
HAL Id: hal-01949913
https://hal.science/hal-01949913v1

Submitted on 1 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building Correct SDN Components from a Global
Event-B Formal Model

Christian Attiogbé

To cite this version:
Christian Attiogbé. Building Correct SDN Components from a Global Event-B Formal Model. Formal
Aspects of Component Software, Oct 2018, Pohang, South Korea. pp.35-53, �10.1007/978-3-030-02146-
7_2�. �hal-01949913�

https://hal.science/hal-01949913v1
https://hal.archives-ouvertes.fr


Building Correct SDN Components from a
Global Event-B Formal Model

J. Christian Attiogbé

LS2N - UMR CNRS 6004 - University of Nantes
Christian.Attiogbe@univ-nantes.fr

Abstract. Software defined networking (SDN) brings flexibility in the
construction and management of distributed applications by reducing
the constraints imposed by physical networks and by moving the con-
trol of networks closer to the applications. However mastering SDN still
poses numerous challenges among which the design of correct SDN com-
ponents (more specifically controller and switches). In this work we use a
formal stepwise approach to model and reason on SDN. Although formal
approaches have already been used in this area, this contribution is the
first state-based approach; it is based on the Event-B formal method,
and it enables a correct-by-construction of SDN components. We pro-
vide the steps to build, using several refinements, a global formal model
of a SDN system; correct SDN components are then systematically built
from the global formal model satisfying the properties captured from the
SDN description. Event-B is used to experiment with the approach.

Keywords: SDN, Correct Design, Event-B, Refinement, Decomposition

1 Introduction

An essential constituent of distributed applications is the physical network be-
hind them. Distributed applications very often, build on existing middlewares
which embody services provided by the network level. Thus the reliability of dis-
tributed applications depends not only on their own development but also on the
reliability of the network. Due to the involvment of many physical devices, the
network level has been for many years a source of severe complexities and con-
straints leading very often to the adoption of rigid solutions in the deployment
of applications.

Fighting the lack of flexibility of physical networks has resulted in the Software-
Defined Networking (SDN) initiative [15,17,1]. Software-Defined Networking now
provides the opportunity to go deeper in modelling and reasonning on networks,
since it enables to define and manage more easily the networks at software level.
Indeed a Software-Defined Network is made of a controller and switches which
are abstractly defined before being implemented at software level. In this context
an user application does not consider a physical network or a specific middleware
but it is rather built on top of a virtual or open network.



2

Even if Software-Defined networking makes it possible to control an entire
network with software, through programs that tailor network behavior to suit
specific applications and environments, programmers still have many difficulties
to write correct SDN programs. This is due to the unpredictability of the SDN
as a distributed asynchronous system, and the lack of correctly developped SDN
frameworks or formally verified SDN frameworks. Many works have been un-
dertaken around SDN; they address different aspects: building simulators and
analysers for SDN, building SDN controllers, verifying the controller component
of an Software-Defined Network, etc.

However SDN deployment is still at its beginning and programmers or ad-
ministrators still need trustworthy materials and frameworks. Such materials
may come from rigorously founded models and related reasonning and engineer-
ing tools. Besides, considering the keen and the demands for the deployment
of SDN as a flexible infrastructure for specific applications, clouds applications,
IoT, etc, which all require security, it is of tremendous importance to have at
the disposal of developpers trustworthy development, analysis and simulation
frameworks. Formal models taking into account several of these aspects are then
necessary. That is the challenges that motivates of our work.

The main contributions of this paper are: i) capturing the SDN as a discrete-
event system to foster its modelling with an event-based approach; ii) a state-
based core model for rigorous analysis, development and simulation frameworks
dedicated to SDN applications. It is a global Event-B [2] formal model, designed
as the basis of the stepwise construction of the various components of a SDN; iii)
the systematic derivation of correct components (SDN controller and switches)
from the global model which is previously proved to have some required proper-
ties.

The article is organised as follows. Section 2 gives an overview of the Software-
Defined Networking, related works and main issues. In Section 3 we introduce the
main concepts for modelling SDN, an overview of Event-B method and then our
approach to build the global abstract model by stepwise refinements. Section 4
shows how one can derive the construction of a correct SDN controller from
the global formal model. Section 5 gives the first experimental results related to
simulation and verification of global safety/liveness properties. We conclude in
Section 6 and stress some challenges for future work.

2 Overview of SDN: Concepts and Architecture

The SDN architecture consists of three layers: User-application, Control and
Data forwarding. Control and Data are the most relevant ones when studying
the SDN. Figure 1 depicts how the SDN is viewed from the user side as a
single global switch which denotes an abstraction of an entire network. User
applications can directly exploit an abstraction of the network. Network services
are solicited directly from host machines linked to a physical device: a switch
assumed to be under the SDN control.



3

User Applications

SDN Control

Physical infrastructure

API

OpenFlow(Standard communications Interface)

Network service
Network service

Network service

Ctl

Fig. 1. The layered architecture of a SDN

In Software-Defined Networking there is a physical separation between the
control-plane (the management of the network and definition of rules to for-
ward data packets) and the data-plane (how packets are forwarded according
to control-plane) [17,15]. Indeed the network control (the high level or control-
plane) is now separated from the packet forwarding (the low level or data-plane)
activity and, physical devices inside the low level may be designed more eas-
ily; the network control is independent from device providers, the control is
brought closer to software controllers and administrators. Traditional network
services such as routing, access control, traffic engineering, security, etc can be
implemented via various API provided by the SDN, instead of being vendor-
dependent. The control and data levels are linked by an open communication
interface. OpenFlow [9,1] is representative of such communication interfaces.
OpenFlow is a standard communication interface, that moves the control of the
network from the physical switches to logically centralized control software.

SDN has been used in variety of implementations, for example [16] is ded-
icated to the implementation of wireless networks, while in [5] the authors de-
scribe a tool, FlowChecker, which identifies any intra-switch misconfiguration
within a FlowTable of a switch. RouteFlow [19] is a controller which implements
virtualized IP routing over OpenFlow infrastructure.

2.1 Concepts and Components

We distinguish in Figure 2, the main components of an SDN. Switches and
controller are network devices that interact using packets and messages on data
channel and message channel.

Switch. A switch is a device responsible of forwarding packets, to perform a hop-
by-hop transfer of information through the network. A switch is configurable by
the controller with which it interacts with the controller via a secure message
channel. A switch interacts with other switches via a data channel.



4

Controler

switch

data channel

control channel

Host

Fig. 2. A detailed architecture

Controller. A controller is a device responsible of controlling a whole network (a
local or medium area network). It is used by the network administrator to dy-
namically configure, in an evolutive way, the switches with adequate forwarding
information; it maintains the connectivity of the switches, etc. The controller
initiates the switches behaviour, maintains them and instructs the switches with
respect to specific actions. Packets not treated by the switches are sent to the
controller via messages emitted on the secure channel. The controller does not
use the data channel.

Packet. A packet contains information related to various protocols (Ethernet,
IP, etc). A packet has a header related to Data, Networkand layers and a body.
Inside the header we have for instance: the destination and source addresses for
each layer, the type of protocol, ...

Message. A message contains a control or management information addressed by
the controller to a switch. The control information is for instance: which packet
to drop, the indication of a port on which the switch may forward a data packet.
A switch can also emit a message to a controller. In this case either the message
contains a response to a control order (for instance the controller asked for the
status of a switch) or a packet for which the switch does not have an entry in
its table for forwarding the packet to its destination.

Flow Table. A flow table is a part of a switch. It describes the switch elementary
behaviour. A flow table is made of several entries sent by the controller. Each
entry has a header information and a body. The header may contain a message
priority set by the controller. The body of the message can be a data packet, or
a rule to process the incoming packets.

Interaction between switches and controller. A properly configured switch has
routes to forward received packets coming from other network services. If the
switch lacks of forwarding information, it sends the received packets to the con-
troller. The controller is linked to the available switches and manages them
directly with orders sent via messages on a secure reliable channel. These mes-
sages are used to configure and maintain the switches, defining for each one the
rules to forward packets it receives. At this stage we have a simple interaction
between application level, and the provided high level network services. But this



5

interaction is more complex if we look at it in details. Consider for this purpose
a detailed view of the interaction with the SDN network depicted by Figure 2.

2.2 OpenFlow: a Standard Interface

OpenFlow is a standard communications interface, supported by the Open Net-
work Foundation [9,17,1]. OpenFlow has been precisely defined but not formally.

As such, OpenFlow provides a means for specifying data level or control-plane
logic and also protocols. However there is no mandatory formal specification or
formal requirements; accordingly the network systems resulting from OpenFlow
may be incorrect or not satisfying safety conditions.

The OpenFlow semantics being unformal, tool builders may assume particu-
lar behaviour and functioning for the network devices, leading to inconsistencies
and incorrect behaviours; that is the case for the order in which packets are
processed inside a switch.

2.3 Issues and Related Works

There is a keen for SDN, justifying several works both from industry and academy.
Important efforts are devoted to the implementation of SDN [19,16,18]. SDN pro-
vides flexible network systems and distributed systems development but there
is no guarantee that these systems are safe or correct. SDN as an asynchronous
system undergoes the impact of time passing and non-determinism or concur-
rency of events. Packets may be received and distributed in any order causing
for instance inconsistent interpretation in the switches when a forwarding route
arrives after the related packet is sent. One of the main issues in SDN is the in-
consistent packet forwarding during a network update which results in an update
inconsistency [8]. Update consistency requires that packets are either forwarded
by an old version of the forwarding table or by the new version of the table (after
an update), but not by an interleaving of the old and the new version.

These issues require efforts to build robust tools and protocols on the basis
of thoroughly studied SDN models. Several works have been devoted to var-
ious aspects of SDN among which the modelling and reasoning on the SDN
controller[10], the analysis of the SDN traffic [8,14].

According to the state of the art [15,12,4,6] most investigations address the
implementation issue as an important challenge; some of the aspects taken into
account in these works are: scalability, performance, security, simulation. The
correction of the implementations has received less attention.

In [13] the authors address the challenge of building robust firewalls for pro-
tecting OpenFlow-based networks where network states and traffic are frequently
changed. They propose the FlowGuard framework for the detection and the res-
olution of firewall policy violation. They use an algorithmic approach.

VeriFlow is a verification tool proposed in [14] for checking in real-time net-
work invariants and policy correctness in OpenFlow networks. This work is based
on direct implementation of the forwarding rules and an algorithmic approach,
that monitors the update events occurring on the network.



6

SDNRacer [8] is a network analyzer which can ensure that a network is free
of harmful errors such as data races or per-packet inconsistencies. The authors
provide a formal semantics enriched with a happens-before model, to capture
when events can happen concurrently.

The work in [10] is devoted to the verification of an SDN controller; the
authors provide an operational model for OpenFlow and formalize it in the Coq
proof assistant. This model is then used to develop a verified compiler and a
run-time system for a high-level network programming language.

To sum up, there is the preliminary steps towards making SDN networks
more reliable; but much works remain to be done:

– making it easier for developers the construction and verification of controllers
from various existing well-researched models,

– enhancing machine-assisted configuration of controllers and OpenFlow-based
switches,

– promoting the reuse of correct SDN components in the deployment of new
SDN (that is interoperability).

The goal of our work is to serve these purposes by contributing with a global,
extensible, refinable formal model. It is the first event-based one, making it easy
to derive simulators and also to prove safety and liveness properties. It is provided
as a reusable formal basis for any one interested, avoiding hence to repeat the
efforts through the chains of works.

Unlike in the case dedicated to implementations, we follow an approach sim-
ilar to those addressing modelling and reasoning on controllers, by defining for
the SDN a global formal model from which the models of the components can
be derived and then correctly implemented.

3 Stepwise Refinement-based Modelling of SDN

We use Event-B [2] and adopt a correct-by-construction approach.

3.1 An overview of Event-B

Event-B [2,11] is a modelling and development method where components are
modelled as abstract machines which are composed and refined into concrete
machines. An abstract machine describes a mathematical model of a system
behaviour1. In an Event-B modelling process, abstract machines constitute the
dynamic part whereas Contexts are used to describe the static part. A Context
is seen by machines. It is made of carrier sets and constants. It may contain
properties (defined on the sets and constants), axioms and theorems. A machine
is described, using named clauses, by a state space made of typed variables and
invariants, together with several event descriptions.
1 A system behaviour is a discrete transition system



7

State Space of a Machine The variables constrained by the invariant (typing
predicate, properties) describe the state space of a machine. The change from
one state to the other is due to the effect of the events of the machine. Specific
properties required by the model may be included in the invariant. The predicate
I(x) denotes the invariant of machine, with x the state variables.

Events of an Abstract Machine Within Event-B, an event is the description of a
system transition. Events are spontaneous and show the way a system evolves.
An event e is modelled as a guarded substitution: e =̂ eG =⇒ eB where eG is the
event guard and eB is the event body or action. An event may occur only when
its guard holds. The action of an event describes, with simultaneous generalised
substitutions, how the system state evolves when this event occurs: disjoint state
variables are updated simultaneously.

The effect of events are modelled with generalised logical substitution (S)
using the global variables and constants. For instance a basic substitution x :=

e is logically equivalent to the predicate x’ such that x’ = e. This is symbolically
written x′ : (x′ = e) where x′ corresponds to the state variable x after the
substitution and e is an expression. In the rest of the paper, the variable x is
generalised to the list of state variables.

Several events may have their guards held simultaneously; in this case, only
one of them occurs. The system makes internally a nondeterministic choice. If
no guard is true the abstract system is blocking (deadlock).

In Event-B Proof Obligations are defined to establish model consistency via
invariant preservation. Specific properties (included in the invariant) of a system
are also proved in the same way.

Refinement. An important feature of the Event-B method is the availability
of refinement technique to design concrete system from its abstract model by
stepwise enrichment of the abstract model. During the refinement process new
variables (y) are introduced; the invariant is strengthened without breaking the
abstract invariant, and finally the events guards are strengthened. In the invari-
ant J(x, y) of the refinement, abstract variables (x) and concrete variables (y)
are linked. The refinement is accompanied with proof obligations in order to
prove their correctness with respect to the abstract model.

Rodin Tool. Rodin2 is an open tool dedicated to building and reasoning on
B models, using mainly provers and the ProB model-checker. Rodin is made of
several modules (plug-ins) to work with B models and interact with related tools.

3.2 Abstractions for SDN Modelling

An SDN is made of a controller linked with several devices, which are the
switches. The controller are linked to the switches via a secure message chan-
nel which conveys message flows between the controller and the switches. The
switches are interconnected via a data channel which conveys data packets. Con-
sequently, the elementary abstractions are the basic sets that represent: the

2 http://wiki.event-b.org/index.php/Main Page



8

switches (SW ID), the packets (PACKET), the messages (MESG), the packet
headers (HEADER), the states of a switch (SW STATE). The messages have
types and may contain packets:mesgType ∈MESG 7→MESGTY PE,mesgPk ∈
MESG 7→ PACKET .

A packet has several headers (MAC source address, MAC destination address,
MAC type, IP source address, IP destination address, IP protocol, transport
source port, transport destination port), for simplification we consider only one of
such header: pHeaderi ∈ PACKET 7→ HEADER. In the model these headers
are specified like the function pHeaderi. All the previous sets and constants are
gathered in a CONTEXT, seen my a MACHINE which contains the variables and
the previous typing predicate and properties respecrively in a VARIABLES and
INVARIANT clauses.

The SDN is a set of components that work concurrently in an asynchronous
manner; we build a first global abstract model that simulates the functioning of
this asynchronous system. The global abstract model will be the basis for the
development of the components.

To structure this abstract model, we consider the data model and the dis-
cretisation of the behaviour (a set of observed events) of each of its components
as a family of events. This is important for mastering the interaction between
components and the forthcoming decomposition of the model.

Switches. Each switch has a flow table which contains the elementary behaviour
of the switch according to the packets entering the switch. The behaviour of a
switch is as follows: when it receives a message from the controller, it analyses
the information inside the message and accordingly performs the instructions
of the controller, for example updating its table, delivering a packet to a given
port indicated in the message, dropping a packet or buffering a packet contained
in the message. When a switch receives a packet from another switch, either
it forwards the packet to another switch according to the rules in its current
table, or it forwards the packet to the controller if there is no rule matching the
packet headers. Accordingly, we have a set of switches: switches ⊆ SW ID.
Each switch has:

– a flow table which may be empty or made of several entries:
flowTable ∈ ENTRY 7→ switches.
Each entry has several headers (similar as for packets); each one is specified
as follows:
eHeaderi ∈ ENTRY 7→ HEADER
dom(eHeaderi) = dom(flowTable)

– a status: swStatus ∈ SW ID 7→ SW STATE ∧ dom(swStatus) = switches
– a buffer swIncomingMsg containing all messages received by the switches:
swIncomingMsg ⊆MESG× switches

– a buffer swIPk for all packet received by a switch, before treatment:
swIPk ∈ PACKET ↔ switches; swIncomingPk is the set of packets such
that swIncomingPk ⊆ PACKET and swIncomingPk = dom(swIPk).
Each packet has a header: pHeaderi ∈ PACKET 7→ HEADER



9

– a buffer swOMsg that contains messages to be sent to the controller:
swOMsg ∈MESG↔ switches; swOutgoingMsg is a set of messages such
that swOutgoingMsg ⊆MESG ∧ swOutgoingMsg = dom(swOMsg)

– a buffer swOPk containing all packets to be sent to other switches or to
the controller: swOPk ∈ PACKET ↔ switches and swOutgoingPk the
set of packets such that swOutgoingPk ⊆ PACKET ∧ swOutgoingPk =
dom(swOPk).

Behaviour of the switch. We capture the behaviour of the switch by considering
how it is involved in the interaction with its environment. Each impact of the
environment is considered as an event. The (re)actions of the switch are modelled
as events that in turn impact or not the environment. We have then a set of events
characterizing the switches; they are as follows.

sw rcv machingPkt: the condition for the occurrence of this event is that there
is in the incoming packets of a switch sw, a packet pkt, received from another
switch via the data channel ((pkt 7→ sw) ∈ dataChan), which header (ahd =
pHeader1(pkt)) is matched with one entry of the flow table of sw:
(∃ee.(((ee ∈ ENTRY ) ∧ (ee ∈ dom(flowTable))) ∧ (eHeader1(ee) =
ahd))) ; the effect of the event is that the packet should be forwarded to
another switch: swIPk := swIPk ∪ {pkt}

sw rcv unmachingPkt: its occurs when a switch receives a packet (from an-
other switch) which header does not match any entry of the flow table.

sw sndPk2ctrl: occurs when a switch emits a message containing an unmached
packet to the controller;

sw sendPckt2sw: a switch sends a packet to another switch via the data chan-
nel;

sw newFTentry: the occurrence of this event expresses that a new entry is
added to the flow table.

· · ·

Controller. A controller is the device that administrates the switches using con-
trol messages. It has buffers which contain messages or packets to be sent/received
to/from switches: a buffer for incoming packets (ctlIncomingPk ⊆ PACKET );
a buffer for outgoing packets (ctlOutgoingPk ⊆ PACKET ).

The controller emits/receives messages on/from the secure channel. These
messages contain either data packets or instructions to control the switches.
Among the control message we have: the Add order to add an new entry into the
table flow of a switch; Modf to modify an entry into the table flow of a switch;
Del to delete an entry into the table flow of a switch.

Behaviour of the controller. As for the switch, the behaviour of the controller is
captured and modelled as a set of events denoting how the controller interacts
with its environment. Each impact of the environment is considered as an event;
the (re)actions of the controller are modelled as events that in turn impact or
not the environment.

As illustration, among the events of the controller we have the following:



10

ctl emitPkt: this event occurs when the controller emits to a switch sw, through
a message, one of its pending packets; the condition for this occurrence is that
there is some pending packets in the dedicated buffer (pkt ∈ ctlOutgoingPk).
The effect of the event is that a message containing the packet is added to
the secure channel: secureChan := secureChan ∪ {msg 7→ sw} and the
buffer is updated: ctlOutgoingPk := ctlOutgoingPk\{pkt}. Figure 3 gives
the Event-B specification of the event; all the remaining events are specified
in a similar way.

ctl rcvPacketIn: this event occurs when the controller receives a packet from a
switch which previously received it but does not have an entry matching it.

ctl askBarrier: the occurrence of this event specifies when the controller asks
for a barrier; that means the controller orders the switch to perform some
control with urgency and to send a barrier acknowledgement.

event ctl emitPkt // the controller emits a mesg conveying a packet
any sw pkt msg
where /* the guard */

sw ∈ switches // in destination to one of the switches
pkt ∈ PACKET
pkt ∈ ctlOutgoingPk // one of the packet to be sent on the sw
msg ∈ MESG // a given message to convey the packet
(msg 7→ PKOut) ∈ mesgType // a packet of type OUT
(msg 7→ pkt) ∈ mesgPk // the message contains the packet

then /* the substitution */
secureChan := secureChan ∪ {msg 7→ sw} //emission on the channel
ctlOutgoingPk := ctlOutgoingPk \ {pkt}

end

Fig. 3. Event-B specification of the event ctl emitPkt

The global abstract model comprises in an EVENT clause, all the events
characterizing the switches and the controller; the occurrence of each event is
due to some conditions of the SDN and this occurrence has effect on the SDN.
In Event-B a guard captures each condition; an Event-B substitution describes
the effect of the event.

Interaction between Controller and Switches. The interaction is based on com-
munications via channels; we distinguish a data packet channel and a control
message channel. The channels are modelled with sets. A switch or a controller
writes/reads messages on/from the channels according to their behaviour.

secureChan ⊆MESG× switches
dataChan ⊆ PACKET × switches

A first abstract Event-B model is obtained by gathering all these abstractions
on data and behaviour.



11

3.3 Model Construction Strategy: the Refinements

Despite the general development strategy in Event-B which consists to build an
abstract global model of a system and then to use several refinements to make it
precise, it is still challenging to determine the refinement steps according to the
problem at hand. In this work we have considered as one of our targets, the main
components of the SDN. That is, we tried to deal with details related to the tar-
geted components (switches, controller). The questions are: what characterizes
the switches and what are the impacts on their environments? what characterizes
the controller behaviour and what are the impacts on its environments? By an-
swering these questions we went out by introducing, for instance, that switches
use various ports and they receive/emit messages on ports. Consequently the
first abstract model of channels is impacted and then refined.

We focus on the architecture of the SDN, and then tried to list the details that
will support actually the achievement of the network services. We have listed,
the detailed structure of packets, the structure of messages, the fine-grained
processing of packets inside the switches. Then we order these details and tried
to handle them one by one. It follows that we have to detail in the refinements:
the structure of packets with various headers and body parts; the structure of
messages, and accordingly the refinement of the abstract channels; the behaviour
of the events that specify the behaviour of both switches and controller. This
guided us to master the gradual modelling. From the methodological point of
view this is a recipe for Event-B adepts.

We also follow the basic recommendations of Event-B to consider small steps
of refinement at time. Table 1 gives an overview of the refinement chains.

GblModel0 The first abstract model; all the events are specified at a high level;
for instance we do not have yet information on ports, etc

GblModel0 1 Refinement. Ports and headers are introduced in the state space thus
refined; the related events are refined.

GblModel0 2 Refinement. Priorities are introduced in the state space; messages are
sent from the controller with a priority in their header.

GblModel0 3 Refinement. The events guard are refined according to priority rules
Table 1. The refinement steps

3.4 Data Refinement

The set of ports (PORTID ACTION) are introduced as data refinement details
in the GblModel0 1 refined abstract model. Packets are sent on ports according
to the actions defined in the entries of the flow table. One port (also called
action) may be the destination of a set of packets. An entry may specify several
actions or ports. The various fields in SDN packets are also introduced as data
refinement with the functions: macSrc, macDst, IpSrc, IpDst, IpProto, TpSrc,
TpDst, TpSrcP t, TpDstP t.



12

actionsQueues ∈ ACTION 7→ P(PACKET ) // packets targeting a port
actions ∈ ENTRY 7→ P(ACTION) // ports concerned by an entry
dom(actions) = dom(flowTable) // all entries have target ports

3.5 Behavioural Refinement

Explicit priority The controller (via a human administrator) can introduce
priorities as an information contained in the messages. Priorities are comparable,
they are numbers. Consequently, we introduced this refinement level where the
messages are refined by adding to them a field which represents their priority. In
Event-B, this is a function giving the priority of each message: msgPriority ∈
MESG 7→MSG PRIORITY where MSG PRIORITY is the set of priorities
(a subset of naturals). Accordingly, the event ctl emitPkt for instance, is now
refined in the model (GblModel0 2); its substitution sets the priority of the
message which is sent.

Implicit priority We introduced implicit priorities via a partial order on mes-
sages to be sent; in the sequel the symbol ≺ denotes this partial order.

To avoid inconsistencies in the behaviour of switches, the messages they sent
should be reordered. In practice, when for instance the flow table is modified
by an instruction coming from the controller, the outgoing packet in a switch
may be forwarded in a wrong destination due to the modification. Besides, the
controller can use the barrier to impose a quick modification.

Accordingly the modification messages coming from the switch should have
less priority compared with the the forwarding messages. A priority rule which
reorder the events, is that: the add control messages are processed after the for-
warding of all data packets. The involved events in the model are: sw newFTentry,
sw sendPckt2sw, sw sendPckt2Ctrl. Therefore we have the following ordering:

sw newFTentry ≺ sw sendPckt2sw
sw sndPk2ctrl ≺ sw sendPckt2sw
sw sndPk2ctrl ≺ sw newFTentry

As far as the Del order is concerned, as lost packets in the network can be
claimed, we use this hypothesis to consider that the Del order has priority on
the forward packet. For the Add order, this does not present an inconsistency
risk for outgoing packets. For this reason the Add order can be processed in any
order. Barrier messages coming from the controller are the most priority ones.
Unmatched packets to be returned to the controller are less priority than the
packet to be forwarded to other switches: a rule is that packets to the controller
are sent if there is no packet to be forwarded to other switches.

These priorities have been implemented (in GblModel0 3) as a refinement
of our model. The guards of the involved events have been strengthen with this
rules.



13

4 Deriving Correct Controller and Switch Components

The purpose is to derive SDN components from the global model resulting from
the chain of refinements; such derivation is enabled with Event-B via the use of
model decomposition techniques: the Abrial’style decomposition (called the A-
style decomposition) [3] based on shared variables, and the Butler’style decom-
position (called the B-style decomposition) [7,20] based on shared events. In the
A-style decomposition, which we have used, events are first partitioned between
Event-B sub-components and then, shared variables of these sub-components,
but only modified by a sub-component, are used to introduce some external
events in the sub-components which do not modify the variables. These exter-
nal events simulate the behaviour of the events which modify the variables, in
the components where the variables are not modified. To avoid inconsistency,
external events should not be refined. In the B-style decomposition, variables
are first partitioned between the sub-components and then shared events (which
use the variables of both sub-components) are split between the sub-components
according to the used variables. We used the A-style decomposition because it is
more relevant when we consider that the events describe the behaviour of each
specific component (controller, switch) of the SDN.

Decomposition into a controller and switches

According to our modelling approach (see Section 3.2) where events are gathered
by family, it is straightforward to list the events that describe the behaviour of
the controller in order to separate them from the events related to the switches.
The controller component is made of all the events, already introduced as such
and prefixed with ctrl, which simulate the behaviour of the controller (see Section
3.2): ctl emitPkt, ctl rcvPacketIn, ctl askBarrier, etc. Formally, the decomposition
is as if a model MΣ composed of components Sσ1

and Cσ2
, such that MΣ � P ,

is split into submodels Cσ1 and Sσ2 such that Cσ1 � P and Sσ2 � P , with
Σ = σ1 ∪ σ2 the alphabet of MΣ and σ1 (resp. sigma2) the alphabet of Cσ1

(resp. Sσ2
).

We experimented with the decomposition plugin of the Rodin toolkit using
the A-Style decomposition approach.

A challenging issue here is the question of partitioning a set of identical
behaviours; for instance if we would like to decompose the behaviours of the
switches as a partition. This question is out of the scope of the existing decom-
position techniques because of the non-determinism of data and event modelling.

5 Experimentations and Assessment

The global abstract model has been incrementally worked out by combining in-
variant verification, refinements and simulation. This is done with the Rodin plat-
form3. In Table 2 we give the statistics (on proof obligations) of the performed

3 http://wiki.event-b.org/index.php



14

proofs on the abstract model and its refinements; they were mostly automati-
cally discharged by the Rodin prover. The complete model is available at http:
//pagesperso.ls2n.fr/~attiogbe-c/mespages/nabla/sdn/SDN-WP2.pdf

Elt Name Total Auto Manual Undischarged

SDN-WP2 210 202 8 0
GlModel0 97 94 3 0
GlModel0 1 63 59 4 0
GlModel0 1 1 2 2 0 0
GblModel0 2 2 2 0 0
GblModel0 3 0 0 0 0

Table 2. Proof statistics

The model of the last re-
finement level has been de-
composed into a controller
component and switches which
preserve all the proved prop-
erties. One benefit of de-
riving components from a
global formal model is the
ability to study required
properties involving the com-
ponents and their environment. We have illustrated this study with a few prop-
erties expected from SDN. Both safety and liveness properties have been con-
sidered. This can be extended to other specific properties, following a similar
approach.

We have expressed and proved several global properties on the model before
its decomposition into components. For instance: The data packets received by
any switch are sent by the controller or by the other switches.

Proof. Assume ctlSentPkts be the set of packets sent by the controller; we
have to prove that ∀sw.(sw : switches ⇒ swIPs[{sw}] ⊆ ctlSentPks). If
swIncomingPks is the union of the buffers of the switches, then it suffices to
establish that swIncomingPks ⊆ ctlSentPkts. ut

Several such safety properties (e.g. Table 3) have been proved on the model.

SPa Any packet in the data channel was sent by the controller or the switches

SPb Any packet in the switches buffers was sent by the controller or the switches

SPc The packets sent via the message channel are contained in ctl sentPkts

Table 3. Proof statistics

Similarly, liveness properties study is undertaken using stepwise checking of
basic properties. For instance, we prove that, the data packets generated by the
controller, are finally emitted by this later. The formula LPdeliv (see Table 4) ex-
presses this property. Literally it describes that after the occurrence of the event
ctl havePacket we will fatally (F) observe the occurrence of ctl emitPkt. The
other formula in Table 4 are similar; the X symbol stands for the next operator.
Event-B provides, via the ProB tool integrated in the Rodin, the facilities to state
and prove liveness properties. ProB supports LTL, its extension LTL[e] and CTL
properties with the standard modal and temporal operators.

http://pagesperso.ls2n.fr/~attiogbe-c/mespages/nabla/sdn/SDN-WP2.pdf
http://pagesperso.ls2n.fr/~attiogbe-c/mespages/nabla/sdn/SDN-WP2.pdf


15

LPOKstatus e(ctl askStatusMsg) ⇒ F(e(ctl rcvStatus))

LPdeliv e(ctl havePacket) ⇒ F(e(ctl emitPkt))

LPOKMach e(ctl emitPkt) ⇒ X(e(sw rcv machingPkt))

Table 4. A few liveness properties in LTL/ProB

6 Conclusion

We have shown how to build correct controller and switches components from the
refinement of a global formal model of an SDN system, using the decomposition
of the global model into the target components. The global model was first built
by a systematic construction using refinements. The construction of the abstract
model itself was achieved so as to be reusable as a recipe for Event-B developers,
following the steps we had identified. We overcame the challenging modelling in
Event-B, of an SDN system, viewing it as a discrete events system, and thus
as an interaction between its main components. We evaluated our model and
components for their conformance to the properties required for SDN systems.
We experimented the various aspect related to property proving and simulation,
usig the Rodin tool. As far as we know, among the related work using formal
approaches, this study is the first one proposing an event-based appoach for
studying SDN systems.

We provided a core event-based model to found frameworks dedicated to the
development, analysis and simulation of SDN-based applications.

As future work, instead of a one-shot derivation of a specific code for the con-
toller, we are investigating a parametric environment to enable the construction
of specific controllers targeting various languages. The same idea is relevant for
the switches. In light-weight distributed applications requiering the deployment
of adhoc SDN, it is desirable to build various specific SDN switches from a single
abstract model. Consequently a process of generic refinement to codes, will be
beneficial.

References

1. Software-Defined Networking: The New Norm for Networks. ONF White paper,
Apr. 2012.

2. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

3. J.-R. Abrial and S. Hallerstede. Refinement, Decomposition, and Instantiation of
Discrete Models: Application to Event-B. Fundam. Inform., 77(1-2):1–28, 2007.

4. A. Akhunzada, A. Gani, N. B. Anuar, A. Abdelaziz, M. K. Khan, A. Hayat, and
S. U. Khan. Secure and dependable software defined networks. Journal of Network
and Computer Applications, 61:199 – 221, 2016.

5. E. Al-Shaer and S. Al-Haj. FlowChecker: Configuration Analysis and Verification
of Federated Openflow Infrastructures. In Proc. 3rd ACM Workshop on Assurable
and Usable Security Configuration, SafeConfig ’10, pages 37–44, USA, 2010. ACM.



16

6. I. Alsmadi and D. Xu. Security of Software Defined Networks: A survey. Computers
& Security, 53:79 – 108, 2015.

7. M. Butler. Decomposition Structures for Event-B. In M. Leuschel and
H. Wehrheim, editors, IFM, volume 5423 of Lecture Notes in Computer Science,
pages 20–38. Springer, 2009.

8. A. El-Hassany, J. Miserez, P. Bielik, L. Vanbever, and M. Vechev. Sdnracer: Con-
currency analysis for software-defined networks. In Proc. 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI’16,
pages 402–415, USA, 2016.

9. O. W. Foundation. OpenFlow Switch Specification. ONF TS-006(Version 1.3.0):1–
106, 2012.

10. A. Guha, M. Reitblatt, and N. Foster. Machine-verified Network Controllers. In
Proc. 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, pages 483–494, USA, 2013. ACM.

11. T. S. Hoang, H. Kuruma, D. A. Basin, and J.-R. Abrial. Developing topology
discovery in Event-B. Sci. Comput. Program., 74(11-12):879–899, 2009.

12. R. Horvath, D. Nedbal, and M. Stieninger. A Literature Review on Challenges
and Effects of Software Defined Networking. Procedia Computer Science, 64:552 –
561, 2015. Conference on ENTERprise Information Systems/International Confer-
ence on Project MANagement/Conference on Health and Social Care Information
Systems and Technologies, CENTERIS/ProjMAN / HCist 2015 October 7-9, 2015.

13. H. Hu, W. Han, G.-J. Ahn, and Z. Zhao. FLOWGUARD: Building Robust Fire-
walls for Software-defined Networks. In Proc. 3rd Workshop on Hot Topics in
Software Defined Networking, HotSDN ’14, pages 97–102, USA, 2014. ACM.

14. A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow: Verifying
Network-wide Invariants in Real Time. In Proc. 10th USENIX Conference on
Networked Systems Design and Implementation, NSDI’13, pages 15–28, USA, 2013.
USENIX Association.

15. D. Kreutz, F. M. V. Ramos, P. E. Veŕıssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig. Software-Defined Networking: A Comprehensive Survey. Proceedings
of the IEEE, 103(1):14–76, Jan 2015.

16. A. Mahmud and R. Rahmani. Exploitation of openflow in wireless sensor net-
works. In Proc. 2011 International Conference on Computer Science and Network
Technology, volume 1, pages 594–600, Dec 2011.

17. OpenNetworkFoundation. SDN Architecture Overview. (V1.0), 2013.
18. M. H. Raza, S. C. Sivakumar, A. Nafarieh, and B. Robertson. A Comparison of

Software Defined Network (SDN) Implementation Strategies. Procedia Computer
Science, 32:1050 – 1055, 2014. The 5th International Conference on Ambient
Systems, Networks and Technologies (ANT-2014), the 4th International Conference
on Sustainable Energy Information Technology (SEIT-2014).

19. C. E. Rothenberg, R. Chua, J. Bailey, M. Winter, C. N. A. Corrêa, S. C. de Lucena,
M. R. Salvador, and T. D. Nadeau. When open source meets network control
planes. Computer, 47(11):46–54, Nov 2014.

20. R. Silva and M. Butler. Shared Event Composition/Decomposition in Event-B.
In B. K. Aichernig, F. S. de Boer, and M. M. Bonsangue, editors, FMCO, volume
6957 of Lecture Notes in Computer Science, pages 122–141. Springer, 2010.


	Building Correct SDN Components from a Global Event-B Formal Model

