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The magnetic and the physical properties of some transition metals from the bulk to the nanopar-
ticles has been investigated in a tight-binding + U model which includes the exact correlations. With
a chemical rule of d charge neutrality, this new formalism gives the local magnetic moment, explains
the relaxation without requiring the total energy. The model also computes the work function and
the free states at the surface depending on the coordination in agreement with a Linear Muffin Tin
Orbital (LMTO) calculation. Our investigation focuses on the Cobalt FCC with an exploration of
the iron BCC, Nickel FCC and the Platinum FCC.

I. INTRODUCTION

The electronic structure of a transition metal can be
seen as a cloud of delocalized electrons which gives the
conductivity and the correct cohesive energy. This mate-
rial can be assimilated as a density of fermions in a mean
field approximation. Hence, the Kohn-Sham’s approach
[1] succeeded in the description of the transition metals
behaviors. In the reference [2] it is shown that the de-
localization of the d electrons is a screening effect of a s
state creating the exchange-correlation hole and correct-
ing the Hartree-Fock picture. The Kohn-Sham quasipar-
ticle density becomes then the exact electron density. If
the electronic structure of a transition metal is the re-
sult of a screening effect of a single electron, the surface
properties also derive from the effect of this delocalized
electron. In fact on the surface (S), there are free elec-
trons which are spilling out in the vacuum (S+1) showing
that at the surface of a transition metal not all the elec-
trons participate to the bondings [3]. It is proved by the
mean of a LMTO calculation [4] that the contribution
of these free states are essentially sp state. On the one
hand the partially delocalized d electrons participate to
the cohesion. On the second hand, the sp electron visit
all the possible states including the vacuum leading to
an oscillation of the charge density. As the charge fluctu-
ates at the surface, it is difficult to describe the surface
proprieties by a charge neutrality per orbital. In this
paper we will present another formalism to understand
the charge distribution at the surface of the transition
metals. As demonstrated in many references, the total
charge is conserved at the surface for the transition met-
als and transition metal alloys [5]. As the sp state is a
free state, in this paper, we will assume that there is no
neutrality of charge of these orbitals (s,p) at the surface.
This assumption leads to a rule of a partial d charge neu-
trality: only the electrons which participates to the cohe-
sion (d electrons) are subjected to the charge neutrality.
This argument is the main point of this paper leading
to the more accurate semi-empirical model for studying
the magnetic properties of big size nanoparticles. We

will study finally the Stoner magnetism, making a semi-
empirical expression to deduce the surface energies, work
functions and the magnetism in a Cobalt nanoparticle.

II. METHODOLOGY

In transition metals, the hybridization is a screening
effect which leads to the metallic bounds. Due to the
overlap with the neighboring atoms, an extra Coulomb
potential ∆U(r) appears and the atomic levels are
shifted by an integral α in the first order of the pertur-
bation theory.

εd =

∫
ψ∗m(r)Hatψm(r)d3r︸ ︷︷ ︸

local

+

∫
ψ∗m(r)∆U(r)ψm(r)d3r︸ ︷︷ ︸

α : pertubation

(1)
The strength of this perturbation integral depends di-
rectly of the overlap between two d orbitals from one
atom to his neighbors. This integral quantifies the energy
of the system depending of the interatomic distances. We
can in a first approximation deduce the interatomic po-
tential by setting the correct α depending on the dis-
tance. Normally, for the 3d transition metals, this inte-
gral is small and can be neglected. But in 5d metals the
impact of this integral becomes important. We will use
this parameter to simulate the relaxation (contraction or
reduction of the interatomic distances) and to get the
relaxed electronic structure at the surface without try-
ing to compute the total energy. But first, we will study
the local magnetism by the means of the Hubbard model
applying on the d orbitals.

H = −t
∑
i,j,σ

(
c†iσcjσ + h.c.

)
+ Ud

n0∑
λ

nλ↑nλ↓ (2)

As seen in the reference [2], for a transition metal, Ud
contains the Hartree term UH , the exchange Jd−d and the
correlations on n0 = 5 d orbitals noted λ. We will derive
the Stoner criterion in the mean field approximation.
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A. The Stoner local magnetism

The magnetism is a local effect, which comes from the
occupation per spin (σ) on a atomic site. The spin mag-
netic moment µ and the total number of electrons in the
d band can be written by the charge fluctuation [6] :

µ = n0 〈nλ↑ − nλ↓〉 and n = n0 〈nλ↑ + nλ↓〉 (3)

The population of one orbital by spin (σ) :

〈nλ↑〉 =
1

2n0
(n− µ) et 〈nλ↓〉 =

1

2n0
(n+ µ)

The Coulomb term can be decomposed in the mean
field approximation to (inspired from the reference [6]) :

Ud
∑
λ

nλ↑nλ↓ ≈
∑
i

nλ↑ 〈nλ↓〉+ nλ↓ 〈nλ↑〉 − 〈nλ↑〉 〈nλ↓〉

=
∑
k,σ

nkσ 〈n−σ〉 − n0Ud 〈nλ↑〉 〈nλ↓〉

=
Ud
2n0

∑
kσ

(n− σµ) c†kσckσ

− n0Ud
1

4n20
(n− µ)(n+ µ)

=
Ud
n0

∑
kσ

(n
2
− σ

2
µ
)
c†kσckσ −

Ud
n0

(
n2

4
− µ2

4

)
The Hubbard hamiltonian becomes finally :

H =
∑
kσ

(
εk +

nUd
2n0
− σ

2

Udµ

n0

)
c†kσckσ −

Ud
n0

(
n2

4
− µ2

4

)
(4)

The band structure εkσ = εk + nU
2n0
− σ

2
Uµ
n0

is then depen-
dent of the spin σ and the bands are then shifted by an
exchange energy ∆ε. We have the Stoner relation :

∆ε =
Udµ

n0
= Iµ and µ =

n0
Ud

∆ε (5)

And the Stoner parameter I, defined as I = Ud/n0.
I and U are self-consistency parameters to obtain a
correct magnetic moment. The equation (4) gives a form
of the electronic on-site total energy in the tight-binding
approximation. We can then obtain the total energy
of a magnetic system by making the summation in the
expression (4) depending on the spin :

Etot =

{ ∑
k↑ ε
↑
k + nUd

2n0
− 1

2
Udµ
n0∑

k↓ ε
↓
k + nUd

2n0
+ 1

2
Udµ
n0

− Ud
n0

(
n2

4
− µ2

4

)
(6)

By making this summation of the band energy spin up
and spin down containing respectively n↑ et n↓ electrons,
we obtain :

Etot =

{
ε↑band + nUd

2n0
N↑ − 1

2
Udµ
n0
N↑

ε↓band + nUd

2n0
N↓ + 1

2
Udµ
n0
N↓
− Ud
n0

(
n2

4
− µ2

4

)
(7)

Or linearly :

Etot = ε↑band + ε↓band +
nUd
2n0

(N↑ +N↓)

− 1

2

Udµ

n0
(N↑ −N↓)−

Ud
n0

(
n2

4
− µ2

4

)
= ε↑band + ε↓band +

nUd
2n0

n− 1

2

Udµ

n0
n− Ud

n0

(
n2

4
− µ2

4

)
Etot = ε↑band + ε↓band +

1

4n0
Udn

2 − 1

4n0
Udµ

2

The variation of the energy when we make the tran-
sition from a non magnetic state to a magnetic state is
then given by :

∆Emag = Emagtot − E
non.mag
tot (8)

= ε↑band + ε↓band − ε
non.mag
band − 1

4n0
Udµ

2 (9)

∆Emag = ∆Ecoh −
1

4n0
Udµ

2 (10)

If our tight-binding parameters are extracted from the
density functional theory (DFTà band structure, the ef-
fective coulomb repulsion Ud contains the correlations [2].

B. A surface effect : the relaxation

At the surface, the coordination is lower, so that the
bandwidth decreases. The surface will then undergo a re-
laxation to get the same bandwidth than the bandwidth
in the bulk and conserve the Coulomb correlations. This
relaxation can be simulated by two methods : the dis-
placement of atoms at the surface inward, increasing the
overlap and the d bandwidth or by using the perturba-
tion theory by shifting the d atomic levels then increasing
the bandwidth as well. For the sake of simplicity, the re-
laxation should be simulated by shifting the d atomic
levels and then avoid to calculate the interatomic poten-
tial. As the sp state are free electrons they cannot be
constrained to shift their atomic levels, only the d elec-
trons which participated to the cohesion are shifted. The
atomic levels of the d electrons are shifted by a quantity
δεiλ (α) to get at the surface the charge of the bulk ma-
terial at the Fermi level (which is defined by the bulk in
a big size material or by an average in a small nanoparti-
cles) : this procedure is physically and energetically the
same as a dynamic relaxation. As the sp atomic levels
are not shifted, there are free sp states at the vicinity of
the Fermi level : a level above the surface (S+1) as in a
LMTO calculation. The partial d charge neutrality leads
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then to the inclusion of the free electrons states at the sur-
face in the Slater-Koster tight-binding model. After this
d charge neutrality (or relaxation) the surface proprieties
can be calculated : the surface energy, the work function
and the magnetic proprieties. The surface energy is a
variation of the Coulomb potential due principally to the
breaking of the symmetry of bonds, we can deduce the
surface energy by the difference in the band energy after
the d charge neutrality (inspired by the reference [7]).

γi =
1

3

[∑
λ

(∫ Ef

−∞
Eni(E, δεiλ)dE −Ne(λ)δεiλ

)
− Ebulkband

]
(11)

This equation is the mean value of the contribution of
all the orbitals s, p and d. This expression contains the
term Ne(λ)δεiλ which takes into account the energy for
shifting the atomic levels of the d orbitals by a quan-
tity δεiλ (α). In this model, if the d charge neutrality
procedure is accurate, then the surface energies are also
accurate. After doing this simulation of the relaxation by
the conservation of the d charge, we can deduce the mag-
netism at the surface. From the non-magnetic relaxed
local density of states (LDOS), we create two LDOS spin
up and spin down and we shift these LDOS by several
values of the exchange energy ∆ε (as in the reference [8]).
After this process, we calculate the work function by [9]
:

W = Evacuum − Ef (12)

Where Evacuum is the energy to extract an electron
from the surface to the vacuum without an additional ki-
netic energy. This vacuum energy depends on the surface
properties and the mean value of the band energy after
the d charge neutrality (relaxed electronic structure).

Evacuum =
1

3

[∑
λ

1

Ne(λ)

(∫ Ef

−∞
Eniλ(E, δεid)dE

)]
− 3γi

(+∆Emag.)

We add the variation of the magnetic contribution to
get the magnetic work function.

III. RESULTS

Our calculations are based on the Slater-Koster param-
eters to build the hopping integrals and the tight-binding
hamiltonian with the atomic levels. These parameters
ssσ, spσ, sdσ, ppσ, ppπ, pdσ, pdπ, ddσ, ddπ, ddδ along
with the atomic levels εs, εp and εd are obtained by fit-
ting the tight-binding band structure after diagonalizing
the hamiltonian with the one obtained with a Density
Functional Theory (DFT ) using the code SIESTA [10]
with GGA-PBE as the exchange-correlation functional.

This fit (using a non linear regression) and our tight-
binding hamiltonian is restricted to the first neighbors
approximation. This approximation seemed enough to
have a good accuracy ( more than 90% of agreement) in
band energy calculated with SIESTA. However for the
Iron BCC our parameters are taken from the reference
[11] .
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FIG. 1. Band fitting of non magnetic the FCC Cobalt.
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FIG. 2. Band fitting of the FCC Platinum .

A. Results in the bulk material

The magnetic properties of the bulk material have been
studied in the reference [2] and we got respectively 6.1
eV, 6.1 eV and 6.3 eV (with some uncertainties due to
the fit) for the Iron BCC, Cobalt FCC and Nickel FCC.
In general, the Coulomb effective term for the 3d mag-
netic material is around 6 eV. It means that adding one
electron on a 3d orbitals, this electron is subjected to an
effective Coulomb repulsion close to 6 eV. If the Stoner
criterion is Un(Ef )/5 > 1 [8] and if U is almost the same
for all 3d transition elements, then the Stoner criterion is
applied depending chiefly on the density of state at the
Fermi level, which should be n(Ef ) > 0.9 electrons and
this condition is satisfied for the end of series 3d transi-
tion metals. In the case of the Cobalt FCC, we can see
in the Fig (3) the fit of the magnetic moment defined by
the relation (5) and µ = N↑ − N↓ (shift of rigid local
density of states (LDOS) ) to get the correct Coulomb
correlations (U = 6.09 eV) and the exact magnetic mo-
ment (µ = 1.61 µB). We can deduce the variation of the
total energy ∆Emag due to the magnetization is -0.17 eV
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which is consistent with DFT calculations using SIESTA.
In the same manner, we can deduce the Coulomb corre-
lations and the magnetic moment for the Nickel and the
iron BCC.

0 1 2 3 4

0

1

2

3

µ = 1.61 µB

∆ε (eV)

µ
(µ

B
)

µ = N↑ −N↓
µ = 5

U
∆ε (U=6.09 eV)

FIG. 3. Calculation of the magnetic moment in Co CFC.

TABLE I. Coulomb parameters calculated to get the exact
magnetic moment.

Fe Co Ni
Ud [ev] 6.1 6.1 6.3
∆ε [ev] 2.76 1.87 0.81
µ [µB/atom] 2.22 1.61 0.61
∆Ebulk

mag [eV] -0.45 -0.17 -0.04

B. Results at the surface

1. Non magnetism surface

By applying a self-consistent loop on the d band to
get a neutrality of charge at the surface (S), the relaxed
electronic structure and the conservation of the correla-
tions, the d atomic levels are then shifted by δεid (α)
depending of the crystallography direction. This surface
self-consistency d charge neutrality as stated previously
will create an extra free charge on the sp band in the
vacuum (S+1).

TABLE II. Shift of the d atomic level to obtain the d charge
neutrality in Co, Ni, Fe and Pt compared to the bulk.

Fe Co Ni Pt
δεid(111) [ev] - 0.32 0.30 0.54
δεid(110) [ev] 0.18 - - -
δεid(100) [ev] 0.31 0.41 0.44 0.77

We can see that the relaxation depends on the crystal-
lographic direction at the surface. We obtain exactly the
same contribution to the free electrons states at the level
(S+1) in the Nickel FCC, not enough to generalize that

the occupation of this level depends on the crystalline
structure. However, in the iron BCC, the total contribu-
tion to S+1(100) and S+1(110) are respectively 0.65 and
0.26 electrons which is larger than in the FCC structure.
So the number of free electrons spilling out in the vacuum
depends of the packing of the atoms and the crystalline
structure. After this selfconsistency procedure, we can
deduce the non-magnetic surface energies by the relation
(11).

TABLE III. Occupation by orbitals at the surface (S) and in
the vaccum (S+1) for the non-magnetic Co FCC

s p d Total
Ne(100)(S) 0.28 0.46 7.93 8.67
Ne(100)(S + 1) 0.26 0.11 -0.03 0.34
Ne(111)(S) 0.36 0.51 7.92 8.79
Ne(111)(S + 1) 0.18 0.05 -0.02 0.23

TABLE IV. Non-magnetic surface energies of the Co, Ni, Fe
and Pt

Fe Co Ni Pt
γ(111) [ev] - 0.90 0.78 1.05
γ(110) [ev] 1.02 - - -
γ(100) [ev] 2.1 1.21 1.06 1.45

The value of the surface energies γFe(100) is overes-
timated compared to the experimental value of 1.26 eV
[12], even if at the surface the magnetism will decrease
this value. The facet Fe(100) non magnetic will certainly
be a reconstructed surface for reducing surface energy.
Likewise, the value of the surface energize of the Pt(100)
is also overestimated, since the fit is quite accurate, the
explanation of this value is the fact that this direction
is reconstructed [13]. The relaxation is not enough for
reducing the surface energy of the facet Pt(100), the re-
construction of this surface give an hexagonal structure
[14] which has a smaller surface energy than the non re-
constructed surface. But the value of facet Pt(111) in
consistent with the experimental value of 1.09 eV [15].

2. surface magnetism

For getting the magnetic proprieties at the surface as
the magnetic moment and the variation of the energy,
we shift the non magnetic rigid LDOS after the d charge
neutrality and we fit the magnetic moment defined by
µ = N↑ − N↓ with the relation (5) using the same U as
in the bulk : 6.09 eV as the Coulomb correlations are
conserved after the d charge neutrality. We found 1.72
µB and 1.80 µB respectively for the surfaces Co(111) and
Co(100) which are comparable to another calculation us-
ing a LMTO [16]. By applying the same procedure with
the other ferromagnetic elements, we obtain the Table
(V). The values of the magnetic moment in the surface
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are comparable to the references [16, 17] and we can de-
duce the magnetic surface energy by applying the simple
formula :

0 1 2 3 4
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µ = 1.81 µB

∆ε (eV)

µ
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B
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µ = N↑ −N↓
µ = 5

U
∆ε (U=6.09 eV)

FIG. 4. Magnetic moment on the surface Co(100).
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FIG. 5. Magnetic moment on the surface Co(111)

TABLE V. Magnetic moment on the surface of the Cobalt,
Ni and Fe along with the variation of the energy

Fe Co Ni
µ(111) [µB ] - 0.90 0.78
µ(110) [µB ] 1.02 - -
µ(100) [µB ] 2.10 1.21 1.06
∆Emag(111) [ev] - -0.27 -0.01
∆Emag(110) [ev] -0.60 - -
∆Emag(100) [ev] -1.60 -0.48 -0.07

γmag = γ + δ∆Emag. (13)

Where δ∆Emag.tot = ∆Emag(100/111/110) − ∆Ebulkmag .

The magnetic surface energies are then : γmagFe (100) =
1.23 eV, γmagFe (110) = 0.96 eV which is not so far from
the experimental value : 1.26 eV [12]. For the Cobalt
γmagCo (100) = 0.97 eV, γmagCo (111) = 0.88 eV in consis-
tent with the experimental value : 0.87 eV [12] and fi-
nally the surface energies of the ferromagnetic Nickel is
γmagNi (100) = 0.99 eV and γmagNi (111) = 0.78 eV. As the
description of the surface in our formalism is accurate

with a reasonable magnetic moment and surface ener-
gies, we can deduce the work function by applying the
expression (12) :

The work function calculated is close to the experimen-
tal values, validating the model. As we know that we can
obtain the magnetic proprieties of the bulk accuratly, we
can extent finally the model to the study of nanopartic-
ules. In this paper we will limit our study to the Cobalt
CFC Nanoparticles (Cuboctahedron) but the formalism
can be applying on any magnetic nanoparticle.

C. Nanoparticles

To extract the proprieties of a nanoparticle we should
make an approximation that all the atomic sites with the
same coordination in a first neighbor approximation have
the same proprieties given a class of sites. In a Cuboc-
tahedron there are five classes of sites : The bulk (coor-
dination : 12), the edges (coordination : 7), the vertex
(coordination : 5), the facet (100) (coordination : 8) and
the facet (111) with the coordination : 9. We studied the
Cobalt nanoparticles with the size going from 55 atoms
to 1415 atoms. The selfconsitency procedure is the same,
we fix a general Fermi level and we shift the d atomic
levels of all sites of every class until at that Fermi level,
the charge is conserved in the d orbitals of every class.
This process relaxes also directly the nanoparticle and
give the correct electronic structure in all the nanoparti-
cle. After we shift each class non-magnetic LDOS with
different values of the exchange energy (so we have five
curves defined by µ = N↑ − N↓ ), this curves are in-
tercepting with the relation (5) with the same Coulomb
parameter U = 6.09 eV which gives a correct magnetic
moment which depends on the coordination on the Fig
(6) and summarize in the Tables (VII) and (VIII).

FIG. 6. Magnetic moment dependent on the coordination and
the size in a Co FCC cuboctaedron calculated in TB + U =
6.09 eV

We can conclude that this model is quite accurate for
deducing the properties in an atomic site like the local
magnetic moment, the work function and the surface en-
ergy. There is an oscillation of the magnetic moment
depending of the size (like in the reference [20] in Co
clusters). This is a size effect which can appear in our
simple model. This oscillation can also been observed in
the variation of the work function depending of the size of
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TABLE VI. Work function [eV] for the Fe, Co and the Nickel

Fe (100) Fe (110) Co (100) Co (111) Ni (100) Ni (111) Pt(111)
W (Non mag.) 8.91 5.84 6.49 5.47 5.99 5.03 6.36
W (Ferro) 5.94 5.26 5.58 5.09 5.92 5.02
W (Expt) 4.17 a 5.00 b 5.35c 5.7/6.35 d

a From the reference [18]
b From the reference [19]
c From the reference [19]
d From the reference [19]

TABLE VII. Magnetic moment, work function, surface ten-
sion for a nanoparticle of 1415 atoms

Bulk Vertex Edges (100) (111)
µ [µB ] 1.62 1.91 1.85 1.84 1.74
W [eV] - 7.84 6.48 6.03 5.23
γ [eV] - 1.64 1.22 1.02 0.81

TABLE VIII. Magnetic moment, work function, surface ten-
sion for a nanoparticle of 309 atoms

Bulk Vertex Edges (100) (111)
µ [µB ] 1.64 1.88 1.79 1.87 1.79
W [eV] - 7.41 6.14 5.73 4.96
γ [eV] - 1.63 1.23 1.01 0.75

the particle. However the surface energy decreases with
the size without a significant oscillation.

IV. CONCLUSION

Nowadays, the nanoparticles occurs in many applica-
tions. The understanding of their proprieties is crucial
and was limited since the calculations using an abinitio
code is limited to about hundreds of atoms. We develop
this new formalism which encompasses the exact corre-
lations and which allows to determine several proprieties
by just applying a rule of d charge neutrality. This
method shows its efficiency by computing values very
close to the density functional theory (DFT) values. The
relaxation process is then described as a conservation
of the d bandwidth by shifting the d atomic level and
conserving the Coulomb correlations. This method
should be extended to the study of the reconstruction,
study of the alloys and the process of segregation at the
surface of alloys. The advantages of this formalism is the
accuracy and the gain in speed and a possible extension
to non crystalline materials or structures with defects
and distortions.
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