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GENERATION OF FINE TRANSITION LAYERS AND THEIR DYNAMICS

FOR THE STOCHASTIC ALLEN–CAHN EQUATION

M. ALFARO, D. ANTONOPOULOU, G. KARALI, AND H. MATANO

Abstract. We study an ε-dependent stochastic Allen–Cahn equation with a mild random noise
on a bounded domain in Rn, n ≥ 2. Here ε is a small positive parameter that represents formally
the thickness of the solution interface, while the mild noise ξε(t) is a smooth random function of
t of order O(ε−γ) with 0 < γ < 1/3 that converges to white noise as ε → 0+. We consider initial
data that are independent of ε satisfying some non-degeneracy conditions, and prove that steep
transition layers—or interfaces—develop within a very short time of order ε2| ln ε|, which we call
the “generation of interface”. Next we study the motion of those transition layers and derive a
stochastic motion law for the sharp interface limit as ε → 0+. Furthermore, we prove that the
thickness of the interface for ε small is indeed of order O(ε) and that the solution profile near the
interface remains close to that of a (squeezed) travelling wave; this means that the presence of
the noise does not destroy the solution profile near the interface as long as the noise is spatially
uniform. Our results on the motion of interface improve the earlier results of Funaki (1999) and
Weber (2010) by considerably weakening the requirements for the initial data and establishing the
robustness of the solution profile near the interface that has not been known before.

1. Introduction

We consider a stochastic Allen–Cahn equation with a Neumann boundary condition

∂tu = ∆u+
1

ε2
f(u) +

1

ε
ξε(t), t > 0, x ∈ Ω,

∂u

∂ν
= 0, t > 0, x ∈ ∂Ω,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω is a smooth open bounded domain in Rn (n ≥ 2), ν is the outward unit normal vector to ∂Ω,
and ε > 0 is a small parameter. The nonlinearity f is of the bistable type, and the perturbation term
ξε(t) is what we call a mild noise which is a smooth but random function of t that behaves like an
irregular white noise in the limit as ε→ 0. As mentioned in [22], such an equation can be viewed as
describing intermediate (mesoscopic) level phenomena between macroscopic and microscopic ones.
In such a scale, an active noise appears as a correction term to the reaction-diffusion equation when
fluctuations in the hydrodynamic limit is taken into account, see [34].

Our main goal is to make a detailed analysis of the sharp interface limit of the problem (1.1)
as ε → 0. In the deterministic case where the perturbation term ξε is replaced by non-random,
uniformly bounded smooth functions, the sharp interface limit of (1.1) is well understood: it is
known that the solution u typically develops steep transition layers—or interfaces—of thickness
O(ε) within a very short time, which we call the generation of interface (or one may call it the
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emergence of transition layers). Furthermore, as ε→ 0, those layers converge to interfaces of thick-
ness 0 whose law of motion is given by the curvature flow with some driving force (the propagation
of interface). See [1, 11] and the references therein for details.

In the present problem, the perturbation term ξε(t) is no longer uniformly bounded as ε → 0,
since it converges to white noise in a certain sense. The unboundedness of the functions {ξε}ε>0,
besides the fact that they are random, makes the analysis harder than in the classical deterministic
case. Nonetheless, as we shall see, it is possible to derive a number of results that are as optimal
as those established for the classical deterministic problem.

Our first result concerns the generation of interface. More precisely, we consider solutions of
(1.1) with ε-independent initial data, and show that steep transition layers of thickness O(ε) emerge
within a very short time. This thickness estimate of order O(ε) is the same optimal estimate known
for the classical deterministic problem. Next we discuss the propagation of interface and show that
the thickness of the layer remains of order O(ε) as time passes, and that the law of motion of the
interface in the sharp interface limit as ε→ 0 is given by

V = (n− 1)κ+ cẆt,

where V is the inward normal velocity, κ denotes the mean curvature (positive for convex bodies),

c is a positive constant and Ẇt is a white noise. The above equation was first derived in [22, 36]
for a special class of ε-dependent initial data that already have well-developed transition layers.
Our result confirms the validity of the same equation for rather general ε-independent initial data.
Furthermore, we also show that the profile of the solution near the interface is well approximated
by the traveling wave. This implies that the solution profile near the interface is quite robust and
is not destroyed by the random noise, as long as the noise depends only on the time variable.

The singular limit of a stochastic Allen–Cahn equation of the form (1.1) was studied by Funaki
in his pioneering work [22] for two space dimensions and later by Weber [36] for general space
dimensions n ≥ 2. Our results improve the work of [22, 36] in three notable aspects. First, as
mentioned above, our paper studies the emergence of steep transition layers (the generation of
interface) at the very initial stage of evolution, which is not discussed in [22, 36]. Secondly, our
O(ε) estimate of the thickness of layers is optimal and therefore is considerably better than the
order O(εα) (0 < α < 1) estimates in [22, 36]. Thirdly, we show the robustness of the solution
profile around the interface in the presence of noise (rigidity of profile), a fact that has been totally
unknown before.

Concerning results on the generation of interface, let us also mention the very recent papers
[27, 28]. In [27], the author considers the one-dimensional case with space-time white noise and
studies both the generation and motion of the interface, thus improving the work [21], which did
not consider the generation of interface. However, as we shall explain in Subsection 1.2, the one-
dimensional case is totally different from the multi-dimensional case as the curvature effect does
not appear in the former. Therefore the problems treated in [21, 27] are different from the subject
of the present paper. In [28], the authors considers a multi-dimensional problem under a space-time
noise that is smooth in x. However [28] deals with only the generation of interface, thus the motion
of interface under such a noise remains unknown.

1.1. Assumptions. Let us state our standing assumptions in the present paper. The nonlinearity
is given by f(u) := −W ′(u), where W (u) is a double-well potential with equal well-depth, taking
its global minimum value at u = a±. More specifically, we assume that

(1.2) f is C2 and has exactly three zeros a− < a < a+,
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(1.3) f ′(a±) < 0, f ′(a) > 0,

and

(1.4)

∫ a+

a−

f(u)du = 0.

This last assumption (1.4) makes f a balanced bistable nonlinearity. We will use this assumption
only in Section 5, where we study the propagation of interface. No such assumption is needed for
the emergence of interface, which we discuss in Section 4.

Concerning the initial data, we assume that u0 ∈ C2(Ω), and define

(1.5) C0 := ‖u0‖C0(Ω) + ‖∇u0‖C0(Ω) + ‖∆u0‖C0(Ω).

The initial interface is defined by

(1.6) Γ0 := {x ∈ Ω : u0(x) = a} .
We assume that Γ0 ⊂⊂ Ω is a C2,α (0 < α < 1) hypersurface without boundary and that

(1.7) ∇u0(x) · n(x) 6= 0 for any x ∈ Γ0,

where n = n(x) denotes the outward unit normal vector to Γ0 at x.
Let Ω0 denote the region enclosed by Γ0. Without loss of generality, we may assume that

(1.8) u0(x) < a for any x ∈ Ω0 and u0(x) > a for any x ∈ Ω \ Ω0.

As regards the perturbation term ξε(t), we shall consider two types of mild noises as specified
below, following [22] and [36].

First type of noise (MN1)

Following Funaki [22], we consider a mild noise ξε given in the form

(1.9) ξε(t) := ε−γ1ξ(ε−2γ1t), t > 0,

for some

(1.10) 0 < γ1 <
1

3
,

where ξ(t) = ξt is a stochastic process in t that is stationary and strongly mixing. More specifically,
let Fξt1+τ ,...,ξtk+τ be the distribution function of the k random variables ξt1+τ , . . . , ξtk+τ , then the
stochastic process ξt is called stationary if for all k, τ and for all t1, . . . , tk

Fξt1+τ ,...,ξtk+τ = Fξt1 ,...,ξtk .

Let (Ωprob,F ,P) be the probability space where ξt is realized, with F := σ(ξr : 0 ≤ r < +∞) the
σ-algebra generated by ξr for 0 ≤ r < +∞, and P the probability measure. Then Fs,t := σ(ξr :
s ≤ r ≤ t) is the subalgebra of F generated by ξr for s ≤ r ≤ t. We assume that the process ξt is
strongly mixing in the following sense: the mixing rate ρ(t) defined by

ρ(t) := sup
s≥0

sup
A∈Fs+t,∞, B∈F0,s

|P(A ∩B)− P(A)P(B)|/P(B), t ≥ 0,

satisfies ∫ ∞
0

ρ(t)1/pdt < +∞ for some p > 3/2.
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In Funaki [22], this last condition is used to derive some estimates that are uniform in ε; see the
proof of Proposition 4.1 and Lemma 5.3 in [22].

Furthermore, it is assumed that t 7→ ξ(t) is C1 almost surely,

|ξ(t)| ≤M, |ξ̇(t)| ≤M, E[ξ(t)] = 0,

for some deterministic constant M , with ξ̇ := dξ
dt . Obviously, the above implies that

t 7→ ξε(t) is C1 almost surely,

and that

(1.11) |ξε(t)| ≤Mε−γ1 , |ξ̇ε(t)| ≤Mε−3γ1 .

In Funaki [22], these conditions are used to justify the limit interface equation (1.16) as ε→ 0, but,
as we shall see, the estimate (1.11) will also be fundamental for our analysis of the initial formation
of layers (the generation of interface).

Notice that the coefficient ε−γ1 in the definition (1.9) implies that ξε(t) is unbounded as ε→ 0.
As shown in [22], ξε(t) converges to an irregular white noise as ε→ 0 in a certain sense.

Second type of noise (MN2)

Following Weber [36], we define the mild noise ξε(t) = ξεt as the derivative of a mollified Brownian
motion. More precisely, let W (t), t ≥ 0, be a Brownian motion defined on the space (Ωprob,F ,P).
(Here, as usual, the dependence of W on the sample points ω ∈ Ωprob is not shown explicitly.)
For technical reasons, W (t) is extended over R by considering an independent Brownian motion

W̃ (t), t ≥ 0, and setting W (t) = W̃ (−t) for t < 0. Then W (t), t ∈ R, is a Gaussian process, with
independent stationary increments and a distinguished point W (0) = 0 almost surely. Also, let
ρ : R→ R+ be a mollifying smooth and symmetric kernel, with ρ = 0 outside [−1, 1] and

∫
R ρ = 1.

The approximated Brownian motion W ε(t), t ≥ 0, is defined as usual by

(1.12) W ε(t) := W ∗ ρε(t) :=

∫ ∞
−∞

ρε(t− s)W (s)ds,

where ρε(τ) := ε−γ2ρ(ε−γ2τ) for some constant γ2 satisfying

(1.13) 0 < γ2 <
2

3
.

Note that the Brownian motion for negative times is needed only in the expression (1.12), so only the
negative times in (−εγ2 , 0] will play a role. The constant γ2 determines how quickly W ε converges
to the true integrated white noise as ε→ 0. Since W (t) is Hölder continuous almost surely, W ε(t)
is a smooth function of t almost surely. The noise ξε(t) is then defined as the derivative of W ε(t),
that is,

(1.14) ξε(t) = Ẇ ε(t).

In [36, Propositions 1.2 and 1.3], the author derives estimates for ξε(t) and its derivative ξ̇ε(t)
in the form

|ξε(t)| ≤Mε−γ̃/2, |ξ̇ε(t)| ≤Mε−3γ̃/2 (γ2 <
∀γ̃ < 2/3),



INTERFACES FOR THE STOCHASTIC ALLEN–CAHN EQUATION 5

by using Lévy’s well-known result on the modulus of continuity of Brownian motion:

P

lim sup
δ→0

1

g(δ)
max

0≤s<t≤T
t−s≤δ

|W (t)−W (s)| = 1

 = 1,

where the modulus of continuity is given by g(δ) =
√

2δ log(1
δ ). Actually the very same argu-

ment as in [36] gives the following slightly more refined estimates, whose proof is omitted as it is
straightforward—roughly speaking it suffices to set δ = εγ2 in g(δ).

Proposition 1.1 (Estimates of the noise term). For any T > 0, there exist a non-random constant
M = M(T ) > 0 and (random) ε0 > 0 such that, for all 0 < ε ≤ ε0 and all 0 ≤ t ≤ T ,

(1.15) |ξε(t)| ≤Mε−γ2/2| log ε|1/2, |ξ̇ε(t)| ≤Mε−3γ2/2| log ε|1/2.

This is an analogue of (1.11) and will be fundamental for our analysis of the emergence of
interface.

1.2. Deterministic and stochastic Allen–Cahn equations. The (deterministic) Allen–Cahn
equation was proposed in [3] as a model for the dynamics of interfaces in crystal structures in alloys.
The same equation also appears as a model for various other problems, including population genetics
and nerve conduction.

As far as the one-dimensional case is concerned, the behavior of the solution as ε → 0 was
analyzed in [10, 13]. After a very short time, the value of the solution becomes close to a+ or a−
in most part of the domain, thus generating possibly many very steep transition layers. These well
developed transition layers then start to move very slowly, and each time a pair of transition layers
meet, the two layers annihilate each other, thus the number of layers decrease gradually. Although
those collision-annihilation process takes place rather quickly, the motion of layers between the
collisions is extremely slow, and the profile of the layers look nearly unchanged during those slow
motion periods; in other words, the solution exhibits a metastable pattern. The situation is quite
different in the multi-dimensional case, where such metastable patterns hardly appear because of
the curvature effect on the motion of the interface. This curvature effect in higher dimensions is
well illustrated by the sharp interface limit ε → 0, where the motion of layers (sharp interfaces)
is known to be governed by the mean curvature flow plus some driving forces. There is a large
literature on the rigorous justification of this singular limit; we refer, among others, to [9], [11, 12],
[30, 31], [1]

Stochastic systems of Allen–Cahn type have been analyzed in [17]. For the one-dimensional
case, in [21], [8], the authors studied the stochastic Allen–Cahn equation with initial data close to a
Heaviside function. They proved under an appropriate scaling that the solution stays close to this
shape, while the random perturbation creates a dynamic for the single interface which is observed
on a much faster time scale than in the deterministic case. This has been also studied in [37] via
an invariant measure approach. The author therein, under certain assumptions, proves exponential
convergence towards a curve of minimizers of the energy, and a concentration of the measure on
configurations with precisely one jump. In [32], the authors studied the competition between some
energy functional that is minimized for small noise strength, and they also investigate the entropy
induced by a system of large size.

If the initial data involves more than one interfaces, it is believed that these interfaces also exhibit
a random movement which is much quicker than in the deterministic case, while different interfaces
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should annihilate when they meet [18], and the limiting process is related to the Brownian (see [20]
for formal arguments).

As far as the sharp interface limit of the stochastic Allen–Cahn equation (1.1) is concerned,
we first mention the pioneering work of Funaki [22]: the law of motion of the limit interface is
rigorously derived, for dimension n = 2 and convex initial interface Γ0 and it is given by

(1.16) V = (n− 1)κ+ cẆt,

where V is the inward normal velocity of the inner interface Γt, κ is the mean curvature of Γt, Ẇt

is the white noise in t (namely the singular limit of the mild noise as ε → 0) and c denotes an
identified constant. Note that this motion law was derived under the assumption that the initial
data is well-prepared, in the sense that it depends on ε in such a way that it is very close to

the formal asymptotics, i.e., U0

(
d(x,0)
ε

)
, where U0(z) is the underlying one-dimensional travelling

wave and d(·, 0) the signed distance function to Γ0
1. Later, in [36], the classical result of [22] was

extended to spatial dimensions greater than two without the restriction of initial convexity.
The multi-dimensional stochastic Allen–Cahn equation driven by a multiplicative noise is studied

in [33]. This noise is non-smooth in time and smooth in space (finite sum of time-dependent
Brownian motions, with coefficients deterministic functions of the spatial variables). The authors
prove for ε-dependent initial data, the tightness of solutions for the sharp interface limit problem and
show convergence to phase-indicator functions. The existence and properties of such a stochastic
flow, was first established in [38], in the context of geometric measure theory. More precisely, in
[38] an iterative scheme is constructed, and a sequence of sets with randomly perturbed boundaries
is introduced. The analysis in [33] was based on energy estimates and is related to the construction
of [38]. In [7], a stochastic Allen–Cahn equation is considered; the authors study its large deviation
asymptotics in a joint sharp interface and small noise limit.

The space-time white noise driven Allen–Cahn equation is known to be ill-posed in space dimen-
sions greater than one, [35], [15]. Therefore, in [24], a multi-dimensional stochastic Allen–Cahn
equation with mollified additive white space-time noise is analyzed (finite sum of time-dependent
Brownian motions with finite noise strength). For regular ε-independent initial data, it is shown
that as the mollifier is removed, the solutions converge weakly to zero, independently of the initial
condition. If the noise strength converges to zero at a sufficiently fast rate, then the solutions
converge to those of the deterministic equation. A large deviation principle is discussed in [25].

Considering stochastic models where the Allen–Cahn operator appears, we also refer to the recent
results of [4, 5]. More specifically, in [4], the mass conserving Allen–Cahn equation with noise is
analyzed and the stochastic dynamics of a droplet’s motion along the boundary in dimension 2 are
derived. In [5], the authors established the stochastic existence and investigated the regularity of
solutions for the so-called Cahn-Hilliard/Allen–Cahn equation with space-time white noise.

1.3. Motivation for the current work. Our work stands in the framework of [22] and [36],
to which we have borrowed the mild noises (MN1) and (MN2) in subsection 1.1. As mentioned
before, in these works, it is shown that the sharp interface limit of (1.1) is motion driven by mean
curvature plus an additional stochastic forcing term. This holds true for well-prepared initial data.
However, whether or not this motion law is valid for a large class of initial data has never been
studied. To answer this question, one has to study the generation of interface in details. In this
work, we perform such an analysis for short times, showing that layers of thickness O(ε) are rapidly

1In this paper, a signed distance function d(·, t) to Γt is always negative in the region enclosed by Γt, and positive
elsewhere.
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formed. Then, combining with an accurate understanding for later times, we prove not only that,
for rather general initial data, the thickness of the solutions uε(x, t) remains O(ε), but also precise
the shape of the solutions uε(x, t) inside the layers.

To do so, we shall rely on the results of [1] and [2] for the deterministic Allen–Cahn equation

(1.17) ∂tu = ∆u+
1

ε2
(f(u)− εgε(x, t)) .

The authors in [1] showed that, for a rather general class of initial data that are independent
of ε, the solution uε(x, t) of (1.17) develops a steep internal layer within a short time interval
of O(ε2 ln ε). Consequently, uε(x, t) lies between a pair of super- and sub-solutions u+, u− for
tε ≤ t ≤ T , whose profiles are very close to the formal asymptotics of typical fronts and are located
within the distance of O(ε) from each other. Since the fronts of both u+, u− move by the correct
motion law with an error margin of O(ε), so does the front of uε. This indicates that the layers of
uε(x, t) move by motion by mean curvature plus an additional pressure term, and that the their
thickness is O(ε). Recently, the authors in [2] have found a way to explore the profile of the solution
uε(x, t) inside these layers. More precisely, they have proved the validity of the principal term of
the formal asymptotic expansions for rather general initial data.

Our present analysis of the singular limit of problem (1.1) reveals, in particular, that the profile
of the solutions uε(x, t) is not altered by the mild noise, for both the thickness of the layers (compare
Theorem 3.1 with [1]) and the profile inside the layers (compare Theorem 3.4 with [2]). The main
difference with the deterministic problem stands in a slight shift of the position of the layers which
occurs in the very early times. This will be clarified in Section 4.

Let us underline that, while the perturbation term gε(x, t) in (1.17) remains uniformly bounded
as ε → 0 [1], in the present paper, we allow the perturbation ξε(t) to become singular as ε → 0,
as can be seen in (1.11) and (1.15). We therefore need to modify our argument for the generation
of interface (see Section 4) and then to use the stochastic approach of [22], [16], [36]. The latter
is suitable for perturbations ξε(t) which behaves like white noise as ε → 0, resulting to random
dynamics in the limit, in contrast with [1].

2. On stochastic motion by mean curvature

Before stating our main results, we need to give a precise definition of the motion law of the form
(1.16) for the limit interface. The interpretation of this motion law actually depends on the type
of noise under consideration, namely the (MN1) type noise and the (MN2) type one mentioned
earlier.

2.1. Motion law for the (MN1) type noise. The interpretation of the motion law (1.16) for
this type of noise was clarified by Funaki [22]. In this subsection we will adopt his definition and
first recall some of his results. Note that the interpretation of (1.16) in this sense holds as long as
the random curve Γt remains strictly convex and does not touch the boundary ∂Ω.

Let c0 > 0 and α0 > 0 be given constants (which will be taken as in (5.3) and (3.4) in our
context). A strictly convex curve Γ can be parametrized by θ ∈ [0, 2π) in terms of the Gauss map:
the position x on Γ is denoted by x(θ) if the angle between a fixed direction and the outward
normal n(x) at x to Γ is θ. Denote by κ = κ(θ) the (mean) curvature of Γ at x = x(θ). Then the
stochastic motion by mean curvature dynamics

V = κ+ c0α0Ẇt
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is defined through the nonlinear stochastic partial differential equation for κ = κ(θ, t):

(2.1) ∂tκ = κ2∂θθκ+ κ3 + c0α0κ
2 ◦ Ẇt, 0 < t < σ, θ ∈ [0, 2π),

where ◦ means the Stratonovich stochastic integral and σ = limN→∞ σN . Stopping times are
defined by

σN := inf{t > 0, κ̄t > N or dist(Γt, ∂Ω) < 1/N}, N > 0,

where κ̄t = maxθ∈[0,2π) max{κ(θ, t), κ−1(θ, t), |∂θκ(θ, t)|}. Indeed, once the mean curvature κ(θ, t)

is obtained via (2.1), one can determine Γt = {xt(θ) ∈ R2 ∼= C, θ ∈ [0, 2π)} by formula [22, (1.10)]
to which we refer for further details.

Also, we need to consider approximations of this motion as follows. Let γε0 (which will be taken
as in (4.5) in our context) be a C2,α hypersurface which is a slight shift of Γ0, in the sense that

γε0 → Γ0 as ε→ 0, in the C2,α sense.

Furthermore, we replace the forcing term c0α0Ẇt by − c(εξε(t))
ε , where δ 7→ c(δ) (which will be taken

as in (5.1) in our context) is smooth in a neighborhood of zero, satisfies c(0) = 0 and ∂δc(0) = −c0.
We are therefore equipped with a family of hypersurfaces (γεt )0≤t<σε , starting from γε0 and evolving
with the law

V = κ− c(εξε(t))

ε
on γεt .

Here we have σε = limN→∞ σ
ε
N , where

(2.2) σεN := inf{t > 0, κ̄εt > N or dist(γεt , ∂Ω) < 1/N}, N > 0,

where

(2.3) κ̄εt = max
θ∈[0,2π)

max{κε(θ, t), (κε)−1(θ, t), |∂θκε(θ, t)|},

with κε the mean curvature of γεt .

Since − c(εξε(t))
ε ∼ c0ξ

ε(t) as ε → 0, and since ξε(t) converges to α0Ẇt in distribution sense, it
is expected that the approximations (γεt ) converge, in some sense, to (Γt). Using the martingale
method such a convergence—see Corollary 3.2 for a precise statement—is proved in [22], when
γε0 = Γ0. In particular, for all but countable many N > 0 we have σεN → σN as ε→ 0.

2.2. Motion law for noise of (MN2) type. In this context, the sense of (1.16) was clarified by
Dirr, Luckhaus and Novaga [16], from which we borrow and resume the results in this subsection.
More precisely, we refer to [16, Theorem 3.1] for the existence result and to [16, Corollary 4.2]
for the estimate of the deviation from the original problem, when the white noise is smoothly
approximated and when the initial hypersurface is slightly shifted.

Let c0 > 0 be a given constant (which will be taken as in (5.3) in our context). Since the initial
hypersurface Γ0 = ∂Ω0 is of class C2,α, there is a stopping time τ = τ(Γ0) = τ(ω,Γ0) depending
on the C2,α-norm of Γ0, and a family of hypersurfaces (Γt)0≤t<τ = (Γt(ω))0≤t<τ(ω,Γ0) of class C2,α,
such that, for any X0 ∈ Γ0, there is a process X(·) with X(t) = X(t, ω) ∈ Γt = Γt(ω) for almost
all ω ∈ Ωprob which solves the Itô equation

dX = ν(X(t, ω), t)(n− 1)κ(X(t, ω), t)dt+ ν(X(t, ω), t)c0dW, X(0) = X0,

where κ(y, t) and ν(y, t) are respectively the mean curvature and the inner normal at y ∈ Γt. This
is the sense we adopt for the motion law

V = (n− 1)κ+ c0Ẇt,
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or dV = (n− 1)κdt+ c0dWt, which we call the stochastic motion by mean curvature.
Also, we need to consider approximations of this motion as follows. Let γε0 (which will be taken

as in (4.5) in our context) be a C2,α hypersurface which is a slight shift of Γ0, in the sense that

γε0 → Γ0 as ε→ 0, in the C2,α sense.

Furthermore, we replace the forcing term c0Ẇt by − c(εξε(t))
ε , where δ 7→ c(δ) (which will be taken

as in (5.1) in our context) is smooth in a neighborhood of zero, satisfies c(0) = 0 and ∂δc(0) = −c0.
We are therefore equipped with a family of hypersurfaces (γεt )0≤t<τε , starting from γε0 and evolving
with the law

V = (n− 1)κ− c(εξε(t))

ε
on γεt .

From the definition of the noise ξε(t) as the derivative of an approximated Brownian motion W ε(t)
(by convolution with a mollifier) and the above assumptions, we have—see [36, Lemma 3.3]—that,

for any T > 0, the random functions t 7→
∫ t

0 −
c(εξε(s))

ε ds converge almost surely to t 7→ c0W (t) in

C0,α([0, T ]) for any 0 < α < 1
2 . This enables to quote [16, Corollary 4.2]: there is a time T > 0

such that

(2.4) sup
0≤t≤T

‖d(t, x)− dε(t, x)‖C2,α → 0, as ε→ 0,

where d(·, t), dε(·, t) denote the signed distance functions to Γt, γ
ε
t respectively.

3. Main results

Our first main result is to localize the transitions layers of the solution of the stochastic Allen–
Cahn equation in a O(ε) neighborhood of a family of hypersurfaces (γεt ), which is defined as follows.
The initial hypersurface γε0 is defined in (4.5) and is a slight shift of the initial interface Γ0 defined
in (1.6) (we hope that the reason for such a shift will become transparent for the reader in Section
4).

Let the family (γεt ) evolve with the law of motion

(3.1) V = (n− 1)κ− c(εξε(t))

ε
on γεt ,

where c(δ) is the speed of the bistable traveling wave m(z; δ) defined in (5.1). Recalling Section
2, if the noise is of the (MN1) type then this family is defined for 0 < t ≤ σεN , N > 0 arbitrary,
whereas if the noise is of the (MN2) type this family is defined for 0 < t ≤ τ ε. In the latter case,
let T > 0 be given as in (2.4). Also Ωε

t denotes the region enclosed by γεt .

Theorem 3.1 (Emergence and motion of O(ε) Allen–Cahn layers). Let the nonlinearity f and
the initial data u0 satisfy the assumptions of subsection 1.1, and the mild noise be of (MN1) or
(MN2) type. In the former case, let N > 0 be given. Let uε(x, t) be the solution of (1.1). Let
η ∈ (0, η0 := min(a−a−, a+−a)) be arbitrary and define µ as the derivative of f(u) at the unstable
zero u = a, that is

(3.2) µ = f ′(a) > 0.

Then there exist positive constants ε0 and C such that, for all ε ∈ (0, ε0) and for all tε ≤ t ≤ σεN—
if noise is of (MN1) type—or all tε ≤ t ≤ T—if noise is of (MN2) type—where

tε := µ−1
ε ε2| ln ε|, with µε → µ as ε→ 0,
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we have

(3.3) uε(x, t) ∈


[a− − η, a+ + η] if x ∈ NCε(γεt )
[a− − η, a− + η] if x ∈ Ωε

t \ NCε(γεt )
[a+ − η, a+ + η] if x ∈ (Ω \ Ωε

t ) \ NCε(γεt ),

where Nr(γεt ) := {x ∈ Ω : dist(x,Γt) < r} denotes the r-neighborhood of γεt .

As mentioned in the introduction and clear from the above theorem, the deterministic O(ε)
thickness of the layers of the solutions uε(x, t)—as estimated in [1]—is not altered by the mild
noise.

The above theorem enables to generalize the convergence results of [22] and [36]—which are
concerned with well-prepared initial data—to rather general data.

Corollary 3.2 (Extension of Funaki [22] to general data). Let the nonlinearity f and the initial
data u0 satisfy the assumptions of subsection 1.1. Let the mild noise be of (MN1) type. Assume
further that ξε(0) = 0. Let uε(x, t) be the solution of (1.1). Assume further that n = 2 and that Ω0

is convex. Following subsection 2.1, let (Γt)0≤t<σ:=limN→∞ σN evolve by

V = κ+ (c0α0)Ẇt,

with c0 > 0 the constant defined in (5.3), and

(3.4) α0 :=

√
2

∫ ∞
0

E[ξ0ξt]dt.

Then the random motion of curves (γεt )0≤t<σε:=limN→∞ σεN
defined in subsection 2.1 satisfies the

following two conditions.

(i) Let N > 0 be given. For 0 ≤ t < σεN , let x 7→ Φε(x, t) be the step function with value a− in
the region enclosed by γεt and a+ elsewhere. Then

sup
tε≤t≤σεN

‖uε(·, t)− Φε(·, t)‖L2(Ω) → 0 in probability, as ε→ 0,

where tε is as in Theorem 3.1.
(ii) γεt converges to Γt as ε→ 0 in the following sense: for any T > 0 and all but countable many

N ∈ R+, the joint distribution of (σεN ,Γ
ε
t∧σεN

) on R+ × C([0, T ], C([0, 2π),R2)) converges,

as ε→ 0, to that of (σN ,Γt∧σN ).

Corollary 3.3 (Extension of Weber [36] to general data). Let the nonlinearity f and the initial
data u0 satisfy the assumptions of subsection 1.1. Let the mild noise be of (MN2) type. Let uε(x, t)
be the solution of (1.1). Following subsection 2.2, let (Γt)0≤t<τ(Γ0) evolve by

dV = (n− 1)κdt+ c0dWt,

with c0 > 0 the constant defined in (5.3). For 0 ≤ t < τ(Γ0), let x 7→ Φ(x, t) be the step function
with value a− in the region enclosed by Γt and a+ elsewhere. Let T > 0 be as in (2.4).

Then

sup
tε≤t≤T

‖uε(·, t)− Φ(·, t)‖L2(Ω) → 0 almost surely, as ε→ 0,

where tε is as in Theorem 3.1.
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By performing formal asymptotic expansions, see [1, Section 2] for more details, it is suspected
that, close to the limit interface Γt, the solution is approximated by

(3.5) uε(x, t) ∼ U0

(
d(x, t)

ε

)
+ · · · ,

with d(·, t) the signed distance function to Γt, and U0(z) the unique solution (whose existence is
guaranteed by the integral condition (1.4)) of the stationary problem

(3.6)

{
U0
′′ + f(U0) = 0

U0(−∞) = a− , U0(0) = a , U0(∞) = a+ .

This represents the first approximation of the profile of a transition layer around the interface
observed in the stretched coordinates. As recently proved in [2] for the deterministic case, we are
actually able to prove the validity of the first term of expansion (3.5) for the stochastic case under
consideration.

Let us define the level surface of the solution uε

(3.7) Γεt := {x ∈ Ω : uε(x, t) = a}

and the signed distance function associated with Γε by

(3.8) dε(x, t) :=

{
−dist(x,Γεt ) if uε(x, t) < a

dist(x,Γεt ) if uε(x, t) > a .

Recall that if noise is of the (MN2) type, then T > 0 was defined in (2.4). To unify the notation
in the following, if noise is of the (MN1) type, then, for a given N > 0, we select 0 < T < σN (see
subsection 2.1). It therefore follows from (3.3) that Γεt ⊂ NCε(γεt ) for all tε ≤ t ≤ T , so that

(3.9) |dε(x, t)− dε(x, t)| ≤ Cε ∀(x, t) ∈ Ω× [tε, T ], 0 < ε << 1.

Theorem 3.4 (Profile in the layers). Let the assumptions of Theorem 3.1 hold. Fix ρ > 1 and
0 < T ′ < T . Then

(i) If ε > 0 is small enough then, for any t ∈ [ρtε, T ′], the level set Γεt is a smooth hypersurface
and can be expressed as a graph over γεt .

(ii) We have

(3.10) lim
ε→0

sup
ρtε≤t≤T ′, x∈Ω̄

∣∣∣∣uε(x, t)− U0

(
dε(x, t)

ε

)∣∣∣∣ = 0 ,

where dε denotes the signed distance function associated with Γε.

As mentioned in the introduction and clear from the above theorem, the deterministic profile of
the solutions uε(x, t) inside the layers—as explored in [2]—is not altered by the mild noise.

The rest of the paper is organized as follows. In Section 4, we prove the emergence of internal
layers for the problem (1.1). In Section 5, we construct accurate sub- and super-solutions to study
the motion of the layers that then takes place. The combination of these two studies is performed in
Section 6 where we prove Theorem 3.1 which, using the results of [22], [16], [36], implies Corollaries
3.2 and 3.3. Last, we prove Theorem 3.4 in Section 7.
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4. Rapid emergence of O(ε) layers

This section deals with the emergence of internal layers (or the generation of interface) which oc-
curs very quickly. In other words, given a virtually arbitrary initial data, we prove that the solution
uε(x, t) quickly becomes close to a± in most part of Ω. In order to track the O(ε) thickness of the
layers, we show that the generation occurs in a O(ε) neighborhood of some smooth hypersurface
γε0, which itself lies in a o(ε1−γ) neighborhood of the initial interface Γ0, where γ is chosen such
that {

0 < γ1 < γ < 1
3 if the noise is of the (MN1) type

0 < γ2
2 < γ < 1

3 if the noise is of the (MN2) type.

The reason for such an initial drift is the following. For 0 ≤ t ≤ T , the mean value theorem
provides a 0 < θ < 1 such that

(4.1) ξε(t) = ξε(0) + ξ̇ε(θt)t = ξε(0) + o(ε),

as long as 0 ≤ t ≤ O(ε2| ln ε|), where we have used (1.11) under the noise assumption (MN1),
and (1.15) under the noise assumption (MN2). Once the crucial observation (4.1) is made, the
treatment of the o(ε) term follows from the generation of interface property performed in [1, Section
4], whereas the ξε(0) = o(ε−γ) term explains the initial shift.

In order to take advantage of observation (4.1), we define

(4.2) f ε(u) := f(u) + εξε(0).

In view of assumptions (1.2) and (1.3) on f , and since εξε(0) = o(ε1−γ) → 0, we have, for ε > 0
small enough, that f ε is still of the bistable type, in the sense that

(4.3) f ε has exactly three zeros aε− < aε < aε+,

where aε− = a− + o(ε1−γ), aε = a+ o(ε1−γ), aε+ = a+ + o(ε1−γ), and

(4.4)
d

du
f ε(aε±)→ f ′(a±) < 0, µε :=

d

du
f ε(aε)→ µ = f ′(a) > 0.

We now define

(4.5) γε0 := {x ∈ Ω : u0(x) = aε} ,

which consists in a o(ε1−γ) shift of the initial interface Γ0 defined in (1.6). In view of assumptions
in subsection 1.1, γε0 is a smooth hypersurface without boundary and properties analogous to (1.7)
and (1.8) hold true with obvious changes. In particular, thanks to the compactness of Γ0, (1.7) is
transferred into

(4.6) ∇u0(x) · nε(x) ≥ ϑ > 0 for any x ∈ γε0,

for all ε > 0 small enough. We can now state our generation of interface result.

Theorem 4.1 (Emergence of O(ε) layers around γε0). Let the nonlinearity f and the initial data
u0 satisfy the assumptions of subsection 1.1. Let the mild noise be of (MN1) or (MN2) type. Let
uε(x, t) be the solution of (1.1). Let η ∈ (0, η0 := min(a− a−, a+ − a)) be arbitrary.

Then there exist positive constants ε0 and M0 such that, for all ε ∈ (0, ε0),

(i) for all x ∈ Ω,

(4.7) a− − η ≤ uε(x, µ−1
ε ε2| ln ε|) ≤ a+ + η,
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(ii) for all x ∈ Ω such that |u0(x)− aε| ≥M0ε, we have that

if u0(x) ≥ aε +M0ε then uε(x, µ−1
ε ε2| ln ε|) ≥ a+ − η,(4.8)

if u0(x) ≤ aε −M0ε then uε(x, µ−1
ε ε2| ln ε|) ≤ a− + η.(4.9)

Proof. In view of the crucial observation (4.1) and definition (4.2), the Allen–Cahn equation (1.1)
is recast (for small enough times)

∂tu = ∆u+
1

ε2
(f ε(u)− εgε(t)) , 0 < t ≤ µ−1

ε ε2| ln ε|, x ∈ Ω,

where the perturbation term
gε(t) := −ξε(t) + ξε(0),

satisfies ‖gε‖L∞(0,µ−1
ε ε2| ln ε|) = o(ε), as ε → 0. Moreover, using (1.11) under the noise assumption

(MN1), and (1.15) under the noise assumption (MN2), we get that, in any case,

‖ġε‖L∞(0,µ−1
ε ε2| ln ε|) = O

(
ε−1
)
, as ε→ 0.

After writing the problem in such a form and as far as the perturbation term is concerned, we are in
the footsteps of the Allen–Cahn equation (P ε) studied in [1], since the above estimate corresponds
to assumption (1.3) in [1].

On the other hand, we need to handle the following minor change: f in [1] is replaced by f ε in our
setting. This difference implies that a in [1] is replaced by aε and is the reason why the generation
occurs around γε0 (and not around Γ0). Nevertheless, it is completely transparent that f ε is still
of the bistable type uniformly with respect to small ε > 0 (this property is used in order to derive
certain estimates). More precisely, (4.3) and (4.4) correspond to assumption (1.1) in [1], uniformly
with respect to small ε > 0. Similarly, the non degeneracy assumption (4.6), when crossing the
initial interface γε0, is uniform with respect to small ε > 0 and corresponds to assumption (1.10) in
[1].

We can then construct the analogous of the sub- and supersolutions of [1, Section 4], namely

w±(x, t) = Y ε

(
t

ε2
, u0(x)± ε2C(eµ̃ε

t
ε2 − 1);±ε

)
,

where C > 0 is a large constant, µ̃ε is a very small perturbation of µε, and Y ε(τ, ξ; δ) is the solution
of the Cauchy problem {

Y ε
τ (τ, ξ; δ) = f ε(Y ε(τ, ξ; δ)) + δ for τ > 0

Y ε(0, ξ; δ) = ξ.

Notice that, in this very early stage of emergence of the layers, the above sub- and supersolutions
are obtained by considering only the nonlinear reaction term, that is diffusion is neglected.

For the aforementioned reasons, we can reproduce the lengthy arguments of [1, Section 4] to prove
Theorem 4.1, which is nothing else that the analogous of [1, Theorem 3.1] taking into account the
change f ← f ε. �

5. Propagation of O(ε) layers

In this section, we construct a pair of sub- and supersolutions whose role is to capture in an O(ε)
sandwich the layers of the solution uε(x, t), while they are propagating. In order to proceed to the
aforementioned construction, we need to define first properly some traveling waves and a signed
distance function used in the definition of this pair.
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5.1. Some traveling waves. For δ0 > 0 small enough and any |δ| ≤ δ0, the function u 7→ f(u)+δ
is still of bistable type, and we denote by

a−(δ) = a− +O(δ) < a(δ) = a+O(δ) < a+(δ) = a+ +O(δ),

its three zeros.
Let c(δ), m(z; δ) be the speed and the profile of the unique traveling wave associated with the

one dimensional problem

∂tv = vzz + f(v) + δ, t > 0, z ∈ R.
In other words, we have

mzz(z; δ) + c(δ)mz(z; δ) + f(m(z; δ)) + δ = 0, z ∈ R,
m(−∞; δ) = a−(δ), m(0; δ) = a(δ), m(+∞; δ) = a+(δ).

(5.1)

Notice in particular that the assumption of balanced nonlinearity (1.4) implies c(0) = 0. Moreover,
the following estimates are well-known (see in [14], [22] or [36]).

Lemma 5.1 (Estimates on traveling waves). There exist constants δ0 > 0, C > 0, λ > 0 such that,
for all |δ| ≤ δ0,

0 < a+(δ)−m(z; δ) ≤ Ce−λ|z|, z ≥ 0,

0 < m(z; δ)− a−(δ) ≤ Ce−λ|z|, z ≤ 0,

0 < mz(z; δ) ≤ Ce−λ|z|, z ∈ R,

|mzz(z; δ)| ≤ Ce−λ|z|, z ∈ R,
|mδ(z; δ)| ≤ C, z ∈ R,

(5.2)

and

(5.3) ∂δc(0) = −c0 := − a+ − a−∫ a+

a−

√
2F (u) du

< 0, F (u) :=

∫ a+

u
f(z) dz.

5.2. Signed distance functions. We recall that the family of hypersurfaces (γεt ) follows the law
(3.1) with initial data γε0 defined in (4.5). If the noise is of the (MN1) type then it follows from
(2.2) and (2.3) that, up to reducing ε0 if necessary,

K := sup
0<ε<ε0

sup
0≤t≤σεN

sup
y∈γεt

sup
1≤i≤n−1

|κεi (y, t)| <∞,

with κεi (y, t) the i-th principal curvature of γεt at point y. On the other hand, if the noise is of the
(MN2) type then it follows from (2.4) that, up to reducing ε0 if necessary,

K := sup
0<ε<ε0

sup
0≤t≤T

sup
y∈γεt

sup
1≤i≤n−1

|κεi (y, t)| <∞.

In the sequel we unify the notations by letting T = σεN , T = T if the noise is of the (MN1) type,
(MN2) type respectively.

Let Ωε
t denote the region enclosed by γεt . We then define the associated signed distance function

by

(5.4) d̃ε(x, t) :=

{
−dist(x, γεt ) for x ∈ Ωε

t ,

+dist(x, γεt ) for x ∈ Ω \ Ωε
t .
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For d0 > 0, choose an increasing function ϕ ∈ C∞(R) satisfying

ϕ(s) =


−2d0 if s ≤ −2d0,

s if |s| ≤ d0,

2d0 if s ≥ 2d0.

If d0 is sufficiently small, then, for any 0 < ε < ε0,

dε(x, t) := ϕ(d̃ε(x, t))

is smooth in Ω× (0, T ), satisfies dε(x, t) = 0 for x ∈ γεt ,

(5.5) |∇dε(x, t)| = 1 in {(x, t) : |dε(x, t)| < d0}.

Also, since the inward normal velocity V and the mean curvature κ are equal to ∂td
ε and ∆dε

n−1 ,

equation (3.1) is recast as

(5.6) ∂td
ε(y, t) = ∆dε(y, t)− c(εξε(t))

ε
on {(y, t) : y ∈ γεt }.

5.3. An O(ε)-sandwich of the layers. Equipped with the above material, we are now in the
position to construct sub-and supersolutions for equation (1.1) in the form

(5.7) u±ε (x, t) := m

(
dε(x, t)± εp(t)

ε
; εξε(t)

)
± q(t),

where

(5.8) p(t) := −e−βt/ε2 + eLt +K, q(t) := σ
(
βe−βt/ε

2
+ ε2LeLt

)
,

where β, σ, K and L are positive constants to be chosen. Notice that q = σε2 pt. Notice also that,
initially, the vertical shift p(0) is O(1) but, as soon as t > 0, p(t) becomes O(ε2). Furthermore, it
is clear from the definition of u±ε that, as soon as t > 0, limε→0 u

±
ε (x, t) = a−, respectively a+, if

x ∈ Ωε
t , respectively x ∈ Ω \ Ωε

t .

Proposition 5.2 (Sub- and supersolutions for the propagation). Choose β > 0 and σ > 0 ap-
propriately. Then for any K > 1, there exist constants ε0 > 0 and L > 0 such that, for any
ε ∈ (0, ε0), the functions (u−ε , u

+
ε ) are a pair of sub- and super-solutions for equation (1.1) in the

domain Ω× (0, T ), that is

Lu+
ε := ∂tu

+
ε −∆u+

ε −
1

ε2
f(u+

ε )− 1

ε
ξε(t) ≥ 0, Lu−ε ≤ 0,

in Ω× (0, T ).

Proof. We only give the proof of the inequality for u+
ε , since the one for u−ε follows the same

argument. In the sequel, m and its derivatives are evaluated at

(z∗; δ∗) :=

(
dε(x, t) + εp(t)

ε
; εξε(t)

)
which belongs to R × (−δ0, δ0) if ε > 0 is small enough. Straightforward computations combined
with

f(m+ q) = f(m) + qf ′(m) +
1

2
q2f ′′(θ), for some m < θ = θ(x, t) < u+

ε ,
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and equation (5.1) yield Lu+
ε = E1 + E2 + E3 + E4, with

E1 = − 1

ε2
q

(
f ′(m) +

1

2
qf ′′(θ)

)
+mzpt + qt

E2 = (1− |∇dε|2)
mzz

ε2

E3 =

(
∂td

ε(x, t)−∆dε(x, t) +
c(εξε(t))

ε

)
mz

ε

E4 = εξ̇ε(t)mδ.

Let us first present some useful inequalities. By assumption (1.3), there are b > 0, ρ > 0 such
that

(5.9) f ′(m(z; δ)) ≤ −ρ if m(z; δ) ∈ [a− − b, a− + b] ∪ [a+ − b, a+ + b].

On the other hand, since the region {(z; δ) ∈ R× (−δ0, δ0) : m(z; δ) ∈ [a−+ b, a+− b] } is compact,
there is a1 > 0 such that

(5.10) mz(z; δ) ≥ a1 if m(z; δ) ∈ [a− + b, a+ − b].

We now select

(5.11) β =
ρ

4
, 0 < σ ≤ min(σ0, σ1, σ2),

where

σ0 :=
a1

ρ+ ‖f ′‖L∞(a−−1,a++1)
, σ1 :=

1

2(β + 1)
, σ2 :=

4β

‖f ′′‖L∞(a−−1,a++1)(β + 1)
.

Combining (5.9), (5.10) and 0 < σ ≤ σ0, we obtain

(5.12) mz(z; δ)− σf ′(m(z; δ)) ≥ σρ, ∀(z; δ) ∈ R× (−δ0, δ0).

Now let K > 1 be arbitrary. In what follows we will show that Lu+
ε ≥ 0 provided that the

constants ε0 and L are appropriately chosen. We go on under the following assumption (to be
checked at the end)

(5.13) ε2
0Le

LT ≤ 1.

Then, given any ε ∈ (0, ε0), we have, since σ ≤ σ1, 0 ≤ q(t) ≤ 1
2 , that

(5.14) a− − 1 ≤ u±ε (x, t) ≤ a+ + 1.

Using the expressions for p and q, the “favorable” term E1 is recast as

E1 =
β

ε2
e−βt/ε

2
(I − σβ) + LeLt(I + ε2σL),

where

I = mz(z
∗; δ∗)− σf ′(m(z∗; δ∗))− σ2

2
f ′′(θ)(βe−βt/ε

2
+ ε2LeLt).

In virtue of (5.12), (5.14) and (5.13), we have I ≥ σρ − σ2

2 ‖f
′′‖L∞(a−−1,a++1)(β + 1). Since

0 < σ ≤ σ2, we obtain I ≥ 2σβ. Consequently, we have

E1 ≥
σβ2

ε2
e−βt/ε

2
+ 2σβLeLt ≥ 2σβLeLt.
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Next, in view of (5.5), E2 = 0 in the region |dε(x, t)| ≤ d0. Next we consider the region where
|dε(x, t)| ≥ d0. We deduce from Lemma 5.1 that

|E2| ≤
C

ε2
e−λ|d

ε(x,t)+εp(t)|/ε ≤ C

ε2
e−λ(d0/ε−p(t)).

We remark that 0 < K − 1 ≤ p ≤ eLT +K. Consequently, if we assume (to be checked at the end)

(5.15) eLT +K ≤ d0

2ε0
,

then
d0

ε
− p(t) ≥ d0

2ε
, so that |E2| ≤ C

ε2
e−λd0/(2ε) = O(1), as ε→ 0.

Let us now turn to the term E3. In the region where |dε(x, t)| ≥ min(d0,
1

2K) > 0 (away from the
interface), argument similar as those for E2 yield |E3| = O(1) as ε→ 0 (thanks to the exponential
decay of the wave). In the region where |dε(x, t)| ≤ min(d0,

1
2K), let us pick a y ∈ γεt such that

|dε(x, t)| = dist(x, y). In view of (5.6) and ∂td
ε(x, t) = ∂td

ε(y, t) we get

E3 = (∆dε(y, t)−∆dε(x, t))
mz

ε
.

But it follows from [23, Lemma 14.17] that

|∆dε(y, t)−∆dε(x, t)| =

∣∣∣∣∣
n−1∑
i=1

κεi (y, t)−
n−1∑
i=1

κεi (y, t)

1− dε(x, t)κεi (y, t)

∣∣∣∣∣
≤ |dε(x, t)|

n−1∑
i=1

(κεi )
2(y, t)

|1− dε(x, t)κεi (y, t)|

≤ 2|dε(x, t)|
n−1∑
i=1

(κεi )
2(y, t)

since |dε(x, t)| ≤ 1
2K , and |κεi (y, t)| ≤ K. As a result we have |E3| ≤ 2(n − 1)K2|dε(x, t)| =:

C|dε(x, t)|, so that

|E3| ≤ C
|dε(x, t)|

ε
mz

(
dε(x, t) + εp(t)

ε
; εξε(t)

)
≤ C sup

z∈R,|δ|≤δ0
|zmz(z; δ)|+ Cε|p(t)| sup

z∈R,|δ|≤δ0
|mz(z; δ)|

≤ C3 + C ′3(eLt +K),

for some constants C3 > 0, C ′3 > 0 and where we have used Lemma 5.1.
Last, it follows from (1.11), (1.15) and Lemma 5.1 that |E4| → 0, as ε → 0, uniformly in

Ω× (0, T ).
Putting the above estimates all together, we arrive at

Lu+
ε ≥ (2σβL− C ′3)eLt −O(1)

which is nonnegative, if L > 0 is sufficiently large, and ε0 > 0 sufficiently small to validate assump-
tions (5.13) and (5.15). The theorem is proved. �
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6. Description of the O(ε) layers and their convergence

6.1. Proof of Theorem 3.1. Let η ∈ (0, η0) be given. Let us select β > 0 and σ > 0 that
satisfy (5.11)—so that Proposition 5.2 is available—and βσ ≤ η/3. By the emergence of the layers
property, we are equipped with small ε0 > 0 and a M0 > 0 such that (4.7), (4.8), (4.9) hold with
βσ/2 playing the role of η. On the other hand, in view of (4.6), there is M1 > 0 such that we have
the following correspondence

(6.1)
if dε(x, 0) ≥ M1ε then u0(x) ≥ aε +M0ε

if dε(x, 0) ≤ −M1ε then u0(x) ≤ aε −M0ε,

where we recall that dε(x, 0) denotes the signed distance function associated with the hypersurface
γε0 := {x : u0(x) = aε}. Now we define functions H+(x), H−(x) by

H+(x) =

{
a+ + σβ/2 if dε(x, 0) ≥ −M1ε
a− + σβ/2 if dε(x, 0) < −M1ε,

H−(x) =

{
a+ − σβ/2 if dε(x, 0) ≥ M1ε
a− − σβ/2 if dε(x, 0) < M1ε.

Then from the above observations we see that, after a very short time O(ε2| ln ε|), we have an O(ε)
sandwich of the layers, namely

(6.2) H−(x) ≤ uε(x, µ−1
ε ε2| ln ε|) ≤ H+(x) for x ∈ Ω.

We now would like to use the sub and supersolutions (5.7) for the propagation described at
Section 5. Observe that

u±ε (x, 0) = m

(
dε(x, 0)±K

ε
; εξε(0)

)
± σ(β + ε2L),

so that it follows from εξε(0) = O(ε1−γ) → 0 and Lemma 5.1 on traveling waves m(z; δ) that we
can select K >> M1 so that

u−ε (x, 0) ≤ H−(x) ≤ uε(x, µ−1
ε ε2| ln ε|) ≤ H+(x) ≤ u+

ε (x, 0) for x ∈ Ω.

Let us now choose ε0 > 0 and L > 0 so that Proposition 5.2 applies. It therefore follows from the
comparison principle that

(6.3) u−ε (x, t) ≤ uε(x, t+ tε) ≤ u+
ε (x, t) for x ∈ Ω, 0 ≤ t ≤ T − tε,

where tε = µ−1
ε ε2| ln ε|.

To conclude, in view of εξε(t) = O(ε1−γ)→ 0 and Lemma 5.1 on traveling waves, we can select
ε0 > 0 small enough and C > 0 large enough so that, for all ε ∈ (0, ε0), all 0 ≤ t ≤ T − tε,

(6.4) m(C − eLT −K; εξε(t)) ≥ a+ −
η

2
and m(−C + eLT +K; εξε(t)) ≤ a− +

η

2
.

Using inequalities (6.3), expressions (5.7) for u±ε , estimates (6.4) and σβ ≤ η/3 we then see that,
for all ε ∈ (0, ε0) and all 0 ≤ t ≤ T − tε, we have

(6.5)
if dε(x, t) ≥ Cε then uε(x, t+ tε) ≥ a+ − η
if dε(x, t) ≤ −Cε then uε(x, t+ tε) ≤ a− + η,

and uε(x, t+ tε) ∈ [a− − η, a+ + η], which completes the proof of Theorem 3.1. �
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6.2. Proof of Corollary 3.2. Let us observe that the simplifying assumption ξε(0) = 0 enables
to get rid of the initial small drift which happens during the emergence of the layers. Precisely, in
view of (4.1) and (4.5), γε0 is nothing else than Γ0. As a result, the approximated (deterministic)
γεt involve perturbations of the speed but not of the initial data. This enables (see the end of
subsection 2.1) to reproduce the arguments of [22] to derive Corollary 3.2 from our Theorem 3.1.

Notice that, if ξε(0) 6= 0, then one needs to derive an analogous of (2.4) (available in the Weber’s
context) in the Funaki’s context. We think that, following [22], this can be performed but this is
beyond the scope of the present paper so we decided to avoid this situation.

6.3. Proof of Corollary 3.3. Combining Theorem 3.1 and estimate (2.4), we get Corollary 3.3
by reproducing the arguments of [36, Proof of Theorem 1.1].

7. Profile in the layers

Equipped with Theorem 3.1, we can now prove the validity of the first term of the asymptotic ex-
pansions inside the layers, namely Theorem 3.4. The proof consists in using the stretched variables,
a blow-up argument and the result of [6], as performed in the deterministic case [2].

Before going further, we recall that a solution of an evolution equation is called eternal (or an
entire solution) if it is defined for all positive and negative time. We follow this terminology to
refer to a solution w(z, τ) of

(7.1) wτ = ∆zw + f(w) , z ∈ Rn, τ ∈ R .
Stationary solutions and travelling waves are examples of eternal solutions. We quote below a
result of Berestycki and Hamel [6] asserting that “any planar-like eternal solution is actually a

planar wave”. More precisely, the following holds (for z ∈ Rn we write z = (z(1), · · · , z(n))).

Lemma 7.1 ([6, Theorem 3.1]). Let w(z, τ) be an eternal bounded solution of (7.1) satisfying

(7.2) lim inf
z(n)→∞

inf
z′∈Rn−1, τ∈R

w(z, τ) > a , lim sup
z(n)→−∞

sup
z′∈Rn−1, τ∈R

w(z, τ) < a ,

where z′ := (z(1), · · · , z(n−1)). Then there exists a constant z∗ ∈ R such that

w(z, τ) = U0(z(n) − z∗) , z ∈ Rn , τ ∈ R .
7.1. Proof of (ii) in Theorem 3.4. Let ρ > 1 and 0 < T ′ < T be given. Assume by contradiction
that (3.10) does not hold. Then there is η > 0 and sequences εk ↓ 0, tk ∈ [ρtεk , T ′], xk ∈ Ω̄
(k = 1, 2, ...) such that

(7.3)

∣∣∣∣uεk(xk, tk)− U0

(
dεk(xk, tk)

εk

)∣∣∣∣ ≥ 2η .

In view of (3.3), (3.9) and U0(±∞) = a±, for (7.3) to hold it is necessary to have

(7.4) dε(xk, tk) = O(εk) , as k →∞ .

Recall that dε(·, t) denotes the signed distance function to γεt as defined in subsection 5.2, whereas
dε(·, t) denotes that to Γεt defined in (3.8).

If uεk(xk, tk) = a, then this would mean that xk ∈ Γεktk , in which case the left-hand side of
(7.3) would be 0 (since U0(0) = a), which is impossible. Hence uεk(xk, tk) 6= a. By extracting
a subsequence if necessary, we may assume without loss of generality that uεk(xk, tk) − a has a
constant sign for k = 0, 1, 2, . . ., say

(7.5) uεk(xk, tk) > a (k = 0, 1, 2, . . .),
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which then implies that dεk(xk, tk) > 0 (k = 0, 1, 2, . . .). Since the mean curvature of γεt is uniformly
bounded for 0 ≤ t ≤ T ′, 0 < ε << 1, there is a small δ > 0 such that each x in a δ-tubular
neighborhood of γεt has a unique orthogonal projection on γεt . Since the sequence (xk) remains
very close to γεktk by (7.4), each xk (with sufficiently large k) has a unique orthogonal projection

pk = pεk(xk, tk) ∈ γεktk . Let yk be a point on Γεktk that has the smallest distance from xk. If such a
point is not unique, we choose one such point arbitrarily. Then we have

(7.6) uεk(yk, tk) = a (k = 0, 1, 2, . . .),

(7.7) dεk(xk, tk) = ‖xk − yk‖ ,

(7.8) uεk(x, tk) > a if ‖x− xk‖ < ‖yk − xk‖ .

xk − pk ⊥ γεktk at pk ∈ γεktk ,
Furthermore, (7.4) and (3.9) imply

(7.9) ‖xk − pk‖ = O(εk) , ‖yk − pk‖ = O(εk) (k = 0, 1, 2, . . .).

We now rescale the solution uε around (pk, tk) and define

(7.10) wk(z, τ) := uεk(pk + εkRkz, tk + ε2
kτ) ,

where Rk is a matrix in SO(n,R) that rotates the z(n) axis onto the normal at pk ∈ γεktk , that is,

Rk : (0, . . . , 0, 1)T 7→ nεk(pk, tk) ,

where ( )T denotes a transposed vector and nε(p, t) the outward normal unit vector at p ∈ γεt . Since
γεt (hence the points pk) is uniformly separated from ∂Ω by some positive distance, there exists
c > 0 such that wk is defined (at least) on the box

Bk :=

{
(z, τ) ∈ Rn × R : ‖z‖ ≤ c

εk
, −(ρ− 1)µ−1

εk
| ln εk| ≤ τ ≤

T − T ′

ε2
k

}
,

where we recall that µε → µ = f ′(a) > 0 as ε→ 0. Since uε satisfies the equation in (1.1), we see
that wk satisfies

(7.11) wkτ = ∆zw
k + f(wk) + εkξ

εk(tk + ε2
kτ) in Bk .

Moreover, if (z, τ) ∈ Bk then tεk ≤ tk + ε2
kτ ≤ T . Therefore (3.3) implies

(7.12)

{
dεk(pk + εkRkz, tk + ε2

kτ) ≤ −Cεk ⇒ wk(z, τ) ≤ a− + η ,

dεk(pk + εkRkz, tk + ε2
kτ) ≥ Cεk ⇒ wk(z, τ) ≥ a+ − η ,

as long as (z, τ) ∈ Bk. Now we recall that the rotation by Rk of the z(n) axis is normal to γεktk at

pk, and that the mean curvature of γεt is uniformly bounded for 0 ≤ t ≤ T ′, 0 < ε << 1. Also

the normal speed of γεt , given by V = (n− 1)κ− c(εξεt )
ε , is O(ε−γ

′
) for some 0 < γ′ < 1

3 in view of

c(δ) = −c0δ+O(δ2) as δ → 0, and (1.11) (if (MN1) noise) or Proposition 1.1 (if (MN2) noise). As
a result dε(x, t) satisfies

|dε(x, t)− dε(x, t′)| ≤ C̃

εγ′
|t− t′|, 0 ≤ t, t′ ≤ T ′, 0 < ε << 1,



INTERFACES FOR THE STOCHASTIC ALLEN–CAHN EQUATION 21

for some C̃ > 0. From these observations and (7.12), we see that there exists a constant K > 0,
which is independent of k, such that

(7.13) z(n) ≤ −K ⇒ wk(z, τ) ≤ a− + η , z(n) ≥ K ⇒ wk(z, τ) ≥ a+ − η ,

for all (z, τ) ∈ Bk with ‖z‖ ≤
√

1/εk and |τ | ≤ 1/(εk
1−γ′).

Now, since wk solves (7.11), the uniform (w.r.t. k ≥ 0) boundedness of wk and standard parabolic
estimates, along with the derivative bounds on τ 7→ εkξ

εk(tk + ε2
kτ) (see (1.11) or Proposition 1.1),

imply that wk is uniformly bounded in C
2+γ,1+ γ

2
loc (B1). We can therefore extract from (wk) a

subsequence that converges to some w in C2,1
loc (B1). By repeating this on all Bk, we can find a

subsequence of (wk) that converges to some w in C2,1
loc (Rn × R) (note that ∪k≥0B

k = Rn × R).
Passing to the limit in (7.11) yields

wτ = ∆zw + f(w) on Rn × R .

Hence we have constructed an eternal solution w(z, τ) which—in view of (7.13)—satisfies (7.2).
Lemma 7.1 then implies that

(7.14) w(z, τ) = U0(z(n) − z∗)
for some z∗ ∈ R.

Now we define sequences of points (zk), (z̃k) by

zk :=
1

εk
R−1
k (xk − pk) , z̃k :=

1

εk
R−1
k (yk − pk) .

By (7.9), these sequences are bounded, so we may assume without loss of generality that they
converge:

zk → z∞ , z̃k → z̃∞ , as k →∞ .

By the definition of the z coordinates, z∞ must lie on the z(n) axis, that is,

z∞ = (0, . . . , 0, z(n)
∞ )T .

It follows from (7.6) and (7.8) that

(7.15) w(z̃∞, 0) = a , w(z, 0) ≥ a if ‖z − z∞‖ ≤ ‖z̃∞ − z∞‖ .

Note that by (7.14), the level set w(z, 0) = a coincides with the hyperplane z(n) = z∗, and recall
that U0

′ > 0. Therefore, in view of (7.14) and (7.15), we have either z̃∞ = z∞, or that the ball

of radius ‖z̃∞ − z∞‖ centered at z∞ is tangential to the hyperplane z(n) = z∗ at z̃∞. This implies

that z̃∞, as well as z∞, must also lie on the z(n) axis. Therefore

z̃∞ = (0, . . . , 0, z∗)T ,

and the inequality w(z∞, 0) ≥ a implies that z
(n)
∞ ≥ z∗. On the other hand equality (7.7) implies

dεk(xk, tk)/εk = ‖xk − yk‖/εk = ‖zk − z̃k‖ → ‖z∞ − z̃∞‖ = z
(n)
∞ − z∗. The assumption (7.3) then

yields

0 =
∣∣∣w(z∞, 0)− U0(z(n)

∞ − z∗)
∣∣∣

=

∣∣∣∣ lim
k→∞

uεk(xk, tk)− U0

(
lim
k→∞

dεk(xk, tk)

εk

)∣∣∣∣
≥ 2η .
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This contradiction proves statement (ii) of Theorem 3.1. �

7.2. Proof of (i) in Theorem 3.4. The proof of (i) below uses an argument similar to the proof
of Corollary 4.8 in [29]. Fix ρ > 1 and 0 < T ′ < T . For a given η ∈ (0,min(a− a−, a+ − a)) define
ε0 > 0 and C > 0 as in Theorem 3.1. Then we claim that

(7.16) lim inf
ε→0

inf
x∈NCε(γεt ), ρtε≤t≤T ′

∇uε(x, t) · nε(p(x, t), t) > 0 ,

where nε(p, t) denotes the outward unit normal vector at p ∈ γεt .
Indeed, assume by contradiction that there exist sequences εk ↓ 0, tk ∈ [ρtεk , T ′], xk ∈ NCεk(γεktk )

(k = 1, 2, ...) such that
∇uεk(xk, tk) · nεk(pk, tk) ≤ 0 ,

where pk = p(xk, tk). By rescaling around (pk, tk) and using arguments similar to those in the proof

of (ii), one can find a point z∞ with |z(n)
∞ | ≤ C such that

U0
′(z(n)
∞ ) ≤ 0 ,

which contradicts to the fact that U0
′ > 0 and establishes (7.16). Since, in view of Theorem 3.1,

Γεt ⊂ NCε(γεt ), the estimate (7.16) implies that ∇uε(x, t) 6= 0 for all x ∈ Γεt ; hence by the implicit
function theorem, Γεt is a smooth hypersurface in a neighborhood of any point on it. The fact that
Γεt can be expressed as a graph over γεt also follows from (7.16). This proves the statement (i) of
Theorem 3.1. �
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