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Abstract—The novelty of this paper is to propose a new LDPC
decoder called Sign-Preserving Noise-Aided Min-Sum (SP-NA-
MS) decoder that improves the decoding performance compared
to classical Offset Min-Sum (OMS) decoder when messages are
quantized, with only 3 or 4 bits. The particularity of the SP-
NA-MS decoder is that the variable-to-check messages are never
set to 0, and always carry the sign information. Moreover, the
decoder incorporates random perturbation due to deliberate
noise injection. The parameters of the SP-NA-MS decoders are
optimized in the asymptotic limit of the code length thanks to
the Density Evolution (DE) method. The finite-length simulations
confirm the conclusions of the DE analysis and gain of up to 0.3
dB in SNR can be obtained compared to regular OMS with same
quantization level.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes are widely used
in communications standards like DVB-S2, DVB-S2X, IEEE
802.3 [1], etc. LDPC codes can be efficiently decoded by
Message-Passing (MP) algorithms that use a Tanner graph
[2] representation of the LDPC codes. The Belief-Propagation
(BP) decoder has excellent decoding performance in the
waterfall region but at a cost of a high computational
complexity. The Min-Sum (MS) and Offset Min-Sum (OMS)
decoders [3], [4] are simplified version of the BP that are much
less complex but at a cost of a slight decoding performance
degradation. Reducing the bit-size representation of messages
is a technique that further reduces the complexity of the
decoder, again, at a cost of performance loss. In the past fifteen
years, the quantization of MP decoders has been extensively
studied over the Binary-Input Additive White Gaussian Noise
(BI-AWGN) channel [4]–[6]. From these works, it is usually
advised that 6 bits of quantization gives almost floating point
performance. It can also be observed that, to the best authors
knowledge, all paper on finite precision use the "no-decision
value", i.e., a Log-Likelihood Ratio (LLR) equal to 0 (without
defined sign, thus) in their messages representation. This is
also true for the recent work on Non-surjective Finite Alphabet
Iterative Decoders (NS-FAIDs) [7] which provides a unified
framework for several MS-based decoders like Normalized MS
(NMS) decoder, OMS decoder, Partially OMS decoder.
In [8], the authors have shown that 3 or 4 bits quantized
decoder can benefit from the introduction of particular
randomness applied in the amplitude of messages during
the decoding process. Thanks to the Density Evolution (DE)
method [9], optimized parameters of noise injection could be
determined in the asymptotic mode. Those type of decoders

are called Noise-Against-Noise MS (NAN-MS) decoders.
In this paper, we propose a new type of decoder for low
complexity hardware implementation (i.e. 3 or 4 bits only for
finite length representation of messages) that always preserve
the sign of the messages. In other words, we forbid the 0
value in the message alphabet during the iterative decoding,
i.e. a message cannot be erased. In order to optimize this
new decoder, we use the optimization method proposed in
[8], i.e. we introduce a certain level of randomness in the
optimization process. The result can be either a decoder
that keeps some randomness, named Sign-Preserving Noise-
Aided Min-Sum (SP-NA-MS) decoder, or a deterministic
decoder that combines MS and OMS behaviors, named Sign-
Preserving decoder.
DE allows us to show that a 4-bits SP-NA-MS decoder can
have the same DE threshold than a classical 5-bit OMS
decoder. Our DE analysis is corroborated by finite length
Monte Carlo simulations of various regular LDPC codes.
Those results open new possibilities for massive parallel
implementation of LDPC decoders where in average, 100 to
1000 bits are decoded per clock cycle, allowing 100 Gbit/s up
to 1 Tbit/s decoders required in optical fiber applications.
Due to paper size limitation, in this paper we present only
the results for regular LDPC codes, but the proposed decoder
can be used to decode irregular LDPC codes. The outline of
the paper is as follows. Section II introduces the basic notions
of quantized classical decoders and LDPC codes. In Section
III, we explain how to preserve the sign of the exchanged
messages. In Section IV, we discuss the probabilistic error
model used to inject noise to the quantized decoders, and
briefly explain how to optimize the model parameters with
DE. In section V, we present the results of the asymptotic
analysis of SP-NA-MS decoders for regular LDPC codes.
Section VI shows finite length performance validation of the
gains obtained with the proposed SP-NA-MS decoders, and
section VII concludes the paper.

II. BASIC NOTIONS OF CLASSICAL QUANTIZED
DECODERS AND LDPC CODES

An LDPC code is a linear block code defined by a sparse
parity-check matrix H = [hmn] of M rows by N columns,
with M < N . The usual graphical representation of an LDPC
code is made by a Tanner graph which is a bipartite graph
G composed of two types of nodes, the variable nodes (VNs)
vn, n = 1...N and the check nodes (CNs) cm,m = 1...M . A



VN in the Tanner graph corresponds to a column of H and a
CN corresponds to a row of H , with an edge connecting CN
cm to VN vn exists if and only if hmn 6= 0. Let us assume
that v is any VN and c is any CN. Let us also denote V(v)
the set of neighbors of a VN v, and denote V(c) the set of
neighbors of a CN c. The degree of a node is the number of
its neighbors in G. A code is said to have a regular column-
weight dv = |V(v)| if all VNs v have the same degree dv .
Similarly, if all CNs c have the same degree dc = |V(c)|, a
code is said to have a regular row-weight dc.
Let x = (x1, ..., xN ) ∈ {0, 1}N denote a codeword which
satisfies HxT = 0. In this paper, x is mapped by the BPSK
modulation and transmitted over the BI-AWGN channel with
noise variance σ2. The channel output y = (y1, ..., yN ) is
modeled by yn = (1− 2xn) + zn for n = 1, . . . , N , where zn
is a sequence of independent and identically distributed (i.i.d.)
Gaussian random variables with zero mean and variance σ2.
For quantized decoders the message alphabet AC is defined as
AC = {−Nq, ...,−1, 0,+1, ...,+Nq} consists of Ns = 2Nq+
1 states, with Nq = 2(q−1) − 1 and where q is the number of
quantization bits. Let us denote AL the decoder input alphabet,
and denote ` ∈ N the number of iterations. Let us also denote
m

(`)
v→c ∈ AL (resp. m(`)

c→v ∈ AL) the message sent from VN
v to CN c (resp. CN c to VN v) in the `th iteration.
The LLR can be computed at the channel output as

LLR(yn) = log
(

Pr(yn | xn = 0)

Pr(yn | xn = 1)

)
=

2yn
σ2

. (1)

We assume in this paper that AC = AL, hence, LLR(yn) has
to be quantized and saturated. Let us denote the quantizer by
Q : R→ AL, defined as

Q (y) = S (bα× y + 0.5c , Nq) , (2)

where b.c depicts the floor function and S(x,Nq) is the
saturation function clipping the value of x in the interval
[−Nq, Nq], i.e. S(x,Nq) = min(max(x,−Nq),+Nq). The
parameter α is called channel gain factor and is used to enlarge
or decrease the standard deviation of quantized values at the
decoder input, α can be seen as an extra degree of freedom
in the quantized decoder definition that can be analyzed and
optimized on the BI-AWGN channel. With those notations, we
define the quantized version of the LLR that initialize the MP
decoder by the vector I = (I1, ..., IN ) ∈ ANC , with

In = Q (LLR(yn)) ∀n = 1, . . . , N. (3)

A MP decoder exchanges messages between VNs and CNs
along edges using a Tanner graph. Let us briefly recall the VN
update (VNU) and CN update (CNU) equations for classical
MS-based decoders. The update rule at a CNU is given by

m
(`)
cm→vn =

 ∏
v∈V(cm)\{vn}

sign
(
m(`)
v→cm

)( min
v∈V(cm)\{vn}

(∣∣∣m(`)
v→cm

∣∣∣)) .
(4)

The update rule at a VNU is expressed as

m(`+1)
vn→cm = Λ

In +
∑

c∈V(vn)\{cm}

m(`)
c→vn

 , (5)

Table I: Binary representation of the quantized values.
Classical Decoder SP-NA-MS Decoder

m ∈ AC q = 3 bits m ∈ AS q = 3 bits (sign(m), |m|)
−3 101 −3 111 (−1,3)
−2 110 −2 110 (−1,2)
−1 111 −1 101 (−1,1)
− 100 −0 100 (−1,0)
0 000 +0 000 (+1,0)
+1 001 +1 001 (+1,1)
+2 010 +2 010 (+1,2)
+3 011 +3 011 (+1,3)

where Λ(x) = sign(x)×S(max(|x|−λv, 0)), Nq)
1. We define

the classical OMS with offset value λv 6= 0, where the special
case of λv = 0 corresponds to the classical MS.

III. SIGN-PRESERVING NOISE-AIDED MIN-SUM
DECODERS

In the classical MS-based decoders, the value of the v-to-c
message can be zero, see (5). In that case, the erased message,
i.e. m(`+1)

vn→cm = 0, does not carry any information and does not
participate in the convergence of the decoder. In this paper,
we propose a new type of decoder, with a modified VNU
using a sign preserving factor, which never propagates erased
messages.

A. Quantization used for SP-NA-MS Decoders

Using the sign-and-magnitude representation one can obtain a
message alphabet which is symmetric around zero and which
is composed of 2q states. Hence the message alphabet for
SP-NA-MS decoders denoted by AS is defined as AS =
{−Nq, ...,−1,−0,+0,+1, ...,+Nq}2. The sign of a message
m ∈ AS indicates the estimated bit value associated with the
VN to or from which m is being passed while the magnitude
|m| of m represents its reliability. In this paper, it is assumed
that AL = AS . An example of the binary representation of
AC and AS for q = 3 is shown in Table I, one can see that
−0 is represented by 1002, +0 is represented by 0002, etc.
The quantization process defined in (2) is replaced by

Q∗ (y) = (sign(y),S (dα× |y|e − 1, Nq)) , (6)

where d.e depicts the ceiling function. The quantized LLR is
thus defined as In = Q∗ (LLR(yn)) ∈ AS for n = 1, . . . , N .
Let us define the update rules for Sign-Preserving decoders.

B. Sign-Preserving Min-Sum Decoders

One can note from (4) that the CNU, by construction,
generates outgoing messages that always belong to AS . In
the case of the VNU, (5) should be modified to ensure that
the outgoing message will always belong to AS . To preserve
always the sign of the messages, let us denote by µ(`)

vn→cm the
sign-preserving factor of the message m(`+1)

vn→cm , defined as

µ(`)
vn→cm = ξ × sign(In) +

∑
c∈V(vn)\{cm}

sign
(
m(`)
c→vn

)
, (7)

1Note that in the literature λv is often applied at the CN. Applying the
offset at the VN or at the CN is equivalent only when the saturation function
is not used since mini=1,...,n(|xi| − λv) = mini=1,...,n(|xi|)− λv .

2The alphabet AS can be easily implemented in hardware because each
value of AS has its corresponding binary representation.



where ξ = 1 + ((dv + 1) mod 2) where dv is the degree of
the VN v. Note that the other values of ξ give worse decoding
performance.
From (7), one can note that, by construction, µ(`)

vn→cm is the
sum of dv (resp. dv+1) values in {−1,+1} if dv is odd (resp.
if dv is even). Thus, µ(`)

vn→cm is always an odd number.
The update rule of the Sign-Preserving Offset Min-Sum (SP-
OMS) VNU is changed from (5) to

m(`+1)
vn→cm = Λ∗

µ(`)
vn→cm

2
+ In +

∑
c∈V(vn)\{cm}

m(`)
c→vn

 ,

(8)
where Λ∗(x) = (sign(x),S (max(b|x|c − λv, 0), Nq)). Note
that Λ∗(.) is applied on a non-null value since by construction,
the fractional part of (µ

(`)
vn→cm)/2 is 0.5.

We define a Sign-Preserving Min-Sum (SP-MS) with λv = 0.

C. Sign-Preserving Noise-Aided Min-Sum Decoders

The noisy version of the SP-MS decoder, i.e., the SP-NA-
MS decoder is defined by introduction some randomness
during the VNU processing following the same principle as
for the NAN-MS decoder of [8]. The SP-NA-MS decoder is
implemented perturbing unsaturated v-to-c messages m̂(`+1)

vn→cm .
In (8), the saturation function S in the function Λ∗ is not used
to compute m̂(`+1)

vn→cm , i.e. we use Λ∗(x) = (sign(x), b|x|c).
The update rule for a noisy-VNU is given by

m̃(`+1)
vn→cm = Υ

(
m̂(`+1)
vn→cm

)
, (9)

where Υ is a noise model which is defined in the next section.
Note that the Υ performs also the saturation operation.

IV. PROBABILISTIC ERROR MODEL AND NOISY DENSITY
EVOLUTION FOR SP-NA-MS DECODERS

In this section, we first introduce the constraints on the noise
models, then we present the noise model that we use to perturb
m̂. Finally, we briefly explain how to optimize the model
parameters with noisy DE.

A. Probabilistic Error Model for SP-NA-MS Decoders

DE analysis can be performed only using memoryless
noise models which must satisfy the following condition of
symmetry [8]

Pr(Υ(β1) = β2) = Pr(Υ(−β1) = −β2), ∀β1, β2,
these noise models allow the VNUs to be symmetric, allowing
to use the all-zero codeword assumption necessary in DE [9].
Moreover, since the addition of noise is independent of the
sign of the message, we will suppose in the sequel without
loss of generality that the message m̂ is always positive.
Let us denote AN the alphabet of m̂, with AN = {−Nq ×
dv−bdv/2c), ...,−0,+0, ...,+Nq×dv+bdv/2c}. The function
Υ is defined as Υ : AN → ÃS , where ÃS = AS , with
the random process that transforms m̂ ∈ AN into m̃ ∈ ÃS
defined by the conditional probability density function (CPDF)
Pr(Υ(m̂) = m̃). Υ is parametrized by three different transition

Table II: Conditional probability density function of Υ.

m̃\m̂ +0 +1 +1 < . < +Nq +Nq . > +Nq

m̃ = m̂− 1 0 ϕ0 ϕa ϕs 0
m̃ = m̂ 1 1− ϕ0 1− ϕa 1− ϕs 0
m̃ = Nq 0 0 0 0 1

m̂

+5
+4
+3
+2
+1
+0

m̃
+3
+2
+1
+0

ϕs
ϕa
ϕ0

1
1− ϕs
1− ϕa
1− ϕ0

Figure 1: The mapping used for the noise model Υ.

probabilities, denoted ϕ = (ϕs, ϕa, ϕ0). ϕs denotes the CPDF
Pr(m̃ = +Nq−1 | m̂ = +Nq), ϕa denotes the CPDF Pr(m̃ =
β − 1 | m̂ = β), ∀β ∈ {+2, ...,+(Nq − 1)}, and finally ϕ0

denotes the CPDF Pr(m̃ = +0 | m̂ = +1). The saturation
function is performed by setting Pr(m̃ = +Nq | m̂ > +Nq) =
1. Table II give the resulting CPDF.
The rationale behind Υ is to implement a probabilistic offset
with the purpose of always keeping the sign of the messages.
Let us discuss the case of ϕs = ϕa = ϕ0. It can see that SP-
MS and SP-OMS decoders are implemented with ϕ = (0, 0, 0)
and ϕ = (1, 1, 1), respectively. For other values of ϕ, the
offset is only applied from time to time during the decoding
iterations, implementing a probabilistic weighted combination
of a SP-MS decoder and a SP-OMS decoder.
With ϕs and ϕ0, the extreme values of AS are studied. m̂ =
±1 is a special case because it will be changed to m̃ = ±0
with probability ϕ0. Since m̃ = ±0 propagates the sign but
with a reliability of zero, therefore, ϕ0 has to be analyzed
differently than ϕa. Additionally, in quantized decoders, all
values greater than Nq are saturated to Nq . As a result, many
more configurations of the VNU states lead to m̃(`)

vn→cm = Nq
compared to other values, and ϕs should also be analyzed
differently than ϕa. Fig. 1 depicts Υ for (q = 3, Nq = 3).

B. Noisy Density Evolution for SP-NA-MS Decoders

The goal of DE is to recursively compute the probability mass
function (PMF) of the exchanged messages in the Tanner graph
along the iterations. DE allows us to predict if an ensemble of
LDPC codes, parametrized by its degree distribution, decoded
with a given MP decoder, converges to zero error probability in
the limit of infinite block length. For the BI-AWGN channel,
the maximum value of σ or the minimum SNR at which the
DE converges to a zero error probability is called the DE
threshold δ, as in [8] δdb = 10 log10

(
1

2Rσ∗2

)
where σ∗ = δ,

and R is the rate of the code.
In this paper the details of the noisy-DE equations are not
presented, we refer to [10], [11] for more details. The noisy-
DE threshold δ̃ is a function of the code family, parametrized
by its degree distribution (dv, dc), of the number of precision
bits q, of the value of the channel gain factor α, and of
the values of the transition probabilities of the noise model



(ϕs, ϕa, ϕ0). For a fixed q and a fixed (dv, dc), δ̃ is used to
jointly optimize (ϕs, ϕa, ϕ0) and α:

(ϕ∗s, ϕ
∗
a, ϕ
∗
0, α
∗) = arg max

(ϕs,ϕa,ϕ0,α)

{
δ̃ (dv, dc, q, α, (ϕs, ϕa, ϕ0))

}
.

(10)

V. ASYMPTOTIC ANALYSIS FOR REGULAR LDPC CODES

In this section, we consider the ensemble of (dv, dc)-regular
LDPC codes with code rate R ∈ {1/2, 3/4} for dv ∈ {3, 4},
R = 0.8413 for the IEEE 802.3 ETHERNET code [1], and
quantized decoders with q ∈ {3, 4}. The optimization of the
transition probabilities of the noise model Υ and the channel
gain factor is made using a greedy algorithm which computes a
local maximum DE threshold. For noiseless classical decoders,
the optimization (10) is reduced to the optimum channel gain
factor α∗ which is computed performing a grid-search.
The DE thresholds of the noiseless classical MS and OMS
decoders are given in Table III. It can be seen that the OMS
is almost always superior to the MS for the considered cases,
which was expected, except for the regular dv = 3 LDPC
codes with low precision q = 3.

Table III: DE thresholds of classical MS and OMS decoders.

(dv , dc)-regular LDPC code, BI-AWGN channel

(dv = 3, dc = 6) (dv = 3, dc = 12) (dv = 6, dc = 32)

q λv α∗ δdb α∗ δdb α∗ δdb

3 bits
0 0.9375 1.7888 0.625 2.7316 0.455 4.0812
1 1.0625 2.2039 0.9375 3.1343 0.84 3.5928

4 bits
0 2.0 1.6437 1.25 2.5646 1.035 3.8154
1 1.875 1.3481 1.5 2.4484 1.28 3.1685

5 bits
0 4.0 1.6132 2.5 2.5268 1.985 3.7506
1 2.625 1.2154 2.25 2.3040 1.45 3.1400

(dv = 4, dc = 8) (dv = 4, dc = 16)
q λv α∗ δdb α∗ δdb

3 bits
0 0.8125 2.7360 0.6875 3.1550
1 1.25 2.3219 0.9375 3.0632

4 bits
0 1.625 2.5389 1.375 2.9441
1 1.75 1.7509 1.5 2.5292

5 bits
0 3.25 2.4948 2.75 2.8991
1 2.0 1.7061 1.875 2.4606

In Table IV, we indicate the noisy DE thresholds obtained
with (10), we also show the DE gains obtained comparing the
best thresholds indicated in bold in Table III and the noisy
thresholds of SP-NA-MS decoders. Moreover, we list the best
noisy DE thresholds of NAN-MS decoders presented in [8].
Several conclusions can be derived from this analysis.
1) First, the DE thresholds of the SP-NA-MS decoders are
almost always better than the DE thresholds of the noiseless
classical decoders. The DE gains for the SP-NA-MS decoders
are quite important for q = 3, the largest gain obtained is
around 0.3399 dB for (dv = 4, dc = 8). While the DE gains
are smaller for the largest precision q = 4. We can observe a
loss of around 0.0102 dB for (dv = 6, dc = 32) and q = 4.
From this analysis, we can conclude that the preservation of
the sign of messages and the noise injection are more and more
beneficial as the decoders are implemented in low precision.
2) Second, when comparing the noisy thresholds of SP-NA-
MS and NAN-MS decoders, one can observe that the SP-
NA-MS decoders achieve better DE thresholds for almost
all (dv, dc)-regular LDPC codes tested, the only exception

appears for the regular (dv = 6, dc = 32) LDPC code and
q = 4. The largest gain obtained, when comparing the SP-NA-
MS thresholds and NAN-MS thresholds, is around 0.1803 dB
for the regular (dv = 6, dc = 32) LDPC code and q = 3.
3) A third remark comes from the interpretation of the
optimum ϕ∗ obtained through the DE analysis. We have
ϕ∗0 = 0 for regular dv = 3 LDPC codes, this makes sense
because dv = 3 is small enough to transform m̂ = ±1

into m̃ = ±0, which gives to m̃
(`)
vn→cm a reliability of zero

and which could not help to extrinsic messages become more
and more reliable at each new decoding iteration. For regular
dv > 3 LDPC codes, we have almost always ϕ∗0 = 1, hence,
one can conclude that for regular dv > 3 LDPC codes, the
transformation from m̂ = ±1 to m̃ = ±0, does not affect the
decoding process. Note that in [8], the transformation from
m̂ = ±1 to m̃ = 0 should not be allowed since m̃ = 0 ∈ AC
erase the bit value.
4) Finally, all SP-NA-MS decoders can be implemented
as deterministic decoders since the values of the transition
probabilities are close or equal to 0 or 1. The optimum noise
parameters ϕ∗ are close to (ϕ∗s, ϕ

∗
a, ϕ
∗
0) = (1, 1, 0) for the

regular dv = 3 LDPC codes. While in the case of the regular
dv > 3 LDPC codes, ϕ∗ are close to (ϕ∗s, ϕ

∗
a, ϕ
∗
0) = (1, 1, 1)

which correspond to a deterministic SP-OMS decoder.

Table IV: Noisy DE thresholds of SP-NA-MS decoders

SP-NA-MS decoders, (dv , dc)-regular LDPC code, BI-AWGN channel NAN-MS

(dv , dc) q α∗ ϕ∗
s ϕ∗

a ϕ∗
0 δ̃db DE gain δ̃db - NIV

(3, 6)
3 0.96 0.987 0.712 0.000 1.4994 0.2894 1.5711
4 1.79 1.000 1.000 0.000 1.2688 0.0793 1.2877

(3, 12)
3 0.72 1.000 0.725 0.000 2.5421 0.1895 2.5989
4 1.34 1.000 0.938 0.000 2.3596 0.0888 2.3777

(4, 8)
3 1.01 0.900 1.000 1.000 1.9820 0.3399 2.1056
4 1.54 1.000 1.000 1.000 1.7306 0.0203 1.7411

(4, 16)
3 0.75 1.000 0.962 0.712 2.7448 0.3184 2.8121
4 1.30 1.000 1.000 1.000 2.4941 0.0351 2.5077

(6, 32)
3 0.74 1.000 1.000 1.000 3.3963 0.1965 3.5766
4 1.18 1.000 1.000 1.000 3.1787 −0.0102 3.1685

VI. FINITE LENGTH PERFORMANCE

In order to corroborate the asymptotic results obtained in the
previous section, the frame error rate (FER) performance of
quantized decoders over the BI-AWGN channel is presented.
For this purpose, we designed four (dv, dc)-regular QC-LDPC
codes with length N = 1296, R ∈ {1/2, 3/4} for dv ∈ {3, 4},
and circulant size L = 54 for R = 1/2 and L = 27 for R =
3/4, using the PEG algorithm from [12]. The classical OMS
decoder performance for q = 5 is also shown as benchmark.
A maximum of 100 iterations has been set for dv = 3 and
dv = 4 LDPC decoders. Fig. 2 shows the FER performance
comparisons between the classical MS, classical OMS, and
SP-NA-MS decoders, for the two considered precisions q =
3 and q = 4, and for the regular (dv = 3, dc = 6) QC-
LDPC code. Fig. 3 draws the same curves for the regular
(dv = 4, dc = 8) QC-LDPC code. A first conclusion is that
the finite length FER performance are in accordance with the
gains predicted by the DE analysis. We observe in the waterfall
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Figure 2: FER performance for (3, 6)-regular LDPC code.
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Figure 3: FER performance for (4, 8)-regular LDPC code.

(i.e. at FER = 10−2) an SNR gain for the SP-NA-MS decoders
which corresponds to the threshold differences: around 0.27
dB for (q = 3, dv = 3,R = 1/2), 0.06 dB for (q = 4, dv =
3,R = 1/2), 0.32 dB for (q = 3, dv = 4,R = 1/2), and
the same performance for (q = 4, dv = 4,R = 1/2). We
have made the same analysis for QC-LDPC codes with rate
R = 3/4, i.e. (dv = 3, dc = 12) and (dv = 4, dc = 16), and
obtained that the SNR gains correspond to the DE gains.
Simulation results for the IEEE 802.3 ETHERNET code are
provided on Fig. 4 with a maximum of 30 iterations. Again, the
SNR gains in the waterfall correspond to what was predicted
with the DE analysis, with a 0.19 dB gain for q = 3 and the
same performance for q = 4.

VII. CONCLUSION

In this paper we have proposed to use a sign-preserving
factor which helps the message passing decoders to keep
the sign information of extrinsic messages during the VNU
processing. We have also proposed a noise model to introduce
randomness in the message passing decoders. Both the sign-
preserving factor and the noise model help to improve the
error correction performance of quantized iterative decoders.
Density Evolution was used to obtain the optimum noise
parameters and the optimum channel gain factor. The DE
thresholds results have shown that the preservation of the
sign of messages and the effect of the injected noise is
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Figure 4: FER performance for the ETHERNET code.

always beneficial for low precision SP-NA-MS decoders. The
finite-length Monte Carlo simulations have corroborated the
DE thresholds. An efficient implementation of SP-NA-MS
decoders can be made without noise injection since the noise
parameters are close or equal to 0 or 1.
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