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Abstract—Considered as the last great frontier of cardiac
electrophysiology, atrial fibrillation (AF) is the most common
sustained cardiac arrhythmia in clinical practice. The mecha-
nisms behind this disease are not completely understood, and
a precise analysis of the atrial activity (AA) signal is necessary
to a better understanding. The block term decomposition (BTD)
has been recently proposed as a useful tool for noninvasive AA
extraction in electrocardiogram (ECG) signals. However, this
tensor factorization technique was assessed only in short fixed
segments of an AF ECG. To bridge this gap, the present work
evaluates for the first time the temporal (intra-patient) stability
of BTD by considering consecutive segments through a whole
AF ECG recording. Experimental results show the consistency
of BTD as an AA extraction tool, being capable of outperforming
two well-known matrix-based methods and presenting a stable
performance over time.

I. INTRODUCTION

Atrial fibrillation (AF) is the most common sustained
cardiac arrhythmia encountered in clinical practice and is
considered a major health and economical concern, since
about 160 000 new patients are diagnosed with AF every
year in USA only, and similar numbers are shown in some
European countries [1]. Also, a patient with AF costs anually
approximately $8 700 more in healthcare than a patient without
AF. The treatment of this disease is estimated to add $26
billion per year to the USA healthcare bill [2]. The importance
given to this supraventricular arrhythmia has been increased in
the past few years and is expected to increase even more, since
its mechanisms are not yet completely understood. This makes
AF a challenging cardiac condition, considered as the last great
frontier of cardiac electrophysiology. During AF, the P wave,
that corresponds to a normal atrial activation, is replaced by
f waves (fibrillatory waves), which are present through all the
electrocardiogram (ECG) recording, but masked by the QRST
complex that corresponds to the ventricular activity (VA) in
each heartbeat.

To better understand the mechanisms behind AF, it is
necessary to extract the atrial activity (AA) from the ECG for
an accurate analysis of the f waves. A noninvasive method to
extract the AA from the cardiac signals recorded by the stan-
dard 12-lead ECG is using matrix decompositions techniques
to solve blind source separation (BSS) problems, such as prin-
cipal component analysis (PCA) and independent component
analysis (ICA) [3]-[5]. Matrix decomposition techniques have
proved to be useful in AA extraction. However, it is known

that they have some limitations since constraints need to be
imposed to guarantee the uniqueness of such decompositions.
Although mathematically coherent, such constraints may lack
physiological grounds, making difficult the results interpreta-
tion.

To overcome the limitations of matrix decompositions, a
tensor approach has been recently proposed to extract AA in
AF ECGs [6]-[9]. Compared to matrix-based techniques, ten-
sor decompositions present some remarkable features such as
essential uniqueness with reduced or minimum constraints and
the fact that the rank of the tensor can exceed its dimensions,
whereas in matrices the rank is limited by the matrix lowest
dimension. The block term decomposition (BTD) proposed in
[14] suits the characteristics of AA in an AF signal, since
atrial signals can be approximated by all-pole (exponential)
models and mapped onto Hankel matrices with rank equal to
the number of poles [9]. The Hankel matrices containing the
ECG data are stacked in the third dimension of a 3rd-order
tensor, and then processed by BTD. Previous experimental
results in synthetic and real ECG data showed that BTD can
outperform the matrix-based techniques for AA extraction in
short [6]-[10] and long [11] segments of AF ECG recordings.

The BTD has proved to be useful extracting the AA signal
from the AF ECG, being able to outperform the matrix-
based techniques. However, this tensorial approach was only
assessed in short segments. Its performance in a whole ECG
remains an open question. To answer this question and provide
results about the temporal stability of this new promising
technique, the present work assesses BTD for the first time
in a whole ECG of a patient with persistent AF and compares
it to two popular matrix-based methods for AA extraction:
RobustICA-f [12] and PCA [13]. Experimental results using
Monte Carlo runs evaluate the intra-patient stability of BTD
regarding the AA extraction from AF ECGs, showing the
consistency of this technique.

The rest of this paper is organized as follows. In Section
II, the notation used in the work is introduced. Section III
recalls the BTD as a tensor approach to solve BSS problems
and discusses quantitative measures of AA content. Section
IV reports the experimental results and, finally, Section V
presents the conclusion of this work and the perspectives of
future works.



II. NOTATIONS

Scalars, vectors, matrices and tensors are represented by
lower-case (a, b, c, ...), boldface lower-case (a, b, c, ...),
boldface capital (A, B, C, ...) and calligraphic (A, B, C, ...)
letters, respectively.

The transpose is represented by (·)T , symbol ||·|| represents
the l2-norm and ◦ represents the outer product. The operator
diag(·) builds a diagonal matrix by placing its arguments
along the diagonal. Given a 3rd-order tensor A ∈ CI1×I2×I3 ,
with entries ai1,i2,i3 , its frontal slices are represented by
A..i3 ∈ CI1×I2 . Given a matrix A ∈ CI1×I2 , with entries
ai1,i2 , its ith1 row and ith2 column are represented by ai1. and
a.i2 , respectively.

III. METHODS

A. Block Term Decomposition

The BTD of an arbitrary third-order tensor T ∈ RI1×I2×I3

is written as:

T =

R∑
r=1

Er ◦ cr (1)

where cr ∈ RI3 and Er ∈ RI1×I2 has rank Lr and admits a
decomposition Er = ArBT

r , where Ar ∈ RI1×Lr and Br ∈
RI2×Lr have rank Lr. Equation (1) can be rewritten as:

T =

R∑
r=1

(
ArBT

r

)
◦ cr . (2)

If the matrix factors A =
[
A1 A2 . . . AR

]
∈

RI1×
∑R

r=1 Lr and B =
[
B1 B2 . . . BR

]
∈ RI2×

∑R
r=1 Lr

are full-column rank, which requires that
∑R

r=1 Lr ≤ I1, I2,
and C =

[
c1 c2 . . . cR

]
∈ RI3×R does not contain

proportional columns, then the BTD is essentially unique [14,
Theorem 2.2].

The ECG data matrix, with K leads and N samples, can
be modeled as:

Y = MS ∈ RK×N (3)

where M ∈ RK×R is the mixing matrix, modeling the
propagation of the cardiac electrical sources from the heart to
the body surface, S ∈ RR×N is the source matrix that contains
the atrial, ventricular and noise sources, and R is the number
of sources [5]. The AA extraction in an AF ECG recording can
be seen as a BSS problem, since the only data observed is the
matrix Y, from which matrices M and S are to be estimated.
In [14], the BTD is proposed as a solution of a BSS problem
like (3). The idea to obtain a tensor from Y is to map its kth

row onto a Hankel matrix and then stack each Hankel matrix
along the third dimension (as frontal slices) of a third-order
tensor Y ∈ RI×J×K , where I = J = N+1

2 if N is odd or
I = N

2 and J = N
2 + 1 if N is even. This way, the tensor Y

can be written as:

Y =

R∑
r=1

H(r)
S ◦m.r . (4)

Equation (4) shows that the tensor ECG data follows a BTD
tensor model. During AF, atrial sources can be represented by
the exponential (or all-pole) model as:

sr,n =

Lr∑
`=1

λ`,rz
n−1
`,r (5)

where n = 1, ..., N , r = 1, .., R, Lr is the number of exponen-
tial terms, z`,r is the `th pole of the rth source, and λ`,r is the
corresponding scaling coefficient. This way, their associated
Hankel matrix accepts the Vandermonde decomposition as in
[15].

In the case of different poles, the Vandermonde matrix with
Lr ≤ I, J will have full-column rank Lr, so if M does not
have proportional columns, the BTD in (4) will be essentially
unique. In the case of equal poles, milder conditions can assure
the uniqueness of (4) [14].

B. Atrial Activity Content Measurement

Signal processing methods used to solve BSS problems
separate the original signal in several sources. In AF ECG,
typically at least one of these sources contains the AA.
However, it is unknown if the AA is concentrated only in
a single source. The present work, as previous ones, considers
that the AA is concentrated in a single source, and the source
with the most AA content is called the atrial source. A
sucessful AA extraction depends on the accurate selection of
the atrial signal among the others estimated sources. In [10]
the BTD showed that the classical method of atrial source
selection [3], [4] does not provide a satisfactory accuracy, and
then two sub-optimal methods that outperform the classical
one were proposed. In this work the atrial source is selected
using the method proposed in [10] that provided the highest
accuracy.

In the frequency domain, the AA during AF has a peak
between 3 and 9 Hz. The position of this peak is called
dominant frequency (DF). We define as potential atrial sources
any source with DF placed between such interval. To evaluate
the AA extraction performance, three parameters are used
to measure its quality. The first parameter is the spectral
concentration (SC), that is, the relative amount of energy
around the DF. The SC is computed as:

SC =

∑1.17fp
0.82fp

PAA(fi)∑Fs/2
0 PAA(fi)

(6)

where fp is the value of the DF, Fs is the sampling frequency
and PAA is the power spectrum of the AA signal, estimated
as in [4]. The second parameter used to better analyze the
potential atrial sources is the kurtosis, denoted K, of the signal
in the frequency domain acquired by a 4096-point FFT. As in
[12], the general expression of kurtosis is used, valid for non-
circular complex data:

K =
E[|sr.|4]− 2E[|sr.|2]2 − |E[s2r.]|2

E[|sr.|2]2
. (7)



Kurtosis is a measure of peakedness and sparsity of a distri-
bution. When computed in the frequency domain, it provides
a quantitative measure of harmonicity of the signal. Indeed, a
high kurtosis in the frequency domain means that the power
spectral density is sparse, which is suggestive of a harmonic
signal like AA in AF. Also, kurtosis is parameter free, not
depending on the DF or the definition of a suitable interval
for interpretation, as in SC [10]. The third parameter, which
is used to eliminate weak sources, is the power contribution
to lead V1 given by:

P (r) =
1

N
||m(V 1)

r sr.||2 (mV2) (8)

where m(V 1)
r is the contribution of the rth source to lead V1,

given by the corresponding element of matrix M in Equation
(3), and sr. is the rth source, corresponding to the rth row of
matrix S, also in Equation (3). The power contribution to lead
V1 by an AA source is expected to be strong, since this lead
is the one that typically best reflects AA in AF ECGs.

IV. EXPERIMENTAL RESULTS

A. Real AF ECG Data and Preprocessing

The reported experiments consider 56 segments of a real
standard 12-lead AF ECG recording from a patient suffering
from persistent AF. These segments compose the whole ECG
recording, that belongs to a database provided by the Car-
diology Department of the Princess Grace Hospital Center,
Monaco. The recording are acquired at a 977 Hz sampling
rate and are preprocessed by a zero-phase forward-backward
type-II Chebyshev bandpass filter with cutoff frequencies of
0.5 and 40 Hz, in order to suppress high-frequency noise and
baseline wandering.

The first three segments in lead II from the patient is shown
on Figure 1. All the segments have a fixed length of 1500
samples (about 1.53 seconds) and all the 12 leads are used in
the experiments. The segments are downsampled by a factor of
four, resulting in 3rd-order tensors of dimensions 188×188×
12, since the originally built 3rd-order tensors of dimensions
750× 751× 12 pose some difficulties to Tensorlab.

B. BTD Setup

The BTD is implemented using the non-linear least squares
(NLS) method available in Tensorlab MATLAB toolbox [16]
choosing R = 12 and Lr = L, for r = 1, 2, ..., R, with L tak-
ing values in the set {17, 48, 95}. This choice is chosen based
on the work [9], that showed that such values provided good
results for the heartbeat with the largest TQ segment of the
patient considered in the present work. The tolerance threshold
for BTD convergence is set to 10−9 and the maximum number
of iterations is set to 1000. Monte Carlo runs with Gaussian
random initialization for the spacial and temporal factors at
each run are used to analyze the performance of BTD in each
segment regarding the AA signal extraction. Monte Carlo runs
are needed since the performance of BTD depends strongly on
the initialization of its factors and a suitable initialization is
still an open challenge.
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Fig. 1: The first 3 segments of the AF ECG recording com-
posed of 56 segments. Although all the 12 leads are processed,
only lead II is shown for clarity.

C. Experiments

Three experiments in the whole AF ECG recording are
performed:

• BTD-1: A single Monte Carlo run for each segment using
Lr = 48.

• BTD-2: 10 Monte Carlo runs for each segment using
Lr = 48, then the best performance out of the 10
independent runs is chosen, considering the quality of
the estimation measured by the parameters introduced in
the previous section.

• BTD-3: For the segments with unsatisfactory AA extrac-
tion, i.e., with low values of SC and K, in the second
experiment, 10 new Monte Carlo runs are performed
changing the rank Lr to 17 or 95 (the one which
performed best), then the best performance out of the 10
Monte Carlo runs is chosen, as in the second experiment.

D. Intra-Patient Stability

In Figures 2 and 4, the bluebox, the redline, the whiskers
and the red dots represent the 25th and 75th percentiles, the
median, the extreme values and the outliers, respectively, of
the observed data.

Figure 2 shows how the SC of the atrial source is distributed
over the 56 segments that compose the whole AF ECG for
the three experiments performed with BTD, as well as PCA
and RobustICA-f. The improvement of BTD-2 over BTD-1 is
expected and illustrates the dependence NLS method on the
initialization of the matrix factors, since the model parameters
are kept fixed and only more Monte Carlo runs are performed.
The improvement of BTD-3 over the previous experiments
illustrates the need for choosing the right model parameters
in order to have satisfactory performance. This improvement
is also expected, since this experiment tries to adapt the
multilinear rank to each segment, using the same number of
Monte Carlo runs as BTD-2. Figure 2 also shows that if the
right initialization and model parameters are chosen, BTD
can clearly outperform PCA and RobustICA-f, two well-know
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Fig. 2: Distribution of SC values (%) for each version of BTD,
as well as PCA and RobustICA-f.

5 10 15 20 25 30 35 40 45 50 55

Segment Number

0

20

40

60

80

100

S
C

 (
%

)

BTD-3

PCA

RobustICA-f

Fig. 3: Variation of SC values (%) over the 56 segments for
BTD-3, PCA and RobustICA-f.

matrix-based methods. These improvements can be viewed
as the SC becomes more concentrated in high values, which
means more stability.

In Figure 3, the temporal stability of BTD can be seen from
another perspective, showing how the SC values of the AA
signal varies over the 56 segments. For the sake of clarity, only
BTD-3, the tensor version that provided the best performance,
PCA and RobustICA-f are shown. It can be seen that the
matrix-based methods present considerably variations over the
whole ECG, whereas BTD-3 provides a SC more concentrated
in high values, showing that this technique can be stable over
time with a satisfactory AA extraction performance.

The superiority of BTD as an AA extraction tool over the
matrix-based techniques is also shown in Table I. It can be
seen that as the initialization of the factors and the model
parameters are adapted to each segment, the average AA
extraction quality is improved, as measured by SC and K.
Since P (r) is a parameter used only to eliminate weak sources
and not to measure the quality of the AA extraction, it is not

TABLE I: Mean values of SC (%) and K for the three versions
of BTD, as well as PCA and RobustICA-f.

SC K
BTD-1 53.02 151.33
BTD-2 71.80 242.35
BTD-3 76.95 260.41
PCA 42.75 95.72
RobustICA-f 66.10 216.06
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Fig. 4: Variation of DF (Hz) for each version of BTD, as well
as PCA and RobustICA-f.

shown in this table.
Since the AA signals in AF ECGs are non-stationary, it is

expected that the DF slowly changes with time, i.e., over the
segments of the same recording. In Figure 4 it can be seen that
the DF of the estimated atrial source by BTD-2, BTD-3, PCA
and RobustICA-f lies in the interval 5.24-6.67 Hz, despite the
outliers. In BTD-1 the DF interval is expected to be greater,
since for many of the segments this method did not provide
a satisfactory AA extraction, as we used fixed parameters to
compute the BTD with a single initialization of its factors.

Indeed, BTD-1 provided an unsatisfactory AA extraction in
21 out of the 56 segments. For BTD-2 this number dropped
to 5, while for BTD-3 no unsatisfactory AA extractions
were performed. It is fair to report that PCA performed 9
unsatisfactory AA extractions and RobustICA-f only 7. In
Figure 5 it can be seen that some estimated atrial sources for
PCA, BTD-1 and BTD-2 have a P (r) value under 10−4 mV2.
This characterizes an unsatisfactory AA extraction, since a
source with power contribution to lead V1 under this threshold
does not present significant AA content, as reported in [10].

V. CONCLUSION

BTD has been recently proposed as an useful tool to atrial
signal extraction in AF ECGs, showing satisfactory perfor-
mances in fixed segments. The contribution of the present
work is the analysis of the intra-patient variability of BTD.
Three experiments show that the performance of this technique
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Fig. 5: Power contribution to lead V1 values (mV2) for the
selected atrial source over the 56 segments for each version
of BTD, as well as PCA and RobustICA-f.

presents a strong dependence on its initialization and model
parameters in this particular biomedical application. Never-
theless, with a suitable choice of its initialization and model
parameters, BTD can provide not only good temporal stability,
but a better estimation of the atrial source (as measured by
SC and K) than two well-known matrix-based techniques. A
method for computing BTD more robust to initialization is
still an open challenge, as well as the optimal estimation of
the model parameters for each AF ECG segment.

Taking this into account, future works would aim at devel-
oping a method of compute BTD with reduced dependence
on initialization, as well as an automated method that can
optimally estimate the model parameters for each particular
observed segment. Increase the number of observed patients
is also a prospect of future works, in order to analyze the
inter-patient variability of this promising tensor technique.
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