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The magnetic and surface properties of some transition metals have been investigated through the
tight-binding approximation including Coulomb correlations. These surface properties are derived
from a charge neutrality rule restricted to the d-band leading to a charge distribution including
sp surface states in agreement with a Linear Muffin-Tin Orbital (LMTO) calculation. This new
approach describes the local magnetism, surface energies and work functions without recourse to
the total energy. Our investigation focuses on fcc cobalt, bcc iron, fcc nickel and fcc platinum
surfaces with an exploration of fcc cobalt nanoparticles.

I. INTRODUCTION

The electronic structure of a transition metal is de-
scribed as a set of more or less delocalized electrons dom-
inated by a d-band containing more localized electrons
than the sp-band made up of nearly-free electrons. These
two bands are correlated and the action of the electrons
occupying the sp-band broadens the d-bandwidth and
makes the d-electrons less localized [1]. These electrons
give metallic and cohesive properties that can be easily
obtained numerically from the Kohn-Sham equation [2]
through a density functional theory (DFT) calculation.
Although efficient, a DFT calculation is limited by the
number of atoms in the studied system. Thus, semi-
empirical methods such as the tight-binding approxima-
tion, if they rigorously integrate the rules governing the
behavior of electrons, are more adequate to study these
systems. The tight-binding approximation is often lim-
ited to the d-band neglecting the s- and p-states, which
unfortunately leads to incorrect energies [1]. The impact
of s- and p-electrons on the d-band is therefore a very
important rule to describe a transition metal. The rules
governing the electrons of a transition metal are even
more important at the surface. In fact, at the surface of a
transition metal, one can define an obvious rule of charge
neutrality. Some calculations show that the total charge
is conserved at the surface of transition metals and tran-
sition metal alloys per atomic site, per orbital and per
chemical species [3–5]. In this work, this charge neutral-
ity rule is restricted to the d-electrons which are more
localized than the s- and p-electrons and have a more
important role on bond formation and cohesion. By ap-
plying this charge neutrality rule on the d-band, the delo-
calized sp-band containing the s- and p-electrons gives at
the Fermi level free sp surface states for a layer beyond
the surface (S + 1) which represents the vacuum. The
charge neutrality rule leads to a self-consistency treat-
ment to find surface properties like surface energies and
work functions using empirical laws but also to deduce
the surface magnetism. The surface magnetism is de-
rived from the Stoner model and is obtained by shifting
the non-magnetic local density of states (LDOS). This
is done by considering that the Coulomb correlations of

the d-band are conserved at the surface. In this work we
extend this method to find the magnetic properties of fcc
cobalt nanoparticles.

II. METHODOLOGY

In the tight-binding approximation, the atomic poten-
tial Hat is perturbed by a weak perturbation ∆U(r) due
to the interaction with neighboring atoms. The atomic
energy of the d-band in the atomic basis ψλ can be de-
scribed as shifted by an integral α.

εd =

∫
ψ∗λ(r)Hatψλ(r)d3r︸ ︷︷ ︸

local

+

∫
ψ∗λ(r)∆U(r)ψλ(r)d3r︸ ︷︷ ︸

α : pertubation

(1)

The strength of this perturbation integral depends di-
rectly on the overlap between two λ orbitals from one
atom to his neighbors. At the surface, the coordination
number is lower and the atomic potential is perturbed
differently than in the bulk by the presence of the neigh-
bors. The impact of this new potential at the surface
can be described by a simple shift of the atomic energies
by a quantity α respecting a rule of a charge neutral-
ity. This process is a self-consistency procedure correct-
ing the electronic structure at the surface before studying
the magnetic proprieties. The local magnetism is derived
from the local Hubbard Hamiltonian.

H = −t
∑
i,j,σ

(
c†iσcjσ + h.c.

)
+ Ud

n0∑
λ

nλ↑nλ↓ (2)

Where we consider n0 = 5 d orbitals noted λ, t the hop-
ping integral and Ud the effective Coulomb repulsion in
one orbital λ. If the studied d-band is derived from a
basis where the effects of the s and p-states are taken
into account, Ud therefore contains all the correlations
and the d-bandwidth is broader.
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A. Stoner local magnetism

The spin magnetic moment µ and the total number of
electrons in the d-band nd can be written by the charge
fluctuation [6] :

µ = n0 〈n↑ − n↓〉 and nd = n0 〈n↑ + n↓〉 (3)

The average population per spin is given by :

〈n↑〉 =
1

2n0
(nd − µ) and 〈n↓〉 =

1

2n0
(nd + µ)

The second term of Eq. (2) can be decomposed in the
mean field approximation [6] :

Ud
∑
λ

nλ↑nλ↓ ≈ Ud
∑
λ

nλ↑ 〈n↓〉+ nλ↓ 〈n↑〉 − 〈n↑〉 〈n↓〉

= Ud
∑
k,σ

nkσ 〈n−σ〉 − n0Ud 〈n↑〉 〈n↓〉

=
Ud
2n0

∑
kσ

(nd − σµ) c†kσckσ

− n0Ud
1

4n2
0

(nd − µ)(n+ µ)

=
Ud
n0

∑
kσ

(nd
2
− σ

2
µ
)
c†kσckσ −

Ud
n0

(
n2
d

4
− µ2

4

)
The Hubbard Hamiltonian of Eq. (2) becomes :

H =
∑
kσ

(
εk +

ndUd
2n0

− σ

2

Udµ

n0

)
c†kσckσ−

Ud
n0

(
n2
d

4
− µ2

4

)
(4)

The band structure εkσ = εk + ndUd

2n0
− σ

2
Udµ
n0

is then de-
pendent on the spin σ and the bands are then shifted by
an exchange splitting ∆ε. We deduce the Stoner relation
:

∆ε =
Udµ

n0
= Iµ and µ =

n0

Ud
∆ε (5)

Where I is the Stoner parameter. I and U are self-
consistency parameters used to obtain a correct magnetic
moment. We can derive the total band energy Eb of a
magnetic system by making the summation in Eq. (4)
depending on the spin :

Eb =

{ ∑
k↑ ε
↑
k + ndUd

2n0
− 1

2
Udµ
n0∑

k↓ ε
↓
k + ndUd

2n0
+ 1

2
Udµ
n0

− Ud
n0

(
n2
d

4
− µ2

4

)
(6)

By making this summation of the bands spin up and
spin down containing respectively N↑ et N↓ electrons, we
obtain :

Eb =

{
ε↑band + ndUd

2n0
N↑ − 1

2
Udµ
n0
N↑

ε↓band + ndUd

2n0
N↓ + 1

2
Udµ
n0
N↓
− Ud
n0

(
n2
d

4
− µ2

4

)
(7)

Or linearly :

Eb = ε↑band + ε↓band +
ndUd
2n0

(N↑ +N↓)

− 1

2

Udµ

n0
(N↑ −N↓)−

Ud
n0

(
n2
d

4
− µ2

4

)
= ε↑band + ε↓band +

ndUd
2n0

nd −
1

2

Udµ

n0
µ− Ud

n0

(
n2

4
− µ2

4

)
Eb = ε↑band + ε↓band +

1

4n0
Udn

2
d −

1

4n0
Udµ

2

The variation of the energy when we make the tran-
sition from a non-magnetic state to a magnetic state is
then given by :

∆Emag = Emagb − Enon.magb (8)

= ε↑band + ε↓band − ε
non.mag
band − 1

4n0
Udµ

2 (9)

∆Emag = ∆Ecoh −
1

4n0
Udµ

2 (10)

This transition energy ∆Emag is negative for all ferro-
magnetic materials.

B. Surface effects : a self-consistency treatment

At the surface, a lower coordination decreases the
bandwidth. The potential felt and the charge at the
Fermi level are different from that in the bulk. The relax-
ation allows to decrease the interatomic distances and to
increase the overlap between orbitals and thus the band-
width. This effect requiring a total energy can be in-
cluded in a simple correction involving the shift of atomic
energies so that we obtain a conservation of the charge
and the bandwidth. The electrons of the d-band partic-
ipating in the cohesion are more affected by this charge
neutrality. Assuming that only the d-electrons undergo
an atomic energy shift δεd and define the surface Fermi
level at the surface (S), we obtain for the delocalized sp-
band, free states beyond the Fermi level (S + 1). This
extra charge mainly from the p-band is no longer included
in the calculation of the properties of the studied surface.
This treatment gives to the charge distribution from the
Slater-Koster tight-binding approach similar features as
a LMTO calculation [7]. The sp-band has therefore an
important effect on the surface properties and should not
be neglected. Calculations even using a total energy ne-
glecting the s and p states lead to incorrect surface ener-
gies [8, 9]. The surface energy γ results from an empirical
law as the difference of the band energies after the charge
neutrality procedure.

γ =
1

3

[∑
λ

(∫ Ef

−∞
En(E, δελ)dE −Ne(λ)δελ

)
− Ebulkband

]
(11)
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Eq. (11) is the mean value of the contribution of all the
bands λ = s, p, d. We assume that δεs = 0 and δεp = 0.
n(E, δελ) is the shifted local density of states (LDOS) at
the surface respecting the charge neutrality, Ne(λ) the
number of electrons in the band λ and Ebulkband the band
energy of the bulk. This expression contains the contri-
bution Ne(λ)δεiλ which takes into account the energy for
shifting the atomic levels of the band λ by a quantity δελ.

The surface magnetism comes from the Stoner model
applied on the LDOS. From the non-magnetic local den-
sity of states (LDOS), we create two LDOS spin up and
spin down and we shift these LDOS by several values of
the exchange splitting ∆ε [10]. At the surface, we define
the work function by [11] :

W = Evacuum − Ef (12)

Where Evacuum is the energy to extract an electron
from the surface to the vacuum without an additional
kinetic energy. This vacuum energy depends on the sur-
face properties and is derived from the mean value of the
band energies after the self-consistency charge neutrality.

Evacuum =
1

3

[∑
λ

1

Ne(λ)

(∫ Ef

−∞
Enλ(E, δελ)dE

)]
− 3γ

(13)
We add to this expression the magnetic contribution

∆Emag. for the bulk and the surface for a magnetic work
function. Eq (13) is also an empirical law giving a quali-
tative description of the work function.

III. RESULTS

Our calculations are based on the Slater-Koster hop-
ping parameters and atomic energies to build the hop-
ping integral and the tight-binding Hamiltonian. These
hopping parameters ssσ, spσ, sdσ, ppσ, ppπ, pdσ, pdπ,
ddσ, ddπ, ddδ along with the atomic energies εs, εp and
εd are obtained by fitting the tight-binding band struc-
ture with the one obtained with a Density Functional
Theory (DFT ) calculation using an all-electron and full-
potential basis. The fit (Figs. 1 and 2) and our tight-
binding hamiltonian is restricted to the first neighbors.
This approximation is enough to have a good accuracy
especially for a fcc crystal structure. However for bcc
iron, the parameters are taken from Ref. [12].

A. Results in the bulk

The magnetic properties of the bulk of the ferromag-
netic elements through the tight-binding approximation
has already been studied. The magnetic moment re-
sults from the shift of the non-magnetic LDOS while
keeping the charge in the d-band µ = nd↑ − nd↓ =
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FIG. 1. Band fitting of non magnetic fcc Co.
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FIG. 2. Band fitting of fcc Pt.

nd(E − ∆ε
2 ) − nd(E + ∆ε

2 ). The curve representing this
magnetic moment is intercepted by another curve of the
magnetic moment from the Stoner relation in Eq. (5)
giving the value of Ud in the bulk (Fig. 3) corresponding
to a coherent magnetic moment. For a d-band having the
effects of the s- and p-states, Ud containing the correla-
tions is about 4.98 eV for fcc iron, 5.93 eV for fcc cobalt
and 6.80 eV for fcc nickel. These values are summarized
in Table (I). The obtained values (Table I) with our new
hopping parameters are slightly different from those from
a previous work [1].
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B
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FIG. 3. Calculation of Ud for fcc Co.
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TABLE I. Values of Ud, ∆ε and ∆Emag
bulk in the bulk of the

ferromagnetic elements.

Fe Co Ni
Ud [ev] 4.98 5.93 6.80
∆ε [ev] 2.20 1.91 0.83
µ [µB/atom] 2.22 1.61 0.61
∆Emag

bulk [eV] -0.28 -0.21 -0.03

B. Results at the surface

1. Non-magnetic surface

By applying a self-consistent loop on the d-band in
order to obtain a charge neutrality at the surface (S),
the d atomic energies are then shifted by δεd depending
on the crystallography direction (Table II). This surface
self-consistency d charge neutrality as stated previously
creates at the Fermi level free charges in the sp-band.

TABLE II. Shift of the d atomic energy to obtain the d charge
neutrality in Co, Ni, Fe and Pt compared to the bulk.

Fe Co Ni Pt
δεd(111) [ev] - 0.34 0.33 0.58
δεd(110) [ev] 0.08 - - -
δεd(100) [ev] 0.30 0.42 0.43 0.81

We can notice that the value of δεd at the surface de-
pends on the crystallographic direction. We obtain al-
most similar values of δεd for fcc Co and fcc Ni for the
two considered crystallographic directions. Concerning
the charge distribution, Table (III) gives the charge at
the surface (S) and the layer (S + 1) for fcc Co in the
crystallographic directions : (100) and (111). The sum
of these sp surface states is in agreement with a LMTO
calculation for fcc Co [7]. We obtain almost the same
contribution to the sp surface states at the layer (S + 1)
for fcc Ni and fcc Pt but not enough to generalize that
the population of this layer is constant for a crystalline
structure. However, for bcc Fe, the total contribution to
(S + 1)(100) and (S + 1)(110) is respectively 0.47 and
0.30 electrons which is larger than in the fcc structure.
In Table (IV), the non-magnetic surface energies are cal-
culated by using Eq. (11).

TABLE III. Population per orbital at the surface (S) and in
the layer (S+1) for a non-magnetic fcc Co.

s p d Total
Ne(100)(S) 0.48 0.28 7.87 8.61
Ne(100)(S + 1) 0.11 0.26 0.01 0.38
Ne(111)(S) 0.54 0.35 7.86 8.75
Ne(111)(S + 1) 0.05 0.19 0.02 0.26

TABLE IV. Non-magnetic surface energies of fcc Co, fcc Ni,
bcc Fe and fcc Pt

Fe Co Ni Pt
γ(111) [ev] - 0.88 0.71 1.02
γ(110) [ev] 1.29 - - -
γ(100) [ev] 0.88 1.19 0.97 1.43

The value of the surface energy γFe(100) is overesti-
mated compared to the experimental value of about 0.87
eV [13]. The surface energy of Pt(100) is also overesti-
mated : this surface is actually reconstructed [14]. The
value given by our calculation is a non-reconstructed sur-
face energy. The reconstruction of the surface Pt(100)
gives a hexagonal structure [14] which has a smaller sur-
face energy than the non-reconstructed surface. Never-
theless, the surface energy of Pt(111) is consistent with
the experimental value of 1.03 eV [13] and a DFT calcu-
lation [15].

2. Surface magnetism

We assume that the charge neutrality in the d-band
leads to the conservation of the bandwidth and thus
the conservation of the Coulomb parameter Ud. This
postulate is very important to find the magnetic moment
at the surface as well as the variation of energy ∆Emag..
Using the value of Ud obtained in the bulk of fcc Co, we
have 1.77 µB and 1.86 µB as magnetic moment (Figs. 3
and 4) respectively for the surfaces Co(111) and Co(100)
which are in agreement with another calculations [7, 16].
By applying the same procedure with the other ferro-
magnetic elements, we obtain the values in Table (V).
In Table (V), the magnetic moment at the surface is
underestimated in the case of bcc Fe and overestimated
in the case of fcc Ni compared to a DFT calculation.
These discrepancies may be due to the fact that the
charge neutrality does not describe correctly the surface
properties of these materials and there is likely a small
amount of charge transfers between the orbitals.

We can deduce the magnetic surface energy by adding
to the Eq (11) the variation of the band energy due to the
magnetism δ∆Emag. = ∆Emag(100/111/110)−∆Emagbulk .

TABLE V. Magnetic moment and ∆Emag at the surface of
Co, Ni and Fe

Fe Co Ni
µ(111) [µB ] - 1.77 0.70
µ(110) [µB ] 2.54 - -
µ(100) [µB ] 2.65 1.86 0.83
∆Emag(111) [ev] - -0.39 -0.04
∆Emag(110) [ev] -0.52 - -
∆Emag(100) [ev] -0.61 -0.45 -0.07
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FIG. 4. Magnetic moment at the surface Co(100).
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FIG. 5. Magnetic moment at the surface Co(111)

The magnetic surface energies are then :
γmagFe (100) = 1.18 eV, γmagFe (110) = 0.80 eV in bcc
Fe which is not far from the experimental value :
0.89 eV [13, 17]. For fcc Co, γmagCo (100) = 0.94 eV,
γmagCo (111) = 0.83 eV in consistent with the experimen-
tal value : 0.87 eV [13, 17] and finally the magnetic
surface energies of fcc Ni are γmagNi (100) = 0.94 eV and
γmagNi (111) = 0.70 eV in agreement to the experimental
value of about 0.79 eV [18] and another calculation of
about 0.679 eV [16] .

The work functions are calculated by applying Eq.
(12). The calculated work functions in Table (VI) are
close to the values obtained in another calculation [7]
and are in agreement with the experimental values. Our
method studying magnetic properties from bulk to sur-
faces can be extended to the study of nanoparticles. In
this work, we limit our investigation to fcc Co nanopar-
ticles (cuboctahedrons) but the method can be applied
on any magnetic nanoparticle.

C. Nanoparticles

The proprieties of a nanoparticle are calculated by
making the assumption that all the atomic sites with the
same coordination in a first neighbor approximation have
the same proprieties. In this approximation, we consider

classes of atomic sites. In a cuboctahedron there are five
classes of sites : The bulk (coordination number : 12),
the edges (coordination number : 7), the vertexes (co-
ordination number : 5), the faces (100) (coordination
number : 8) and the faces (111) (coordination number :
9). We consider fcc Co cuboctahedrons with a size going
from 55 atoms to 1415 atoms. The selfconsitency surface
charge neutrality procedure is the same : we fix a gen-
eral Fermi level almost defined by the bulk and we shift
the d atomic energies of each class at the surface until
at that Fermi level, the charge in the d-band is the same
than in the bulk. The magnetic properties are calculated
by shifting for each class the non-magnetic LDOS with
different values of the exchange splitting (so we have five
curves defined by µ = N↑ − N↓ ), these curves are in-
tercepted by the magnetic moment defined in Eq. (5)
conserving the Coulomb correlations U = 5.93 eV (Fig.
7). This procedure gives a magnetic moment depend-
ing on the coordination in Fig (6) and summarize in the
Tables (VII) and (VIII).

FIG. 6. Magnetic moment depending on the coordination
number and the size for fcc Co cuboctahedrons calculated
using Ud = 5.93 eV.
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FIG. 7. Calculation of the magnetic moment of fcc Co
nanoparticle.

In the magnetic nanoparticles, there is an oscillation
of the magnetic moment depending of the size [21]. This
size effect can appear in our simple model. This oscil-
lation can also be observed in the variation of the work
function depending of the size of the particle. However,
the surface energy is dependent on the size without a
significant oscillation.
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TABLE VI. Work functions [eV] for the Fe, Co and the Nickel

Fe (100) Fe (110) Co (100) Co (111) Ni (100) Ni (111) Pt(111)
W (Non mag.) 6.02 4.93 6.40 5.48 5.52 4.79 6.24
W (Ferro) 5.70 4.69 6.16 5.30 5.49 4.78 -
W (Expt) 4.17 [19] 5.00 [20] 5.15 [20] 5.65 [20]

TABLE VII. Magnetic moment, work function, surface ten-
sion for a nanoparticle of 1415 atoms

Bulk Vertexes Edges (100) (111)
µ [µB ] 1.60 1.93 1.88 1.86 1.76
W [eV] - 7.99 6.59 6.09 5.30
γ [eV] - 1.90 1.31 1.09 0.81

TABLE VIII. Magnetic moment, work function, surface ten-
sion for a nanoparticle of 309 atoms

Bulk Vertex Edges (100) (111)
µ [µB ] 1.56 1.89 1.85 1.81 1.74
W [eV] - 7.64 6.43 5.89 5.05
γ [eV] - 1.79 1.26 1.02 0.72

IV. CONCLUSION

Nowadays, we find nanoparticles in several fields
and the methods to study their properties are crucial.
Unfortunately, the most efficient approach using an
ab initio calculation is limited to about hundreds of
atoms. In this work, we have introduced a tight-binding
approximation which encompasses the correlations and
which allows to determine the magnetic and surface
proprieties by just applying a rule of charge neutrality.
This method shows its efficiency by computing values
close to a density functional theory (DFT) calculation
and experimental results. This approach can be applied
to obtain some important properties of large size mag-
netic or non-magnetic nanoparticles without requiring
the total energy. But the method can be extended
to the calculation of the total energy to study more
effectively certain phenomena like the relaxation and
the reconstruction. The calculation of the electronic
structure in this work being done in the real space, we
can apply the model to non crystalline materials or
structures with defects and distortions.
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