Newton variants of the inexact
proximal point algorithm as a meta-algorithm to improve the convergence of optimization methods (driven by
machine learning applications [31]). Here, we investigate the complexity in terms of communications rather than
iterations, so we do not insist much on these accelerated variants. The developments of this section could still be
extended to accelerated proximal algorithm, following the meta-algorithm of [32]. We brie�y study this direction in
Supplement SM5. In particular, Theorem SM5.1 shows a gain of the square root on the rate for the accelerated version
compared to Theorem 4.1, as usually observed with accelerated methods.

5. Identification for two-way sparse communications

In the previous sections, we present an adaptive sparsi�cation of upward communications (worker-to-coordinator)
and show that the resulting algorithm converges after proximal reconditioning. By construction, the downward
communications (coordinator-to-workers) depends on the structure of 𝑥𝑘 (the coordinator point of the inner method),
which is the output of a proximal operator on 𝑟 . In the case of ℓ1-regularization or other sparsity-promoting regular-
ization [3], we show in Section 5.1 that the 𝑥𝑘 eventually become sparse after some iterations. This automatically
makes our algorithm a two-way sparse algorithm. Finally, in Section 5.2, we take a closer look to the complexity of
our algorithm with respect to the communication cost.

For this study, we make an additional assumption that our problem has a strongly sparse solution. This assumption
is divided into two parts: i) the regularizer 𝑟 should induce a stable support at the optimum (through its proximity
operator); and ii) this optimal support supp(𝑥★) should be small with respect to the ambient dimension.
Assumption 2 (Strongly sparse optimal solution). Problem (P) is 𝜇-strongly convex (𝜇 > 0) and its solution 𝑥★ veri�es

i) ∃ 𝜀 > 0 such that supp(𝑥★) = supp
(
prox𝑟

(
𝑥★ −∑𝑀

𝑖=1 𝛼𝑖∇𝑓𝑖 (𝑥★) + e
))
∀e ∈ B(0, 𝜀);

ii) the size 𝑠★ = |supp(𝑥★) | of the optimal support is small compared to 𝑑 : 𝑠★ � 𝑑 .
While part ii) is rather explicit, part i) is quite abstract. For instance, when 𝑟 = 𝜆‖ · ‖1, using the explicit form of

the proximity operator (1.2), part i) directly translates to
𝑀∑︁
𝑖=1

𝛼𝑖∇[ 𝑗 ] 𝑓𝑖 (𝑥★) ∈ (−𝜆, 𝜆) for all 𝑗 ∈ null(𝑥★).

3We use the standard notation: 𝑎ℓ = Õ ( (1 − 𝑟 )ℓ ) denotes that there exists𝐶, 𝑝 such that 𝑎ℓ ≤ 𝐶ℓ𝑝 (1 − 𝑟 )ℓ .
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This condition matches the nondegeneracy condition for sparse solutions commonly admitted for exact recovery
in machine learning; see e.g. [46, 63]. The interest of the general assumption i) is that it accounts for a variety of
sparsity-inducing regularizations, including weighted ℓ1-norms, “group” ℓ1/ℓ𝑞-norms; see [3, Sec. 3.3].

5.1. Identi�cation and consequences. The iterates of proximal algorithms usually identify the optimal structure;
see e.g [65] or [21]. In the case of ℓ1-regularization, this means that proximal algorithms produce iterates that eventually
have the same support as the optimal solution of (P). Unfortunately, randomness may break this identi�cation. For
instance, it is well-known that for the proximal stochastic gradient descent, the sparse structure may not be identi�ed
with probability one; see e.g. [26] and a counter-example in [50]. We �rst establish that our algorithm4 does identify
the optimal support under the non-degeneracy assumption 2.

Theorem 5.1 (Identi�cation). Let the functions (𝑓𝑖 ) be 𝜇-strongly convex and 𝐿-smooth. Let 𝑟 be convex lsc. Under

Assumption 2, the outer and inner iterates of Reconditioned–Spy identify the optimal structure in �nite time: with

probability one there exists a �nite time Λ < ∞ such that

supp(𝑥𝑘ℓ ) = supp(𝑥ℓ ) = supp(𝑥★) for any 𝑘 and all ℓ ≥ Λ

where 𝑥𝑘ℓ denotes the 𝑘-th iterate produced by Spy during the ℓ-th outer loop.

Proof. We proved in the previous section that Reconditioned–Spy converges almost surely, but it is not enough to
guarantee identi�cation in general5. Here it is the fact that the inner algorithm Spy features a proximity operator with a
non-vanishing stepsize that yields the following identi�cation property. This proof is detailed in Supplement SM6.1. �

This identi�cation has two consequences on communications in our distributed setting. First, identi�cation implies
that the variables communicated by the coordinator to the workers will eventually be sparse. Second, this sparsity is
also leveraged in the sparsi�cation strategies of Reconditioned–Spy where only the coordinates in (𝑥ℓ ) are randomly
zeroed. Thus, for sparsity inducing problems such as ℓ1-regularized learning problems, our distributed algorithm has,
structurally, two-way sparse communications.

Even better, once this identi�cation occurs, the rate of the inner algorithm Spy dramatically improves to match
the rate of its non-sparsi�ed version DAve-PG. To get this improved rate, a small additional property is needed on the
regularizer: 𝑟 has to be separable with respect to supp(𝑥★) i.e. 𝑟 (𝑥) = 𝑟1 ( [𝑥]supp(𝑥★) ) + 𝑟2 ( [𝑥]null(𝑥★) ) which holds
true for almost all sparsity inducing regularizations [3, Sec. 3.3].

Theorem 5.2 (Improved rate). Let the functions (𝑓𝑖 ) be 𝜇-strongly convex and 𝐿-smooth. Let 𝑟 be convex lsc, separable

with respect to supp(𝑥★). Under Assumption 2, the inner iterates of Reconditioned–Spy bene�t from an improved rate

after identi�cation. There is Λ < ∞ such that for all ℓ > Λ and 𝑘 ∈ [𝑘𝑚, 𝑘𝑚+1), using the maximal stepsize 𝛾 = 2
𝜇+𝐿+2𝜌 ,


𝑥𝑘ℓ − 𝑥★ℓ 


2 ≤ ( 1 − 𝜅(Rℓ )

1 + 𝜅(Rℓ )

)2𝑚 

𝑥ℓ − 𝑥★ℓ 

2 .
where 𝑥𝑘ℓ denotes the 𝑘-th iterate produced by Spy during the ℓ-th outer loop.

Proof. The proof is reported to Supplement SM6.2. �

Thus our algorithm eventually has the practical interest of having sparse two-way communication, at almost no
additional cost.

5.2. Communication complexity. We study in this section the asymptotic communication complexity of our
method in terms of number of coordinates (real numbers) exchanged between the coordinator and the workers. To do so,
we combine the number of outer iterations to reach an accuracy of 𝜀 with the asymptotic communication cost of the
inner iterations needed to reach the stopping criteria. Mathematically, we de�ne

C(𝜀) = (cup + cdown)𝐾MCL(𝜀) (5.1)

where

4Note that a similar identi�cation result holds for DAve-PG: in the same context, we have supp(𝑥𝑘 ) = supp(𝑥★) for 𝑘 ≥ 𝑘𝑚 and𝑚 larger
than some threshold; see Supplement SM6.1.

5Take 𝑑 = 1, 𝐹 (𝑥) = |𝑥 |, and 𝑥ℓ+1 = prox|·| (𝑥ℓ ) + 1/ℓ2. The minimum of 𝐹 is 0 but we have 𝑥ℓ = 1/(ℓ − 1)2 > 0 for all ℓ > 1.
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• cup (resp. cdown) is the (expected) number of coordinates communicated from the coordinator to the active
worker (resp. from the active worker to the coordinator) during one iteration and 𝐾 is the average number
of iterations per epoch;
• MC is the (expected) number of inner epochs to reach stopping criterion C;
• L(𝜀) is the number of outer loops to reach accuracy 𝜀.

Focusing on the �nal regime of the algorithm when identi�cation has taken place (as per Section 5.1), we get for
Reconditioned–Spy

cup = |supp(𝑥𝑘ℓ ) | = |supp(𝑥★) | = 𝑠★ and cdown = 𝑠★ + 𝑐
which leads to the following communication complexity for Reconditioned–Spy.

Theorem 5.3 (Communication complexity of Reconditioned–Spy). Let the functions (𝑓𝑖 ) be 𝜇-strongly convex and
𝐿-smooth (𝜇 > 0), 𝑟 be convex lsc, separable with respect to supp(𝑥★). Let Assumption 2 hold. If the parameter 𝑐 is of

the same order as 𝑠★ compared to 𝑑 (𝑐 ≈ 𝑠★ � 𝑑), then the communication complexity (5.1) of Reconditioned–Spy with
criteria C2 or C3 is:

C(𝜀) = 𝑂̃
(
𝐿 − 𝜇
𝜇

√
𝑑 𝑠★ max

{√︂
𝑐

𝑠★
;
√︂
𝑠★

𝑐

}
log

(
1
𝜀

))
.

Proof. The proof consists in evaluating the terms in (5.1), one by one, in the right regime. It is given in Supple-
ment SM6.3. �

In order to show the bene�t in terms of communications of the proposedmethod, we can compare this result with our
baseline DAve-PG. For DAve-PG, there is no inner loop soMC = 1 and Theorem 2.1 gives us L(𝜀) = O((𝜇+𝐿)/𝜇 log(1/𝜀)).
However, even if DAve-PG identi�es which implies that cup = 𝑠★ as previously, the cost of an upward communication
is cdown = 𝑑 since there is no sparsi�cation. This yields the following gain in communication complexity of our
algorithm over DAve-PG (1 meaning similar performances; the greater, the better):

𝑂̃

(
1 + 𝜅(P)
1 − 𝜅(P)

min
{√︂

𝑐

𝑠★
;
√︂
𝑠★

𝑐

}
𝑑 + 𝑠★
√
𝑑𝑠★

)
.

The gain shows a product of three terms. The �rst one is greater than 1 and depends on the conditioning; the second
one is in (0, 1] but should be not far from 1, provided that the �nal sparsity is not too poorly estimated. Finally, the
last term fully exhibits the merits of adaptive sparsi�cation with a term in 𝑑 + 𝑠★ for DAve-PG which is much greater
than the

√
𝑑𝑠★ for Reconditioned–Spy. This last term thus shows a nice dependence in the dimension of the problem

and optimal solution for the proposed method. This theoretical gain of Reconditioned–Spy compared to DAve-PG is
con�rmed in the next numerical illustrations.

6. Numerical illustrations

In this section, we illustrate the communication gain provided by adaptive sparsi�cation, on two classic ℓ1-
regularized empirical risk minimization problems.
Problems. We consider two types of problems: lasso with randomly generated data and ℓ1-regularized logistic
regression on popular datasets. We �rst consider a lasso problem

min
𝑥 ∈ℝ𝑑

‖𝐴𝑥 − 𝑏‖2 + 𝜆1‖𝑥 ‖1

with 𝑑 = 1000 features and an example set of size𝑚 = 500. We take 𝐴 randomly generated from the standard normal
distribution, 𝑏 = 𝐴𝑥0 + 𝑒 where 𝑥0 is a 99% sparse vector and 𝑒 is taken from the normal distribution with standard
deviation 0.01. We take 𝜆1 to reach an optimal solution of size |supp(𝑥★) | = 12 (i.e. 1.2% of 𝑑 = 1000).

We also examine the regularized logistic regression with elastic net

min
𝑥 ∈ℝ𝑑

1
𝑚

𝑚∑︁
𝑗=1

log(1+exp(−𝑦 𝑗𝑧>𝑗 𝑥)) + 𝜆1‖𝑥 ‖1+
𝜆2
2 ‖𝑥 ‖

2
2

on two standard datasets from the LibSVM repository: madelon (𝑑 = 500𝑚 = 2000) rcv1_train(𝑑 = 47236𝑚 = 20242).
We take hyperparameters as follows: for madelon, 𝜆2 = 0.001 and 𝜆1 = 0.03 chosen to reach 99% sparsity (i.e.
|supp(𝑥★) | = 5); for rcv1, 𝜆2 = 0.0001 and 𝜆1 = 0.001 to reach 99.7% sparsity (i.e. |supp(𝑥★) | = 61).
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Figure 1: Comparison on the lasso problem.

We distribute these problems on a machine with 32 cores and 256 Gb of RAM: one core plays the role the coordinator
while𝑀 cores act as workers (𝑀 = 5 for LASSO problems,𝑀 = 10 for madelon, and𝑀 = 20 for rcv1). The data sets
are split evenly between the𝑀 workers.
Algorithms. We illustrate our sparsi�ed algorithm Reconditioned–Spy (Algorithm 4.1) for di�erent the amount
of randomly chosen coordinates 𝑐 . We take a simpli�ed stopping criteria C1 with Mℓ = 1; we thus stop the inner
iterations after two passes over the data, following the practical guidelines of Catalyst [32]. We observe that this
simple stopping rule gives similar empirical convergence as C3 with respect to both iterations and scalars exchanged
(without the additional computational cost of the test); for a numerical illustration, see Supplement SM7.

We display the performances of the algorithms in three ways:
• size of support vs number6 of inner iterations, showing the identi�cation
• functional suboptimality vs number of inner iterations,
• functional suboptimality vs communication cost, modelled as the number of couples (coordinate, value) sent
from and to the coordinator.

Empirical results. We make the following observations from experiments with both problems (reported in Figures 1
and 2 respectively). When the support of iterates is far from the optimal one, sparsi�cation is generally bad for
convergence in terms of iterations (as shown by the slopes in the plots “suboptimality vs iterations”), but even in
terms of communications (see the beginning of the curves “suboptimality vs exchanges’). On the other hand, when
the iterates begin to be closer to the optimal support, adaptive sparsi�cation becomes highly bene�cial as illustrated
by the �nal slopes of the plots “suboptimality vs exchanges”.

Since there is no guarantee that the currently identi�ed support is the optimal one, it is impossible to restrict
ourselves to a subset of the coordinates; here comes the need for our adaptively sparsi�ed method, that keeps exploring
dimensions, additionally to those in the current support. The quantity of randomly chosen dimensions, controlled by
𝑐 has an slight impact: we see on that that (relatively) small and large values of 𝑐 (yellow and black curves) lead to
slightly worse slopes on the convergence plots, compared to 𝑐 being in the range of 1 to 3 times the optimal support
(green and pink curves) which is our recommendation both theoretically (see Theorem 5.3) and in practice.

6Identi�cation is illustrated plotting the size of supp(𝑥𝑘 ) . For Reconditioned–Spy, 𝑥𝑘 refers to 𝑥 𝑗
ℓ where there have been 𝑘 inner iterations

during the ℓ − 1 �rst outer loops plus 𝑗 in the ℓ-th inner loop.
12
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Figure 2: Comparison on the madelon logistic regression problem.

101 102 103 104

0

50

100

supp(x?) = 0.12%

Number of (inner) iterations

su
pp

(x
k
)

in
pe

rc
en

ta
ge

of
d

101 102 103 104

0.2

0.4

0.6

Number of (inner) iterations

su
pp

(x
k
)

in
pe

rc
en

ta
ge

of
d Baseline: DAve-PG

Reconditioned–Spy w/ c = 50
” c = 100
” c = 200
” c = 500

0 0.5 1 1.5 2
·108

10−15

10−9

10−3

103

Amount of scalars exchanged

Su
bo

pt
im

al
ity

0 0.5 1 1.5 2
·108

10−15

10−9

10−3

103

Amount of scalars exchanged

Su
bo

pt
im

al
ity

Figure 3: Comparison on the rcv1 logistic regression problem. On the right-hand side plots, the algorithms are
warm-started to an initial suboptimality of 10−2 and density of 1%, reached within less than 5% of the total
number of exchanges to target precision.
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Finally, in order to mitigate the above-mentioned negative e�ects of sparsi�cation in the �rst iterations for large
problems, we propose to use a warmstart strategy: in the �rst iterations, we use a non-sparsi�ed (eg. DAve-PG) or a
moderately sparsi�ed method to allow for a sharp initial functional decrease, leading to some partial identi�cation;
after this warmstart we switch to our sparsi�ed method to fully bene�t from identi�cation. This strategy is illustrated
in Figure 3, with warmstarted algorithms on the right-hand-side vs. the non-warmstarted ones on the left-hand-side.
We see a drastic improvement in terms of communication o�ered by the quick identi�cation, for all versions of the
sparsi�ed method.
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Supplementary Materials

SM1. Inefficiency of uniform sparsification illustrated

In Section 3.4, we discussed the impact of the random selection in our sparsi�cation technique. The uniform
sparsi�cation is proved to have a degraded convergence rate in terms of epochs; we illustrate in Figure SM1 that
moreover it shows a degraded empirical performance in terms of exchanges.
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Figure SM1: Illustration of the ine�ciency of uniform sparsi�cation on the madelon logistic regression
problem of Section 6. We compare DAve-PG (in dashed lines) and Spy (in solid lines) with di�erent values of
the sparsi�cation probability 𝑝 (indicated by the number next to the plots).

SM2. Proof of Theorem 3.1

From the solution 𝑥★ of (P) (unique from strong convexity), we de�ne for each worker 𝑖 , the local shift 𝑥★𝑖 =

𝑥★ − 𝛾∇𝑓𝑖 (𝑥★). From those, one can de�ne 𝑥★ =
∑𝑀

𝑖=1 𝛼𝑖𝑥
★
𝑖 . First-order optimality conditions

0 ∈
∑︁
𝑖

𝛼𝑖∇𝑓𝑖 (𝑥★) + 𝜕𝑟 (𝑥★)

imply that

𝑥★ =

𝑀∑︁
𝑖=1

𝛼𝑖𝑥
★
𝑖 = 𝑥★ − 𝛾

𝑀∑︁
𝑖=1

𝛼𝑖∇𝑓𝑖 (𝑥★) ∈ 𝑥★ + 𝛾𝜕𝑟 (𝑥★) (SM2.1)

which directly leads to prox𝛾𝑟 (𝑥★) = 𝑥★ (see Chap. 16 of [5]).
We can now lay down the proof using these above-de�ned variables. For a time 𝑘 and a worker 𝑖 , we have that

𝑥𝑘𝑖 = 𝑥
𝑘−𝑑𝑘

𝑖

𝑖
depends on i) 𝑥𝑘−𝐷𝑘

𝑖 which is F𝑘−𝐷𝑘
𝑖 -measurable; and ii) S𝑘−𝐷𝑘

𝑖 which is i.i.d. . First, we are going to
control the term ‖𝑥𝑘𝑖 − 𝑥★𝑖 ‖2.

Let us de�ne ‖𝑥 ‖2𝑝 =
∑𝑑

𝑖=1 𝑝𝑖𝑥
2
[𝑖 ] where (𝑝1, . . . , 𝑝𝑑 ) is the vector of probabilities of Assumption 1. The conditional

expectation can be developed as follows:

𝔼[‖𝑥𝑘𝑖 − 𝑥★𝑖 ‖2 |F𝑘−𝐷𝑘
𝑖 ] = 𝔼[‖𝑥𝑘−𝑑

𝑘
𝑖

𝑖
− 𝑥★𝑖 ‖2 |F𝑘−𝐷𝑘

𝑖 ] =
𝑑∑︁
𝑗=1

𝔼[(𝑥𝑘−𝑑
𝑘
𝑖

𝑖 [ 𝑗 ] − 𝑥
★
𝑖 [ 𝑗 ])

2 |F𝑘−𝐷𝑘
𝑖 ]

= ‖𝑥𝑘−𝐷𝑘
𝑖 − 𝛾∇𝑓𝑖 (𝑥𝑘−𝐷

𝑘
𝑖 ) − (𝑥★ − 𝛾∇𝑓𝑖 (𝑥★))‖2𝑝 + ‖𝑥

𝑘−𝐷𝑘
𝑖

𝑖
− 𝑥★𝑖 ‖21−𝑝 .

Let us now bound both terms of this sum above using 𝑝max = max𝑖 𝑝𝑖 and 𝑝min = min𝑖 𝑝𝑖 .

‖𝑥𝑘−𝐷𝑘
𝑖 − 𝛾∇𝑓𝑖 (𝑥𝑘−𝐷

𝑘
𝑖 ) − (𝑥★ − 𝛾∇𝑓𝑖 (𝑥★))‖2𝑝 + ‖𝑥

𝑘−𝐷𝑘
𝑖

𝑖
− 𝑥★𝑖 ‖21−𝑝

≤ 𝑝max‖𝑥𝑘−𝐷
𝑘
𝑖 − 𝛾∇𝑓𝑖 (𝑥𝑘−𝐷

𝑘
𝑖 ) − (𝑥★ − 𝛾∇𝑓𝑖 (𝑥★))‖2 + (1 − 𝑝min)‖𝑥

𝑘−𝐷𝑘
𝑖

𝑖
− 𝑥★𝑖 ‖2 .
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We now use the 𝜇-strong convexity and 𝐿-smoothness of 𝑓𝑖 to write (see e.g. [9, Chap. 3.4.2]),

‖𝑥𝑘−𝐷𝑘
𝑖 − 𝛾∇𝑓𝑖 (𝑥𝑘−𝐷

𝑘
𝑖 ) − (𝑥★ − 𝛾∇𝑓𝑖 (𝑥★))‖2

≤
(
1 − 2𝛾𝜇𝐿

𝜇 + 𝐿

) 


𝑥𝑘−𝐷𝑘
𝑖 − 𝑥★




2 − 𝛾 (
2

𝜇 + 𝐿 − 𝛾
) 


∇𝑓𝑖 (𝑥𝑘−𝐷𝑘

𝑖 ) − ∇𝑓𝑖 (𝑥★)



2

≤
[(
1 − 2𝛾𝜇𝐿

𝜇 + 𝐿

)
− 𝜇2𝛾

(
2

𝜇 + 𝐿 − 𝛾
)] 


𝑥𝑘−𝐷𝑘

𝑖 − 𝑥★



2

= (1 − 𝛾𝜇)2



𝑥𝑘−𝐷𝑘

𝑖 − 𝑥★



2 .

Thus, for any 𝛾 ∈ (0, 2/(𝜇 + 𝐿)],

𝔼[‖𝑥𝑘𝑖 − 𝑥★𝑖 ‖2 |F𝑘−𝐷𝑘
𝑖 ] ≤ 𝑝max (1 − 𝛾𝜇)2




𝑥𝑘−𝐷𝑘
𝑖 − 𝑥★




2 + (1 − 𝑝min)‖𝑥
𝑘−𝐷𝑘

𝑖

𝑖
− 𝑥★𝑖 ‖2

≤ 𝑝max (1 − 𝛾𝜇)2



𝑥𝑘−𝐷𝑘

𝑖 − 𝑥★



2 + (1 − 𝑝min)‖𝑥

𝑘−𝐷𝑘
𝑖

𝑖
− 𝑥★𝑖 ‖2,

where we used that ‖𝑥𝑘−𝐷𝑘
𝑖 − 𝑥★‖2 = ‖prox𝛾𝑟 (𝑥𝑘−𝐷

𝑘
𝑖 ) − prox𝛾𝑟 (𝑥★)‖2 ≤ ‖𝑥𝑘−𝐷

𝑘
𝑖 − 𝑥★‖2 by de�nition and non-

expansiveness of the proximity operator of 𝑟 .
Taking full expectation on both sides, we get

𝔼‖𝑥𝑘𝑖 − 𝑥★𝑖 ‖2 ≤ 𝑝max (1 − 𝛾𝜇)2 𝔼



𝑥𝑘−𝐷𝑘

𝑖 − 𝑥★



2 + (1 − 𝑝min)𝔼‖𝑥

𝑘−𝐷𝑘
𝑖

𝑖
− 𝑥★𝑖 ‖2 .

Then, using that 𝑥𝑘−𝐷𝑘
𝑖 − 𝑥★ =

∑𝑀
𝑖=1 𝛼𝑖 (𝑥

𝑘−𝐷𝑘
𝑖

𝑖
− 𝑥★𝑖 ) and the convexity of ‖ · ‖2, we get

𝔼‖𝑥𝑘𝑖 − 𝑥★𝑖 ‖2 ≤ 𝑝max (1 − 𝛾𝜇)2
𝑀∑︁
𝑗=1
𝛼 𝑗𝔼




𝑥𝑘−𝐷𝑘
𝑖

𝑗
− 𝑥★𝑗




2 + (1 − 𝑝min)𝔼‖𝑥
𝑘−𝐷𝑘

𝑖

𝑖
− 𝑥★𝑖 ‖2

≤ 𝑝max (1 − 𝛾𝜇)2 max
𝑗=1,...,𝑀

𝔼




𝑥𝑘−𝐷𝑘
𝑖

𝑗
− 𝑥★𝑗




2 + (1 − 𝑝min) max
𝑗=1,...,𝑀

𝔼‖𝑥𝑘−𝐷
𝑘
𝑖

𝑗
− 𝑥★𝑗 ‖2

≤
(
𝑝max (1 − 𝛾𝜇)2 + 1 − 𝑝min

)
max

𝑗=1,...,𝑀
𝔼




𝑥𝑘−𝐷𝑘
𝑖

𝑗
− 𝑥★𝑗




2 .
Let 𝑐𝑘 = max𝑖=1,...,𝑀 𝔼




𝑥𝑘𝑗 − 𝑥★𝑗 


2 and 𝛽 =
(
𝑝max (1 − 𝛾𝜇)2 + 1 − 𝑝min

)
(note that the assumptions imply that 𝛽 ≤ 1),

then the above result implies that
𝑐𝑘 ≤ 𝛽 max

𝑗=1,...,𝑀
𝑐𝑘−𝐷𝑘

𝑗

and using the de�nition of the sequence (𝑘𝑚), we get

𝑐𝑘𝑚 ≤ 𝛽 max
𝑗
𝑐
𝑘𝑚−𝐷𝑘𝑚

𝑗

≤ 𝛽 max
ℓ∈[𝑘𝑚−1,𝑘𝑚)

𝑐ℓ

𝑐𝑘𝑚+1 ≤ 𝛽 max(𝑐𝑘𝑚 , max
ℓ∈[𝑘𝑚−1,𝑘𝑚)

𝑐ℓ ) ≤ 𝛽 max
ℓ∈[𝑘𝑚−1,𝑘𝑚)

𝑐ℓ .

Thus for all 𝑘 ≥ 𝑘𝑚 , 𝑐𝑘 ≤ 𝛽 maxℓ∈[𝑘𝑚−1,𝑘𝑚) 𝑐ℓ . This implies that the sequence 𝑐̃𝑚 de�ned by 𝑐̃𝑚 = maxℓ∈[𝑘𝑚,𝑘𝑚+1) 𝑐ℓ
has an exponential bound:

𝑐̃𝑚 ≤ 𝛽 𝑐̃𝑚−1 ≤ 𝛽𝑚 𝑐̃0 ≤ 𝛽𝑚 max
𝑖=1,...,𝑀

‖𝑥0𝑖 − 𝑥★𝑖 ‖2.

Finally, we to use once again the non-expansivity of the proximity operator of 𝑟 and the de�nitions to get that for all
𝑘 ∈ [𝑘𝑚, 𝑘𝑚+1),

𝔼‖𝑥𝑘 − 𝑥★‖2 ≤ 𝔼‖𝑥𝑘 − 𝑥★‖2 ≤
𝑀∑︁
𝑖=1

𝛼𝑖𝔼‖𝑥𝑘𝑖 − 𝑥★𝑖 ‖2 ≤ 𝑐𝑘 ≤ 𝛽𝑚 max
𝑖=1,...,𝑀

‖𝑥0𝑖 − 𝑥★𝑖 ‖2, (SM2.2)

which concludes the proof.
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SM3. Discussion on non-i.i.d. selections

Imagine that one wants to build an algorithm similar to Spy but where the update probabilities are equal to 1 over
an adaptively chosen set A𝑘 (depending e.g. on the support of 𝑥𝑘 ) and 𝜋 < 1 for the others. As mentioned in the main
text, this poses a problem since the selection is not i.i.d. anymore due to the adaptive selection.

This drawback can actually be �xed by “slowing down” the updates in the adaptive set A𝑘 by a factor 𝜋 . This gives
Algorithm SM3.1. A proof very similar to the one of Supplement SM2 enables to prove a (1 − 𝜋𝛾𝜇 (2 − 𝛾𝜇)) linear
rate (the same as for uniform selection with probability 𝜋 ). Unfortunately, the arti�cial slowdown of the iterates is
harmful in practice and causes this algorithm to be rather slow, which is why we chose not to consider this path.

Algorithm SM3.1 Adaptive-Spy on ((𝛼𝑖 ), (𝑓𝑖 ), 𝑟 ) with stopping criterion C

Coordinator

Initialize 𝑥0
while test C not veri�ed do

Receive [Δ𝑘 ]
S
𝑘−𝐷𝑘

𝑖𝑘
from agent 𝑖𝑘

𝑥𝑘 ← 𝑥𝑘−1 + 𝛼𝑖 [Δ𝑘 ]
S
𝑘−𝐷𝑘

𝑖𝑘

𝑥𝑘 ← prox𝛾𝑟 (𝑥𝑘 )
Draw sparsity mask S𝑘 from A𝑘 , 𝜋

Send 𝑥𝑘 , S𝑘 ,A𝑘 to agent 𝑖𝑘
𝑘 ← 𝑘 + 1

end

Worker 𝑖

Initialize 𝑥𝑖 = 𝑥+𝑖 = 0
while not interrupted do

Receive 𝑥 , S, and A from the coordinator
[𝑥+𝑖 ]S ← [𝑥 − 𝛾∇𝑓𝑖 (𝑥)]S
[𝑥+𝑖 ]A ← 𝜋 [𝑥+𝑖 ]A + (1 − 𝜋) [𝑥𝑖 ]A
Δ← 𝑥+𝑖 − 𝑥𝑖
Send [Δ]S to the coordinator
[𝑥𝑖 ]S ← [𝑥+𝑖 ]S

end

SM4. Proofs of convergence for reconditioned algorithms

SM4.1. Basic lemmas for proofs of reconditioned algorithms. We state here two simple lemmas that we have
not found as such in the literature and that are required in the proofs of Section 4.2. They use the fact that the unique
minimum 𝑥★ of a strongly convex function 𝐹 is a �xed point of prox𝐹/𝜌 for any 𝜌 > 0; see [5, Prop. 12.28]).

Lemma SM4.1. Let 𝐹 : ℝ𝑑 → ℝ∪ {+∞} be 𝜇-strongly convex lsc and 𝜌 > 0. Then, for any 𝑥 ∈ ℝ𝑑
,

‖prox𝐹/𝜌 (𝑥) − prox𝐹/𝜌 (𝑥★)‖2 ≤
𝜌

2𝜇 + 𝜌 ‖𝑥 − 𝑥
★‖2 − 𝜌

2𝜇 + 𝜌 ‖prox𝐹/𝜌 (𝑥) − 𝑥 ‖
2 .

Proof. The proof simply consists in developing norms as follows:

‖prox𝐹/𝜌 (𝑥) − 𝑥 ‖2

= ‖prox𝐹/𝜌 (𝑥) − prox𝐹/𝜌 (𝑥★) + 𝑥★ − 𝑥 ‖2

= ‖prox𝐹/𝜌 (𝑥) − prox𝐹/𝜌 (𝑥★)‖2 + ‖𝑥 − 𝑥★‖2 − 2〈prox𝐹/𝜌 (𝑥) − prox𝐹/𝜌 (𝑥★);𝑥 − 𝑥★〉
≤ ‖prox𝐹/𝜌 (𝑥) − prox𝐹/𝜌 (𝑥★)‖2 + ‖𝑥 − 𝑥★‖2 − 2(1 + 𝜇/𝜌)‖prox𝐹/𝜌 (𝑥) − prox𝐹/𝜌 (𝑥★)‖2

= ‖𝑥 − 𝑥★‖2 − (1 + 2𝜇/𝜌)‖prox𝐹/𝜌 (𝑥) − prox𝐹/𝜌 (𝑥★)‖2;

then a reordering concludes the proof. The inequality uses the the fact that the resolvent of the 𝜇/𝜌 strongly monotone
operator 𝜕𝐹/𝜌 is (1 + 𝜇/𝜌)-cocoercive; see [5], particularly Proposition 23.11. �

Lemma SM4.2. Let 𝐹 : ℝ𝑑 → ℝ∪ {+∞} be 𝜇-strongly convex lsc, 𝜌 > 0. Then, for any 𝑥, 𝑥 ′ ∈ ℝ𝑑
such that

𝔼

[


𝑥 ′ − prox𝐹/𝜌 (𝑥)


2 |𝑥 ] ≤ 𝜈 


𝑥 − prox𝐹/𝜌 (𝑥)


2
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for some 𝜈 > 0, we have for any 𝜀 ∈ (0, 1)

𝔼

[

𝑥 ′ − 𝑥★

2 |𝑥 ] ≤ (1 + 𝜀) 𝜌

2𝜇 + 𝜌


𝑥 − 𝑥★

2 (SM4.1)

−
[
(1 + 𝜀) 𝜌

2𝜇 + 𝜌 −
(
1 + 1

𝜀

)
𝜈

]
‖𝑥 − prox𝐹/𝜌 (𝑥)‖2 .

Proof. Using Young’s inequality, we get that for any 𝜀 ∈ (0, 1),

𝔼

[

𝑥 ′ − 𝑥★

2 |𝑥 ]
≤

(
1 + 1

𝜀

)
𝔼

[


𝑥 ′ − prox𝐹/𝜌 (𝑥)


2 |𝑥 ] + (1 + 𝜀) 


prox𝐹/𝜌 (𝑥) − prox𝐹/𝜌 (𝑥★)


2
≤

(
1 + 1

𝜀

)
𝜈 ‖𝑥 − prox𝐹/𝜌 (𝑥)‖2 + (1 + 𝜀)

𝜌

2𝜇 + 𝜌


𝑥 − 𝑥★

2

− (1 + 𝜀) 𝜌

2𝜇 + 𝜌




𝑥 − prox𝐹/𝜌 (𝑥)


2
= (1 + 𝜀) 𝜌

2𝜇 + 𝜌


𝑥 − 𝑥★

2 − [

(1 + 𝜀) 𝜌

2𝜇 + 𝜌 −
(
1 + 1

𝜀

)
𝜈

]
‖𝑥 − prox𝐹/𝜌 (𝑥)‖2 .

where we used Lemma SM4.1. �

SM4.2. Proof of Theorem 4.1. Theorem 4.1 gives very similar results for the three inner stopping criteria. However,
the proof techniques are quite di�erent for each criteria.

Proof for criterion C1 (epoch budget). We start by noticing that, at outer loop ℓ , Spy solves the reconditioned
problem (4.7) over which it has a contraction factor of (1 − 𝛼ℓ ) with 1 − 𝛼ℓ := 1 − 𝛼 + 𝜋 − 𝜋ℓ ; see (4.4) and (3.3). This
means that Spy initialized with 𝑥ℓ veri�es after𝑚 epochs with the maximal7 stepsize

𝔼




𝑥𝑘𝑚ℓ − 𝑥★ℓ 


2 ≤ (1 − 𝛼ℓ )𝑚 max
𝑖



𝑥0𝑖 − 𝑥★𝑖,ℓ

2 ≤ (1 − 𝛼ℓ )𝑚 

𝑥ℓ − 𝑥★ℓ 

2
where 𝑥★ℓ is the unique solution of (Rℓ ), and 𝑥★𝑖,ℓ = 𝑥★ℓ − 𝛾∇ℎ𝑖,ℓ (𝑥★ℓ ) are its local shifts.

We now apply Lemma SM4.2 with the following input: 𝑥 ′ = 𝑥ℓ+1 = 𝑥
𝑘Mℓ

ℓ
; 𝑥 = 𝑥ℓ ; 𝐹 = 𝐹 (which is 𝜇 strongly convex);

𝑥★ = 𝑥★ (minimizer of 𝐹 ); and 𝜈 = (1 − 𝛼ℓ )Mℓ . We get for 𝜀 = 1
ℓ1+𝛿
∈ (0, 1)

𝔼

[

𝑥ℓ+1 − 𝑥★

2 |𝑥ℓ ] ≤ (
1 + 1

ℓ 1+𝛿

)
𝜌

2𝜇 + 𝜌


𝑥ℓ − 𝑥★

2

−
[(
1 + 1

ℓ 1+𝛿

)
𝜌

2𝜇 + 𝜌 −
(
1 + ℓ 1+𝛿

)
(1 − 𝛼ℓ )Mℓ

]
︸                                                   ︷︷                                                   ︸

:=𝑏ℓ

‖𝑥ℓ − prox𝐹/𝜌 (𝑥ℓ )‖2 .

Choosing Mℓ as per C1 guarantees that

𝑏ℓ ≥ 𝛿
(
1 + 1

ℓ 1+𝛿

)
𝜌

2𝜇 + 𝜌 ≥
𝛿𝜌

2𝜇 + 𝜌 .

Thus, for any 𝜇 ≥ 0, we have

𝔼

[

𝑥ℓ+1 − 𝑥★

2 |𝑥ℓ ] ≤ (
1 + 1

ℓ 1+𝛿

)
𝜌

2𝜇 + 𝜌


𝑥ℓ − 𝑥★

2 − 𝛿𝜌

2𝜇 + 𝜌 ‖𝑥ℓ − prox𝐹/𝜌 (𝑥ℓ )‖
2 . (SM4.2)

Convergence. For any 𝜇 ≥ 0, (SM4.2) tells us that

𝔼

[

𝑥ℓ+1 − 𝑥★

2 |𝑥ℓ ] ≤ (
1 + 1

ℓ 1+𝛿

) 

𝑥ℓ − 𝑥★

2 − 𝛿 ‖𝑥ℓ − prox𝐹/𝜌 (𝑥ℓ )‖2 . (SM4.3)

7The initialization means that 𝑥0 = 𝑥ℓ and 𝑥0
𝑖
= 𝑥ℓ − 𝛾∇ℎ𝑖,ℓ (𝑥ℓ ) . The use of the maximal stepsize is required here to guarantee the optimal

rate over the reconditioned problem, see (3.3).
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By Robbins-Siegmund theorem [53, Th. 1] (see also [20, 8, 10] for applications to optimization), we have that i)
(


𝑥ℓ − 𝑥★

2) converges almost surely to a random variable with �nite support; and ii)

∑∞
ℓ=1 ‖𝑥ℓ − prox𝐹/𝜌 (𝑥ℓ )‖2 < ∞.

This means that we can extract a subsequence (𝑥ℓ𝑛 ) that converges almost surely to some 𝑦 which is necessarily a
minimizer from ii). Using (SM4.3) again with 𝑥★ = 𝑦, we see that (𝑥ℓ ) converges to 𝑥★ almost surely.
Rate. Now, if 𝜇 > 0, we get by dropping the last term in (SM4.2) and successively taking expectations that

𝔼

[

𝑥ℓ+1 − 𝑥★

2] ≤ (ℓ + 1)1+𝛿 (
𝜌

2𝜇 + 𝜌

) ℓ 

𝑥1 − 𝑥★

2 = Õ
((
1 − 𝜇

𝜇 + 𝜌/2

) ℓ )
. (SM4.4)

Proof for criterion C2 (absolute accuracy). We apply Lemma SM4.2 with the following input: 𝑥 ′= 𝑥ℓ+1; 𝑥 = 𝑥ℓ ;
𝐹 = 𝐹 (which is 𝜇 strongly convex); 𝑥★ = 𝑥★ (minimizer of 𝐹 ); and 𝜈 = (1 − 𝛿)𝜌/((2𝜇 + 𝜌)ℓ 1+𝛿 ) (noting that the
condition on 𝑥ℓ+1 is almost sure). We get for 𝜀 = 1

ℓ1+𝛿
∈ (0, 1)

𝑥ℓ+1 − 𝑥★

2 ≤ (

1 + 1
ℓ 1+𝛿

)
𝜌

2𝜇 + 𝜌


𝑥ℓ − 𝑥★

2

−
[(
1 + 1

ℓ 1+𝛿

)
𝜌

2𝜇 + 𝜌 −
(
1 + ℓ 1+𝛿

) 1
ℓ 1+𝛿
(1 − 𝛿)𝜌
2𝜇 + 𝜌

]
︸                                                       ︷︷                                                       ︸

≥0

‖𝑥ℓ − prox𝐹/𝜌 (𝑥ℓ )‖2

≤ (ℓ + 1)1+𝛿
(

𝜌

2𝜇 + 𝜌

) ℓ 

𝑥1 − 𝑥★

2 .
This directly gives the rate of convergence when 𝜇 > 0. When 𝜇 = 0, the inequality can be simpli�ed to

𝑥ℓ+1 − 𝑥★

2 ≤ (

1 + 1
ℓ 1+𝛿

) 

𝑥ℓ − 𝑥★

2
−

[(
1 + 1

ℓ 1+𝛿

)
−

(
1 + ℓ 1+𝛿

) 1
ℓ 1+𝛿
(1 − 𝛿)

]
‖𝑥ℓ − prox𝐹/𝜌 (𝑥ℓ )‖2

≤
(
1 + 1

ℓ 1+𝛿

) 

𝑥ℓ − 𝑥★

2 − 𝛿 ‖𝑥ℓ − prox𝐹/𝜌 (𝑥ℓ )‖2 .
In this case, the same arguments as for criterion C1 enable to get almost sure convergence.

Proof for criterion C3 (relative accuracy). Denoting 𝛽 :=
√︁
𝜌/(2𝜇 + 𝜌) ∈ (0, 1], the stopping criterion C3 writes

‖𝑥ℓ+1 − prox𝐹/𝜌 (𝑥ℓ )‖ ≤ 𝜀ℓ ‖𝑥ℓ+1 − 𝑥ℓ ‖ with 𝜀ℓ =
𝛽

2ℓ 1+𝛿
. (SM4.5)

Convergence. The condition (SM4.5) matches condition (B) of [54, Th. 2]. We also have clearly
∑

ℓ 𝜀ℓ < +∞ and the
regularity assumption of the operator is veri�ed, by our extra assumption and [54, Prop. 7]. Thus [54, Th. 2] directly
gives us that (𝑥ℓ ) converges to a minimizer of 𝐹 , that we denote by 𝑥★.
Rate. When 𝐹 is 𝜇-strongly convex, we can furthermore develop:

𝑥ℓ+1 − 𝑥★

 ≤ 


𝑥ℓ+1 − prox𝐹/𝜌 (𝑥ℓ )


 + 


prox𝐹/𝜌 (𝑥ℓ ) − 𝑥★




≤ 𝜀ℓ ‖𝑥ℓ+1 − 𝑥ℓ ‖ + 𝛽


𝑥ℓ − 𝑥★



≤ 𝜀ℓ


𝑥ℓ+1 − 𝑥★

 + 𝜀ℓ 

𝑥ℓ − 𝑥★

 + 𝛽 

𝑥ℓ − 𝑥★



where the �rst inequality used both condition C3 and Lemma SM4.1. This implies that

𝑥ℓ+1 − 𝑥★

2 ≤ (
𝜀ℓ + 𝛽
1 − 𝜀ℓ

)2 

𝑥ℓ − 𝑥★

2 . (SM4.6)
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Finally, denoting 𝑑ℓ := ℓ 1+𝛿/(ℓ 1+𝛿 − 1) > 1, we have8

𝜀ℓ ≤ 𝛽
(𝑑ℓ − 1)
(1 + 𝛽𝑑ℓ )

=⇒ 𝜀ℓ + 𝛽
1 − 𝜀ℓ

≤ 𝑑ℓ𝛽 ≤ ℓ 1+𝛿/((ℓ − 1)1+𝛿 )𝛽.

This yields 

𝑥ℓ+1 − 𝑥★

2 ≤ (
ℓ

ℓ − 1

)2+2𝛿
𝜌

2𝜇 + 𝜌


𝑥ℓ − 𝑥★

2

which gives the result.

SM5. Acceleration à la Catalyst

Catalyst is a popular accelerated inexact proximal point meta-algorithm for solving machine learning objectives
[31, 32]. It consists in adding an acceleration step for each outer iteration to reach a faster rate. The parameters of
Catalyst are i) the choice of the inertial sequence (𝛽ℓ ); and ii) the choice of the stopping criteria that comes in the
same �avor as for Reconditioned–Spy. Applied to our context, this gives Algorithm SM5.1 where the main di�erence
with Reconditioned–Spy is the �nal line with the acceleration.

Under the parameters given in [32], the fast outer rate is stated in the following result which shows in the square
root compared to Theorem 4.1 for the direct proximal reconditioning.

Theorem SM5.1. Let the functions (𝑓𝑖 ) be 𝜇-strongly convex (𝜇 ≥ 0) and 𝐿-smooth. Let 𝑟 be convex lsc. Then,

Catalyst–Spy on ((𝛼𝑖 ), (𝑓𝑖 ), 𝑟 ) with stopping criterion C′2 or C
′
3 converges in terms of suboptimality at rate 1/ℓ2.

Furthermore, if 𝜇 > 0, then 

𝑥ℓ+1 − 𝑥★

2 = O
((
1 −

√︂
𝜇

4𝜇 + 4𝜌

) ℓ )
. (SM5.1)

Proof. The result directly follows from [32], in particular Propositions 5,6,8, and 9. �

Note that C1 is not supported in this result, since it is not covered by theory in [32]; however, a criterion close to
C1 is used in the computational experiments of [32].

Algorithm SM5.1 Catalyst–Spy on ((𝛼𝑖 ), (𝑓𝑖 ), 𝑟 )
Initialize 𝑥1, 𝑐 > 0, 𝛿 ∈ (0, 1), as well as 𝜌 and 𝛾 as in (4.5).
while the desired accuracy is not achieved do

Observe the support of 𝑦ℓ , compute 𝑝ℓ as in (4.6). Compute an approximate solution of the reconditioned problem
𝑥ℓ+1 ≈ prox𝐹/𝜌 (𝑦ℓ )

with Spy on ((𝛼𝑖 ), (ℎ𝑖,ℓ ), 𝑟 ; 𝑝ℓ ) with stopping criterion:
C′2 (absolute accuracy): Run Spy until it �nds 𝑥ℓ+1 such that

𝐻ℓ (𝑥ℓ+1) −min
𝑥
𝐻ℓ (𝑥) ≤


(
1 −

√︃
𝜇

4(𝜇+𝜌)

) ℓ 2(𝐹 (𝑦1)−min𝑥 𝐹 (𝑥))
9 if 𝜇 > 0

1
ℓ4+𝛿

2(𝐹 (𝑦1)−min𝑥 𝐹 (𝑥))
9 if 𝜇 = 0

.

or C′3 (relative accuracy): Run Spy until it �nds 𝑥ℓ+1 such that

𝐻ℓ (𝑥ℓ+1) −min
𝑥
𝐻ℓ (𝑥) ≤

{ √
𝜇

2√𝜇+𝜌−√𝜇
𝜌 ‖𝑥ℓ+1−𝑦ℓ ‖2

2 if 𝜇 > 0
1
ℓ2

𝜌 ‖𝑥ℓ+1−𝑦ℓ ‖2
2 if 𝜇 = 0

.

Compute the next point with Nesterov’s extrapolation step
𝑦ℓ+1 = 𝑥ℓ+1 + 𝛽ℓ (𝑥ℓ+1 − 𝑥ℓ ).

end

8Note that 𝜀2ℓ =
𝜌

4(2𝜇+𝜌 )ℓ2+2𝛿 ≤
(
𝛽

2

)2 (𝑑ℓ−1)2
𝑑2
ℓ

≤ 𝛽2 (𝑑ℓ−1)
2

(1+𝛽𝑑ℓ )2
.

22



As for the other two criteria, C′2 and C′3 imply rules similar to C2 and C3 since

‖𝑥ℓ+1 − prox𝐹/𝜌 (𝑥ℓ )‖2 ≤
𝐻ℓ (𝑥ℓ+1) − 𝐻ℓ

(
prox𝐹/𝜌 (𝑥ℓ )

)
𝜇 + 𝜌 =

𝐻ℓ (𝑥ℓ+1) −min𝑥 𝐻ℓ (𝑥)
𝜇 + 𝜌 .

by using the (𝜇 + 𝜌)-strong convexity of the inner problem. We note that C′2 is then much more stringent that C2. For
C′3, the conditions are similar to C3 in the non-strongly convex case, however they appear to be better in the strongly
convex case. This is an artefact due to our use of one criterion both strongly convex and non-strongly convex cases.
Indeed, in the strongly convex case, one can see from (SM4.6) that a �xed choice of 𝜀ℓ is possible, leading to a similar
strategy and rate.

SM6. Proofs related to identification

SM6.1. Proof of Theorem 5.1. We notice that DAve-PG, as many proximal algorithms (see e.g. [21, Sec. 4]), has the
following convergence property

𝑥𝑘 → 𝑥★ and thus 𝑥𝑘 = prox𝛾𝑟 (𝑥𝑘 ) → 𝑥★ = prox𝛾𝑟 (𝑥★) (SM6.1)

from Theorem 2.1. This property is the key to get the identi�cation result, as we will develop at the end of the proof.
We start by proving that Reconditioned–Spy (as well as Catalyst–Spy) shares a similar convergence property.

Both Reconditioned–Spy and Catalyst–Spy are of the form

𝑥ℓ+1 ≈ prox𝐹/𝜌 (𝑦ℓ ) and 𝑦ℓ+1 = 𝑥ℓ+1 + 𝛽ℓ (𝑥ℓ+1 − 𝑥ℓ )

(with 𝛽ℓ ≡ 0 for Reconditioned–Spy and 𝛽ℓ ∈ (0, 1) for Catalyst–Spy); and verify for all ℓ, 𝑘

𝔼‖𝑥ℓ − 𝑥★‖ ≤ 𝐶 (1 − 𝜌)ℓ and 𝔼‖𝑥𝑘ℓ − 𝑥★ℓ ‖ ≤ 𝐶 ′‖𝑦ℓ − 𝑥★ℓ ‖

for some 𝐶,𝐶 ′ > 0 and 𝜌 ∈ (0, 1), where

𝑥★ℓ := 𝑥★ℓ − 𝛾
𝑀∑︁
𝑖=1

𝛼𝑖∇ℎ𝑖,ℓ (𝑥★ℓ ).

As in Supplement SM2, we also consider 𝑥★ = 𝑥★ − 𝛾 ∑𝑀
𝑖=1 𝛼𝑖∇𝑓𝑖 (𝑥★) given by (SM2.1). Then, we have

‖𝑥★ℓ − 𝑥★‖ = ‖𝑥★ℓ − 𝛾
𝑀∑︁
𝑖=1

𝛼𝑖∇ℎ𝑖,ℓ (𝑥★ℓ ) − 𝑥★ + 𝛾
𝑀∑︁
𝑖=1

𝛼𝑖∇𝑓𝑖 (𝑥★)‖

= ‖𝑥★ℓ − 𝛾
𝑀∑︁
𝑖=1

𝛼𝑖∇𝑓𝑖 (𝑥★ℓ ) − 𝛾𝜌 (𝑥★ℓ − 𝑦ℓ ) − 𝑥★ + 𝛾
𝑀∑︁
𝑖=1

𝛼𝑖∇𝑓𝑖 (𝑥★)‖

≤ ‖𝑥★ℓ − 𝑥★‖ + 𝛾
𝑀∑︁
𝑖=1

𝛼𝑖 ‖∇𝑓𝑖 (𝑥★ℓ ) − ∇𝑓𝑖 (𝑥★)‖ + 𝛾𝜌 ‖𝑥★ℓ − 𝑦ℓ ‖

≤ ‖𝑥★ℓ − 𝑥★‖ + 𝛾
𝑀∑︁
𝑖=1

𝛼𝑖𝐿‖𝑥★ℓ − 𝑥★‖ + 𝛾𝜌 ‖𝑥★ℓ − 𝑥ℓ ‖

≤ 𝐷 ‖𝑥★ℓ − 𝑥★‖ + 𝐷 ′‖𝑦ℓ − 𝑥★ℓ ‖
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for some 𝐷, 𝐷 ′ > 0. For any ℓ, 𝑘 , we then have

𝔼‖𝑥𝑘ℓ − 𝑥★‖2

≤ 2𝔼
[
‖𝑥𝑘ℓ − 𝑥★ℓ ‖2 + ‖𝑥★ℓ − 𝑥★‖2

]
≤ 2𝐶 ′𝔼‖𝑦ℓ − 𝑥★ℓ ‖2 + 2𝐷𝔼‖𝑥★ℓ − 𝑥★‖2 + 2𝐷 ′𝔼‖𝑦ℓ − 𝑥★ℓ ‖2

≤ 4𝐶 ′𝔼‖𝑦ℓ − 𝑥★‖2 + (4𝐶 ′ + 2𝐷)𝔼‖𝑥★ℓ − 𝑥★‖2 + 2𝐷 ′𝔼‖𝑦ℓ − 𝑥★ℓ ‖2

≤ (8𝐶 ′ + 2𝐷 + 2𝐷 ′)𝔼‖𝑦ℓ − 𝑥★‖2

≤ (8𝐶 ′ + 2𝐷 + 2𝐷 ′)𝔼‖(1 + 𝛽ℓ ) (𝑥ℓ − 𝑥★) − 𝛽ℓ (𝑥ℓ−1 − 𝑥★)‖2 + 2𝐷 ′𝔼‖𝑥★ℓ − 𝑥ℓ ‖2

≤2(8𝐶 ′ + 2𝐷 + 2𝐷 ′) (1 + 𝛽ℓ )2𝔼‖𝑥ℓ − 𝑥★)‖2 + 2(8𝐶 ′ + 2𝐷 + 2𝐷 ′) (1 + 𝛽ℓ )2𝔼‖𝑥ℓ−1 − 𝑥★)‖2

≤2(8𝐶 ′ + 2𝐷 + 2𝐷 ′) (1 + 𝛽ℓ )2𝐶 (1 − 𝜌)ℓ + 2(8𝐶 ′ + 2𝐷 + 2𝐷 ′) (1 + 𝛽ℓ )2𝐶 (1 − 𝜌)ℓ−1

≤ 16(8𝐶 ′ + 2𝐷 + 2𝐷 ′)𝐶 (1 − 𝜌)ℓ−1 .

Hence, by Markov’s inequality and Borel-Cantelli’s lemma, 𝑥𝑘ℓ → 𝑥★ almost surely. As a direct result, we get for our
two random algorithms, the same convergence as (SM6.1) for DAve-PG,

𝑥𝑘ℓ →ℓ→∞ 𝑥
★ and thus 𝑥𝑘ℓ = prox𝛾𝑟 (𝑥𝑘ℓ ) →ℓ→∞ 𝑥

★ = prox𝛾𝑟 (𝑥★) with probability 1.

This convergence implies identi�cation of optimal support (see e.g. the recent survey [21, Cor. 1]). Recalling
Assumption 2i, there exists 𝜀 > 0 such that

supp(𝑥★) = supp
(
prox𝛾𝑟

(
𝑥★ − 𝛾

𝑀∑︁
𝑖=1

𝛼𝑖∇𝑓𝑖 (𝑥★) + e
))

= supp
(
prox𝛾𝑟

(
𝑥★ + e

) )
for all e ∈ B(0, 𝛾𝜀). Hence, since 𝑥𝑘ℓ →ℓ→∞ 𝑥★ almost surely, 𝑥𝑘ℓ will belong to the ball of radius 𝛾𝜀 centered on 𝑥★ in
a �nite number of outer iterations, say Λ < ∞, with probability one. The equation above then directly implies that
for all ℓ ≥ Λ, supp(𝑥★) = supp(prox𝛾𝑟 (𝑥𝑘ℓ )) = supp(𝑥𝑘ℓ ).

Finally, it su�ces to notice that 𝑥ℓ+1 = 𝑥𝑘ℓ for some 𝑘 to conclude the proof.

SM6.2. Proof of Theorem 5.2. From Theorem 5.1 we know that identi�cation takes place i.e. that we have null(𝑥𝑘ℓ ) =
null(𝑥★) := 𝑛★ for all 𝑘, ℓ (ℓ ≥ Λ). In this case,

[𝑥𝑘ℓ ]𝑛★ = 0 and [𝑥𝑘ℓ ]𝑛★ = 𝑥𝑘ℓ

where we denote by 𝑛★ the complementary of 𝑛★. In addition, if 𝑥 = prox𝛾𝑟 (𝑥) is such that null(𝑥) = 𝑛★, then
𝑥 = [𝑥]

𝑛★
= prox𝛾𝑟 ( [𝑥]𝑛★) by separability of 𝑟 . Then, recalling that all coordinates in supp(𝑥𝑘ℓ ) = 𝑛★ are updated

with the choice of (4.6), we have for all 𝑘, ℓ ≥ Λ

[𝑥𝑘ℓ ]𝑛★ =

[
prox𝛾𝑟 ( [𝑥𝑘ℓ ]𝑛★)

]
𝑛★

=

[
prox𝛾𝑟

(
𝑀∑︁
𝑖=1

𝛼𝑖 [𝑥𝑘−𝐷
𝑘
𝑖 ]

𝑛★
− 𝛾

𝑀∑︁
𝑖=1

𝛼𝑖 [∇𝑓𝑖 (𝑥𝑘−𝐷
𝑘
𝑖 )]

𝑛★

)]
𝑛★

=

[
prox𝛾𝑟

(
𝑀∑︁
𝑖=1

𝛼𝑖𝑥
𝑘−𝐷𝑘

𝑖 − 𝛾
𝑀∑︁
𝑖=1

𝛼𝑖 [∇𝑓𝑖 (𝑥𝑘−𝐷
𝑘
𝑖 )]

𝑛★

)]
𝑛★

.

This exactly coincides with a non-sparsi�ed update on the restriction of 𝑓𝑖 to the subspace of vectors with null
coordinates in 𝑛★. More speci�cally, let 𝑆★ = {𝑥 ∈ ℝ𝑑 : null(𝑥) = 𝑛★} be the subspace of vectors with null coordinates
in 𝑛★, and 𝑓

𝑖 |𝑛★ be the restriction of 𝑓𝑖 to 𝑆★. Then the above iteration coincides with non-sparsi�ed update on
((𝛼𝑖 ), (𝑓𝑖 |𝑛★), 𝑟 ). In other words, after identi�cation, Spy is no longer random and has the same iterates as DAve-PG
on 𝑆★ (while in 𝑆★⊥, the algorithm has converged to 0). Theorem 2.1 therefore guarantees that Spy bene�ts from a
(1 − 𝛾 (𝜇 + 𝜌))2 rate in terms of epochs (since (𝜇 + 𝜌) is the modulus of strong convexity of each 𝑓

𝑖 |𝑛★).
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SM6.3. Proof of Theorem 5.3. Following the choice of (4.6),

MC = 𝑂̃

(
1

𝛾 (𝜇 + 𝜌)

)
for both C2 and C3 from Theorem 5.2 (see also [32, Lemma 11]). Finally,

L(𝜀) = 𝑂
(
𝜇 + 𝜌/2
𝜇

log
(
1
𝜀

))
from Theorem 4.1. Put together, this gives the following complexity:

C(𝜀) = 𝑂̃
(
𝜇 + 𝜌/2
𝛾𝜇 (𝜇 + 𝜌) (2𝑠

★ + 𝑐) log
(
1
𝜀

))
.

Since 𝑐 ≈ 𝑠★ � 𝑑 , we have by de�nition (in (4.3)) 𝜌 � 𝐿 ≥ 𝜇 (we will use 𝜇 + 𝐿 ≤ 2(
√
2 − 1)𝜌 in the . step of the

upcoming equation). Taking the maximal 𝛾 = 2/(𝜇 + 𝐿 + 2𝜌), we have
𝜇 + 𝜌/2
𝛾𝜇 (𝜇 + 𝜌) (2𝑠

★ + 𝑐) ≤ 𝜇 + 𝐿 + 2𝜌
2𝜇 (2𝑠★ + 𝑐)

.𝑐�𝑑

√
2(𝜅(Rℓ )𝐿 − 𝜇) (2𝑠★ + 𝑐)

𝜇 (1 − 𝜅(Rℓ ))

≤ 2 (𝐿 − 𝜇)
√
𝑑 (2𝑠★ + 𝑐)
𝜇
√
𝑐

= 2𝐿 − 𝜇
𝜇

√
𝑑𝑐

(
1 + 2𝑠

★

𝑐

)
= 2𝐿 − 𝜇

𝜇

√
𝑑𝑠★

(√︂
𝑐

𝑠★
+ 2

√︂
𝑠★

𝑐

)
≤ 4𝐿 − 𝜇

𝜇

√
𝑑𝑠★ max

(√︂
𝑐

𝑠★
;
√︂
𝑠★

𝑐

)
.

SM7. Numerical illustration of the stopping tests

In Algorithm 4.1, the stopping criteria C1 with prescribed number of inner loops is simple and natural. In contrast,
enforcing criteria C3 needs a full gradient evaluation (see e.g. [54]), which requires some partial synchronization and
then breaks the asynchronous nature of the method.

In our numerical experiments, we use a simpli�cation of the stopping test C1 with only one epoch, following the
principle of “1 pass over the data = 1 restart” used in Catalyst [32]. We illustrate here that this simple stopping rule
gives similar empirical convergence as C3 without its computational issues.
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Figure SM2: Comparison of C1 with one epoch and C3 on a LASSO problem.
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