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Abstract. Atrial fibrillation (AF) is the most common sustained cardiac
arrhythmia in clinical practice, and is becoming a major public health
concern. To better understand the mechanisms of this arrhythmia an
accurate analysis of the atrial activity (AA) signal in electrocardiogram
(ECG) recordings is necessary. The block term decomposition (BTD), a
tensor factorization technique, has been recently proposed as a tool to
extract the AA in ECG signals using a blind source separation (BSS)
approach. This paper makes a deep analysis of the sources estimated by
BTD, showing that the classical method to select the atrial source among
the other sources may not work in some cases, even for the matrix-based
methods. In this context, we propose two new automated methods to
select the atrial source by considering another novel parameter. Experi-
mental results on ten patients show the validity of the proposed methods.

Keywords: Atrial Source Selection, Block Term Decomposition, Atrial
Fibrillation, Blind Source Separation

1 Introduction

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in
clinical practice, responsible for up to 25% of strokes and 1/3 of the hospital-
izations due to cardiac related disturbances [1]. This arrhythmia is becoming a
major public health concern, since about 160 000 new AF cases are discovered
every year only in USA, with similar numbers in European countries. This makes
AF an increasingly prevalent disease that could become a new epidemic over the
years [2]. The mechanisms of this supraventricular arrhythmia are not completely
understood, making AF a challenging cardiac condition, considered as the last
great frontier of cardiac electrophysiology. During AF, electrical impulses typ-
ically generated around the pulmonary veins propagate in a chaotic and irreg-
ular way across the atria, replacing the P wave, that corresponds to a normal
atrial activation, by low-amplitude fibrillatory waves, or f-waves. The f-waves
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2 Source Analysis and Selection Using BTD in AF

are present through all the electrocardiogram (ECG) recording, but masked by
the QRS complex of ventricular activity (VA) in each heartbeat.

To better understand the mechanisms of AF, it is necessary an accurate anal-
ysis of the atrial activity (AA), specifically, the f waves. A noninvasive analysis
can be made by extracting the AA from the cardiac signals recorded by the stan-
dard 12-lead ECG using matrix decompositions techniques for blind source sepa-
ration (BSS), such as principal component analysis (PCA) and independent com-
ponent analysis (ICA) [3–5]. This matrix decomposition approach has proven to
be useful for AA extraction. However, it has some limitations, since constraints
need to be imposed to guarantee the uniqueness of such decompositions, e.g.,
orthogonality or statistical independence between the sources. Although math-
ematically coherent, such constraints may lack physiological grounds.

In order to overcome these limitations, a tensor approach has recently been
proposed to analyze AF signals [6–9]. As compared to matrix techniques, tensor
decompositions present some remarkable features such as essential uniqueness
with practically minimal or no constraints. The block term decomposition (BTD)
proposed in [12] suits the characteristics of AA in an AF signal, since atrial sig-
nals can be approximated by all-pole models and mapped onto Hankel matrices
with rank equal to the number of poles [9]. These Hankel matrices that contain
the ECG data are stacked in the third dimension of a 3rd-order tensor, and then
processed by BTD. Previous experimental results in synthetic and real ECG data
showed the potential superiority of BTD as compared to matrix decompositions
for short ECG recordings [6–8].

The success of the BSS approach to AA extraction depends on the accu-
rate identification of the atrial signal among the estimated sources. The classical
method for atrial source selection consists in selecting the source with the high-
est spectral concentration (SC) among the sources whose dominant frequency
(DF) lies between 3 and 9 Hz [3, 4]. The present work makes a deep analysis in
the sources estimated by BTD, showing that the classical method may not work
in some cases, even when the matrix-based approach is used. Taking this into
account, a new parameter to improve the performance of the classical method is
proposed. This parameter consists in analyzing the power of the source contribu-
tion to the lead V1, a lead that significantly reflects AA. Also, a new automated
method for atrial source selection is proposed, using the proposed parameter and
another one based on the kurtosis of the signal in the frequency domain. Ex-
perimental results using ten patients with persistent AF evaluate the proposed
methods, showing their better performance in selecting the atrial source among
the sources estimated by BTD and two matrix-based methods previously pro-
posed in literature for AA extraction: RobustICA-f [10] and PCA [11]. It is also
shown that BTD can provide a better estimation of the AA signal, outperforming
the matrix-based techniques in most cases.

The rest of this paper is organized as follows. Section 2 introduces the nota-
tion used in the work. Section 3 recalls the BTD as a tensor approach to solve
BSS problems, while Section 4 discusses the estimated sources and the atrial
source selection methods. Section 5 presents the experimental results and, fi-
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nally, Section 6 formulates the conclusion of this work, as well as the prospects
for future works.

2 Notations

Scalars, vectors, matrices and tensors are represented by lower-case (a, b,
c, ...), boldface lower-case (a, b, c, ...), boldface capital (A, B, C, ...) and
calligraphic (A, B, C, ...) letters, respectively.

The transpose is represented by (·)T , symbol ‖ · ‖ represents the l2-norm
and ◦ represents the outer product. The operator diag(·) builds a diagonal
matrix by placing its arguments along the diagonal. Given a 3rd-order ten-
sor A ∈ CI1×I2×I3 , with scalars ai1,i2,i3 , its frontal slices are represented by
A..i3 ∈ CI1×I2 . Given a matrix A ∈ CI1×I2 , with scalars ai1,i2 , its ith1 row and
the ith2 column are represented by ai1. and a.i2 , respectively.

3 Block Term Decomposition

The BTD of an arbitrary 3rd-order tensor T ∈ RI1×I2×I3 is written as

T =

R∑
r=1

Er ◦ cr , (1)

with cr ∈ RI3 . Matrix Er ∈ RI1×I2 has rank Lr and admits a decomposition
Er = ArB

T
r , where Ar ∈ RI1×Lr and Br ∈ RI2×Lr have rank Lr. We may then

rewrite (1) as

T =

R∑
r=1

(
ArB

T
r

)
◦ cr . (2)

One can see that the BTD is a decomposition of T in multilinear rank-

(Lr,Lr,1) terms. If the matrix factors A =
[
A1 A2 . . . AR

]
∈ RI1×

∑R
r=1 Lr and

B =
[
B1 B2 . . . BR

]
∈ RI2×

∑R
r=1 Lr are full-column rank, which requires that∑R

r=1 Lr ≤ I1, I2, and C =
[
c1 c2 . . . cR

]
∈ RI3×R does not contain proportional

columns, then the BTD is essentially unique [12, Theorem 2.2]. Milder uniqueness
conditions are presented in [12].

The ECG data matrix, with K leads and N samples, can be modeled as

Y = MS ∈ RK×N , (3)

where M ∈ RK×R is the mixing matrix, modelling the propagation of the car-
diac electrical sources from the heart to the body surface, S ∈ RR×N is the
source matrix that contains the atrial, ventricular and noise sources, and R is
the number of sources [5]. The AA extraction in an AF ECG recording can be
seen as a BSS problem, since the only data observed is matrix Y, and we aim
to estimate M and S from it. In [12], the BTD is proposed as a solution of
a BSS problem like (3), but does not deal with the AA extraction specifically.
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The idea to obtain a tensor from Y is to map its kth row onto a Hankel matrix

H
(k)
Y ∈ RI×J , where I = J = N+1

2 if N is odd or I = N
2 and J = N

2 + 1 if N is
even, with

[H
(k)
Y ]i,j , yk,i+j−1 , (4)

where i = 1, ..., I, j = 1, ..., J , and k = 1, ...,K. Next, the tensor is built by
stacking each Hankel matrix along the third dimension (as frontal slices) of a
3rd-order tensor Y ∈ RI×J×K , that is

Y..k = H
(k)
Y . (5)

The kth matrix slice of the tensor Y can be represented as

Y..k =

R∑
r=1

mk,rH
(r)
S , (6)

where H
(r)
S ∈ RI×J is a Hankel matrix built from the rth row of S. We can see

that for each r, the outer product between matrix H
(r)
S and the rth column of

M, i.e., m.r, is being performed. This way, the tensor Y can be written as

Y =

R∑
r=1

H
(r)
S ◦m.r . (7)

Comparing Equation (1) with (7), we can conclude that the tensor ECG data
follows a BTD tensor model.

During AF, the AA presents certain harmonicity. Hence, atrial sources can
plausibly be represented by the exponential (or all-pole) model as

sr,n =

Lr∑
`=1

λ`,rz
n−1
`,r , (8)

where n = 1, ..., N , r = 1, .., R, Lr is the number of exponential terms, z`,r is
the `th pole of the rth source, and λ`,r is the scaling coefficient [6–9]. This way,
their associated Hankel matrix accepts the Vandermonde decomposition as in
[13].

4 Atrial Source Selection

4.1 Classical Method

To select the AA signal or the source with the most significant AA activity,
the classical method considers two parameters. The first one is the DF, that is,
the position of the peak frequency in the power spectral density, since the AA
during AF typically has a peak between 3 and 9 Hz. The second parameter,
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called SC, is the relative amount of energy around the DF, and it is calculated
as:

SC =

∑1.17fp
0.82fp

PAA(fi)∑Fs/2
0 PAA(fi)

, (9)

where fp is the value of DF, Fs is the sampling frequency and PAA is the power
spectrum of the AA signal, estimated as in [4]. In this work, the SC is calculated
over the first harmonic (fundamental frequency) only.

The classical method of atrial source selection makes the assumption that
the atrial source is concentrated in a single source only. This method consists of
the following steps:

1. Select all the estimated sources with DF between 3 and 9 Hz. We refer to
sources fulfilling this condition as potential atrial sources.

2. Select the potential atrial source with the highest SC.

4.2 Proposed Method 1

In the literature, the classical automated method described above has been
used to detect the atrial source among the other estimated sources. However,
in some cases, this method may not precisely select the atrial source, as will be
illustrated later in this work. In Figures 3 and 4, for example, the atrial source
does not correspond to the potential source with the highest SC, despite the fact
that they have close values of SC at very close DF positions.

Aiming at a better estimation of the AA signal, this paper proposes two new
parameters. The first new parameter is the power contribution to the recording,
which is given by

P (r) =
1

N
||m(V 1)

r sr.||2, (10)

in mV2, where m
(V 1)
r is the contribution of the rth source to lead V1 (given by

the corresponding element of the estimated mixing matrix) and sr. is the rth

source, corresponding to the rth row of matrix S in Equation (3). Using the
power contribution to the recording as a new parameter the classical method
becomes:

1. Select all the estimated sources with DF between 3 and 9 Hz (potential atrial
sources).

2. Select all the potential atrial sources with power contribution higher than
10−4 mV2. We refer to this subset of sources as likely atrial sources.

3. Select the likely atrial source with the highest SC.

Selecting the sources with power contribution higher than 10−4 mV2 is
needed in order to eliminate all sources that may present AA-like signature
but are actually too weak to represent AA components. This threshold is chosen
based on initial experiments that showed that sources with power contribution
lower than 10−4 mV2 do not present any significant contribution to the original
signal. The power contribution is calculated in lead V1 due to the fact that this
lead typically reflects AA best in AF ECGs, as its exploring electrode lies close
to the right atrium.
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4.3 Proposed Method 2

In order to better select the source with the most significant AA content
among the other estimated sources, a new automated method is now proposed.
The first two steps of this method are the same as those of the proposed method
introduced in the previous subsection. The third and last step of this new method
is to compute the kurtosis, denoted K, of the signal in the frequency domain
acquired by a 4096-point FFT (the second new parameter). As in [10], we use
the general expression of kurtosis valid for non-circular complex data. The likely
atrial source with the highest kurtosis is related as the atrial source.

In the experiments below, it will be shown that selecting the source with the
highest kurtosis provides a better performance than selecting the source with
the highest SC. A possible explanation is that kurtosis is computed from the
whole signal, while SC is only computed around the DF. Recall that AA in AF
is typically a harmonic signal, characterized by a sparse frequency spectrum with
few values significantly different from zero. Kurtosis is a measure of peakedness
and sparsity of a distribution and, when computed in the frequency domain,
it naturally provides a quantitative measure of harmonicity of the signal. Also,
kurtosis is parameter free, whereas SC depends on the DF and the definition of
a suitable interval for interpretation.

5 Experimental Results

5.1 Real AF ECG Data and Preprocessing

The recordings used in our experiments belong to a database provided by
the Cardiology Department of the Princess Grace Hospital Center, Monaco.
These recordings were acquired at a 977 Hz sampling rate and preprocessed by
a zero-phase forward-backward type-II Chebyshev bandpass filter with cutoff
frequencies of 0.5 and 40 Hz, to suppress high-frequency noise and baseline wan-
dering. To analyze the potential atrial sources, we consider a randomly selected
heartbeat (QRS-T complex + TQ segment) of a standard 12-lead ECG record-
ing from a persistent AF patient. A single-beat segment of this patient is shown
in Figure 1, where we can see the TQ interval just after the QRS-T complex in
lead II. The beat from this patient used to analyze the potential atrial sources
is chosen randomly and has 1300 samples.

To asses the atrial selection methods, a population of 10 patients with persis-
tent AF is used in the same way previously described. Similarly, one beat from
each of the ten patients is chosen randomly to evaluate atrial source selection
performance. The lengths of the chosen beats is between 1000 and 1400 samples
(1.02 and 1.43 seconds, respectively). Due to lack of space, the potential source
analysis of all ten patients is not reported in this paper. So only the first patient
of the observed population was chosen for source analysis.

5.2 BTD Setup

The BTD is implemented using the non-linear least squares (NLS) method
available in Tensorlab MATLAB toolbox [14] choosing R = 12 and Lr = 95,
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Fig. 1: A single-beat segment of an AF ECG recording of one patient in lead II.
The vertical line marks the location of the T-wave offset.

for r = 1, 2, ..., 12. This choice is made based on the work [9], which showed
that these values provided good results for the heartbeat with the largest TQ
segment of one of the patients in the present observed population. The tolerance
threshold for convergence is set to 10−9 and the maximum number of iterations
is set to 1000. BTD is known to be dependent on a suitable initialization of
its factors. The experiments reported in this section evaluate the influence of
BTD factors initialization on source estimation performance and atrial source
selection. Ten Monte Carlo runs, with normalized Gaussian random initialization
for the matrix and vector factors at each run, are used to analyze the potential
atrial sources found by BTD and compare them with the ones found by the
matrix-based methods PCA and RobustICA-f. All the beats are downsampled
by a factor of two, since the 3rd-order tensor built from the original 12-lead ECG
beat poses some difficulties to Tensorlab.

5.3 Potential Atrial Source Analysis

For the observed patient used to analyze the potential atrial sources, PCA
found 6 potential sources, RobustICA-f found 5 potential sources and BTD found
a mean of 7.2 potential sources. In 7 out of the 10 independent runs, the BTD
found more potential sources than the matrix-based methods, reflecting the abil-
ity of the tensor technique to perform undertermined source separation [12].
Finding several potential atrial sources is interesting, since it increases the pos-
sibility of finding some features that, although weakly contributing to the AA,
may provide useful physiological and clinical information about the arrhythmia.
In this work, however, we assume as in the previous literature of this topic that
all AA can be represented by a single source, and we leave the multiple source
hypothesis for further works. Due to the lack of space and for the sake of clarity,
only two potential atrial sources for PCA, RobustICA-f and BTD are shown
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Fig. 2: Potential atrial sources contribution to lead V1 estimated by PCA. Left:
time domain (in mV). Right: frequency domain (in mV/

√
Hz).

in Figures 2–4. The other sources were disregarded for presenting a very weak
power contribution.

Looking at Figure 2, we can see that the atrial source estimated by PCA
(located in the second row) has SC equal to 62.5%, while looking at Figure 3,
the estimated atrial source by RobustICA-f (located in the second row) has SC
equal to 68.3%. For BTD, 8 out of the 10 independent runs estimated an atrial
source with higher SC than PCA and 6 with higher SC than both matrix-based
methods, giving an average SC over the 10 runs equal to 67.8%. Figure 4 shows
the results for a particular initialization of BTD, where the estimated atrial
source (located in the second row) has SC equal to 76.5%. The DF position of
both PCA and RobustICA-f are located at 5.96 Hz, while in BTD it lies between
5.72 and 5.96 Hz. For comparison, the DF position obtained from an electrogram
simultaneously acquired by a catheter located in the left atrial appendage of the
same patient, is equal to 4.77 Hz.

5.4 Atrial Source Selection

As ground truth, the sources were visually analyzed in time and frequency
domain with guidance of the parameters previously described. The source with
the strongest representation of AA content was taken as the atrial source.

The classical method and the two proposed methods of atrial source selection
were assessed in 10 segments of 10 different patients, as previously explained.
From a total of 120 runs for the 10 patients (100 for BTD, 10 for PCA and 10 for
RobustICA-f) the classical method succeeded only in 45.8% of runs. Applying
the first proposed method, the index of success increases to 75%, while the second
proposed technique succeeds in 83.7% of the trials. It should be mentioned that
in 35.8% of the trials, both the classical and the second proposed method were
able to select the source with most AA content. Also, in 12.5% of trials none
of the methods were able to select the AA signal. This means that the existing
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Fig. 3: Potential atrial sources contribution to lead V1 estimated by RobustICA-
f. Left: time domain (in mV). Right: frequency domain (in mV/
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Fig. 4: Potential atrial sources contribution to lead V1 estimated by BTD for a
single run. Left: time domain (in mV). Right: frequency domain (in mV/
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methods are suboptimal regarding the AA source selection. However, from the
reported experiments, it is believed that a balanced combination between power
contribution and kurtosis may lead to an optimal or at least a better method.

6 Conclusions

The present work has analyzed the potential atrial sources estimated by
BTD, showing its satisfactory performance for most initializations in the tested
database. We have shown that the classical method of atrial source selection may
not work in some cases, and we have proposed two new automated methods that
better select the atrial source among the other potential sources. These methods
have been validated in experimental results not only for BTD but also for the
matrix-based methods PCA and RobustICA-f in a population of 10 patients
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with persistent AF. In future works, we aim to assess the proposed methods in a
larger database and along consecutive time segments of each patient to analyze
intra-patient (temporal) stability.
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A. Näıt-Ali, Ed. Berlin, Heidelberg: Springer Verlag, 2009, ch. 2, pp. 15-47.
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