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H I G H L I G H T S

• Monodisperse polymeric foams
with tunable membrane content are
manufactured.

• Characterizing the proportions and
aperture sizes of open windows is
required.

• Tuning membranes enables the
progressive modification of sound
absorbing behavior.

• A microstructural periodic model is
able to reproduce membrane-induced
effects.

• Tuned membrane content shows
interesting specific sound absorbing
properties.
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A B S T R A C T

This work is focused on tailoring cellular foam membranes for sound absorption. Several foam configura-
tions with a constant porosity and varying membrane content were first fabricated by using milli-fluidic
techniques. This approach allows transport and sound absorbing properties to be continuously tuned on
purpose, from open-cell to closed-cell foams. The morphology of these foams was then investigated using
optical micrography. Microstructural descriptors such as the proportions of closed and open windows and
aperture size were specifically analyzed. The associated transport and sound absorbing properties were sub-
sequently characterized using airflow resistivity and three-microphone standing wave tube measurements.
The numerical reconstruction of foam samples was next addressed by considering a Periodic Unit Cell (PUC)
approach on Kelvin cells. The transport properties of these virtual samples were determined by numerical
homogenization, performing sequential evaluations of the parameters that govern visco-thermal losses. To
overcome the limitation induced by the size of the numerical model at the pore scale, an averaging proce-
dure was proposed. The results show that the PUC model can be used to accurately predict the transport and
sound absorbing behavior of interest. The relevance of the multiscale estimations for acoustic properties is
demonstrated over the entire range of membrane content.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cellular foams are attractive materials for structural, thermal,
acoustical [1,2] and energy absorption [3] applications due to factors
such as their low density and high specific surface area properties [4].
Therefore, they have been the focus of much attention during the past
three decades [5]. The design of lightweight structures aims, above
all, at an optimal compromise between structural properties, trans-
portpropertiesandacousticalperformance.Ultimately, thesought-for
solution should be compatible with some industrial requirements
(large-scale production requirements). The microstructure-informed
prediction of some physical properties of interest for a porous medium
provides a theoretically sound basis for conducting optimization
analyses. It can be approached in various ways, using phenomeno-
logical or truly multiscale frameworks on idealized (e.g., periodic) or
random foam morphologies. Moreover, crystalline foams, and more
particularly those prepared from milli-fluidic techniques, are primary
regarded as model systems by physicists, due to their equal-volume
pore and well-controlled polymer properties [6]. As such, they may
therefore represent a critical step in the understanding of structure-
property relations. Here, we report that the acoustical properties of
tailored membrane-based cellular foams can be directly determined
from numerical homogenization performed on an idealized foam
mimicking the microstructure of a real foam.

Even if viscous dissipation is the main loss mechanism, modeling
the acoustical properties of a rigid porous medium requires consider-
ation of both visco-inertial and thermal effects [7]. At low frequencies,
when the wavelength is much larger than the typical pore size (i.e.,
scale separation), visco-inertial and thermal effects can be decoupled:
the visco-inertial effects are conveniently described by a macroscop-
ically averaged fluid velocity which can be represented at macroscale
by a frequency-dependent density [8]; and the thermal effects are
described by analogy with a macroscopically averaged fluid tem-
perature represented at macroscale by a frequency-dependent bulk
modulus [9]. Then, as long as the scale separation is valid, the dynamic
behavior of density and bulk modulus can be approximated by analytic
expressions compatible with the low- and high-frequency asymptotic
solutions associated with each loss mechanism. Both effects share
an intrinsic parameter which is the porosity of the open pore-space,
0op. Each mechanism also owns some specific parameters. For visco-
inertial effects, three additional parameters have been introduced:

(1) the Darcy static permeability, k0, related to pore morphology
[10] and governing the low frequency behavior of effective
density [8];

(2) the tortuosity, a∞, associated with the high frequency regime
for which the flow pattern is identical with that of an ideal
fluid, except in the boundary layer (the viscous skin depth
becomes much smaller than any characteristic pore size);

(3) the viscous characteristic length,K, which is a pore-volume-to-
surface ratio of the pore-solid interface in which each area or
volume element is weighted according to the local value of the
velocity field in the high frequency regime which represents
a dynamically connected pore size entering into the analytic
properties of the high-frequency limit [8].

Regarding thermal effects, and by analogy with the viscous ones,
a further two parameters were added:

(4) the static thermal permeability, k′
0, associated with the low

frequency regime, which links the pressure time derivative
to the macroscopic excess temperature (the excess temper-
ature is equal to the instantaneous temperature minus the
equilibrium temperature);

(5) the thermal characteristic length, K′, which is defined as a
generalized hydraulic radius also entering into the analytic
properties of the high-frequency limit [11].

At high frequency, the excess temperature is everywhere the same
in the pore space because this quantity is related to the adiabatic
compression of the air in the material and depends only on the excess
pressure that is constant at the pore scale (the excess pressure is
equal to the instantaneous pressure minus the equilibrium pressure).
In this case, the effective bulk modulus is then equal to the adia-
batic bulk modulus and no additional parameter is necessary. All
the five previous parameters constituting the input parameters of
the Johnson-Champoux-Allard-Lafarge model (JCAL), can be char-
acterized experimentally [12,13]. The relationships between these
parameters and the microstructure of porous materials can be inferred
in various ways: (A) by considering solutions associated with idealized
structures (for example, a network of aligned tubes as in Refs. [7,8,14]),
(B) by using semi-empirical relationsbased on power lawsobtained on
idealized structures and calibrated on experimental measurements,
as done by Gibson et al. [5] for mechanical properties of cellular mate-
rials, or by Champoux and Allard for acoustical properties of fibrous
materials [15], (C) by the homogenization method [16] performed
on numerical periodic structures mimicking the microstructure of a
real porous medium. For a porous medium having a complex pore-
space, specific tools using mathematical morphology and probability
theory were used in order to generate numerical samples that are
consistent with observed data from advanced imaging techniques
(e.g., micro computed tomography) [17,18]. Finally, as an alternative
way to the approach (C) which involves computing only the asymp-
totic transport parameters, the numerical homogenization method
can be used to compute the overall dynamic response functions of
the porous medium. The response functions are then related to the
visco-thermal effects of interest [18,19].

Allof thesedifferentapproacheshavebeenusedtostudytheacous-
tical properties of cellular foams. Depending on various factors such
as the formulation, processing conditions and post-processing opera-
tions [4,20], the microstructures of cellular foams can be characterized
by the fraction of closed windows [20,21] or by the degree of opening
of membranes [4]. In the case of polyurethane foams, a more com-
plex distribution of membranes is observed which involves both fully
closed and partially-open windows [22]. Concerning the acoustical
properties, the effect of closed windows was studied by Doutres et
al. [20] with a semi-empirical approach (B), and by Park et al. [21]
with a numerical homogenization approach (C) performed on a Kelvin
cell (tetrakaidecahedron) microstructure. The effect of the window
aperture was studied by Hoang et al. [23,24] with the approach (C)
performed on a Kelvin structure. By another approach, based on the
numerical homogenization of Biot equations, Gao et al. have studied
the acoustic properties of foams having both open and closed win-
dows [22]. They have proposed a homogenization model based on a
simple mixing law built by parallel association of two types of cells:
fully open cells (without any membrane) and partially closed cells.
The Biot theory [14] used by these authors makes it possible to take
into account the effect of the deformations of the solid skeleton, but is
probably not the most appropriate to studying in detail the viscous and
thermal losses [8]. Numerical homogenization methods performed on
an appropriate structure (C), such as Kelvin or Weaire-Phelan struc-
tures, encapsulate both realistic (the model and the geometry of the
foam are quantitatively comparable) and parametrizable salient fea-
tures of the real microstructure, allowing modifications of cellular
morphology to be accounted for across the scales. This builds up an
appropriate framework for discussion with chemists. At the present
time, however, no optimal morphological configuration of cellular
foams has been manufactured to maximize sound absorption and/or
sound transmission loss for a given frequency range.
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Within the above context, this study aims at (i) exploring whether
milli-fluidic techniques [6] can be used to tune the membrane content
of cellular foams (and therefore, the transport and sound absorbing
properties of these materials); (ii) assessing the effects of the mem-
brane content on the sound absorbing and underlying visco-thermal
properties; (iii) developing a model to predict the evolution of these
macroscopic properties as a function of the membrane content. This
model will be compared to other formulations proposed elsewhere in
the literature, such as the Doutres et al. (DAD) model [20,21] (which
accounts for the fraction of fully open/fully closed windows) and the
Hoang and Perrot (HP) model, which is based on a homogeneous
degree of opening of membranes [23,24].

This paper is organized as follows. In Section 2.1, we present
a simple but efficient fabrication route for obtaining low-density
monodispersed polymeric foams with a tuned membrane content at
constant porosity. The membrane distribution and acoustical prop-
erties of the foams thus produced are then studied using optical
photomicrography and airflow resistivity, combined with three-
microphone standing wave tube measurements. In order to analyze
the relationship between the membrane distribution and sound
absorbing properties, a three-dimensional regular unit cell model
is subsequently proposed. A comparison between the experimen-
tal values and the numerical predictions is finally provided for
relevant quantities of interest.

2. Membrane-induced effect on sound absorption: experimental
evidence

In this section, we detail experiments conducted on real solid
foams. In particular, the foaming process, the microstructural charac-
terization and the measurements of normal incidence sound absorp-
tion and of the macroscopic parameters are presented.

2.1. Fabrication of controlled polymer foams

We fabricate solid polymer foam samples having fixed values for
both gas volume fraction and monodisperse bubble diameter Db, but
a tunable membrane content. The experimental procedure can be
described as follows (see Fig. 1):

(1) A monodisperse precursor aqueous foam is generated. Foam-
ing liquid, i.e., TTAB (Tetradecyl Trimethyl Ammonium Bro-
mide) at 3 g/L in water, and nitrogen are pushed through a
T-junction allowing bubble size control by adjusting the flow
rate of each fluid. The bubbles produced are collected in a glass
column and a constant gas fraction over the foam column is set
at 0.99 by imbibition from the top with foaming solution [25].

(2) An aqueous gelatin solution is prepared at a mass concen-
tration Cgel within the range 12–18%. As it will be shown in
the following, low (respectively high) gelatin concentrations
lead to the smaller (respectively larger) membrane contents.
For the present study we have taken advantage of this effect
for tuning the membrane content. Note that the opening pro-
cess occurring during the drying stage is complex and it has
not been studied so far. The temperature of this solution is
maintained at T ≈ 60 ◦C in order to remain above the sol/gel
transition (T(s/g) ≈ 30 ◦C).

(3) The precursor foam and the hot gelatin solution are mixed
in a continuous process thanks to a mixing device based on
flow-focusing method [26]. By tuning the flow rates of both
the foam and the solution during the mixing step, the gas
volume fraction can be set, 00 = 0.8. Note also that the
bubble size is conserved during the mixing step. The resulting
foamy gelatin is continuously poured into a cylindrical cell
(diameter: 40 mm; height: 40 mm) which is rotating around its
axis of symmetry at approximately 50 rpm. This process allows

Fig. 1. Schematic description of the foaming process.



348 V.H. Trinh, V. Langlois, J. Guilleminot, et al. / Materials and Design 162 (2019) 345–361

for gravity effects to be compensated until the temperature
decreases below T(s/g).

(4) The cell is left at rest during one hour, at 5 ◦C, and is then
placed in a climatic chamber (T = 20 ◦C and RH = 30%) for a
week. During this stage, water evaporates from the samples
and the gas volume fraction increases significantly.

(5) After unmolding, a slice (thickness: 20 mm; diameter: 40 mm)
is cut. The slice is used to perform acoustical measurements,
while the cut extremities are used for microstructural charac-
terizations [22] (i.e., the peripheral surface is used to measure
the pore size [27]).

2.2. Characterization of the foam samples

2.2.1. Pore volume fraction
As the specific gravity of dried gelatin was measured to be

1.36, volume and weight measurements of the dried foam samples
allow the pore volume fraction to be determined. For the gelatin
concentrations used in this study, the pore volume fraction was found
to vary between 0.977 and 0.983. Subsequently, this parameter was
considered constant and equal to 0.980 ± 0.003.

2.2.2. Pore size
Through a preliminary calibration, the observation of the sample

surface (see Fig. 2a) allows for the pore (bubble) size to be measured.
The calibration procedure can be described as follows. Bubbles col-
lected in the glass column (precursor in the Fig. 1) were first sampled
and squeezed between two glass plates separated by 100 lm. The sur-
face was next measured and using volume conservation, the bubble
gas volume and mean bubble diameter Db were determined (with
a precision of 3%). Moreover, the mean length Lp characterizing the
Plateau borders of the precursor foam at the column wall was mea-
sured. It is found that Db = (1.68 ± 0.06)Lp, with Db = 810 ± 30 lm

for all samples. This relation can be used to estimate the pore size in
the dried gelatin samples.

In addition, the degree of anisotropy was assessed by controlling
the value of the ratio Db1/Db2 (see Fig. 2b). Note that anisotropy was
also considered in both the axial and radial directions. In practice,
this ratio is typically smaller than 1.15 for all samples, so that the
effect of geometric anisotropy will be neglected from now on.

2.2.3. Cell window characteristics
In this work, cell windows have been characterized by observing

the top and bottom surfaces of samples through a microscope (see
Fig. 2). By scanning sample surface and focusing on individual win-
dows, we position in each window a polygon by making its edges
coincide with the Plateau borders (Fig. 2c). Then, the polygon area,
the number of edges and their lengths L are characterized.

In terms of cellular morphology properties, the distribution of the
number of edges per face shown in Fig. 3c is in close agreement with
previous experimental [28] and numerical [29] studies. The mea-
sured morphological properties, such as the edge length and face
area distributions shown in Fig. 3a–b, are very close to results shown
in Ref. [29] for foams with a monodispersed or relaxed structure. The
periodic unit cell modeling is based on a Kelvin cell and is described
in Section 3.1. The locations of the distribution peaks observed in
Fig. 3a–b are close to the ones obtained in a Kevin cell for which
L/ 3
√

Vce ≈ 0.45 (with Vce = D3
b/2, the volume of the Kelvin cell) and

Ak/
3
√

V2
ce ≈ 0.38 (with Ak = (6 × L2 + 8 × 3

√
3/2L2)/14). In addition,

as shown in Fig. 3c, the main proportion of 5-sided faces in all sam-
ples is consistent with the averaged number of edges of the cellular
model (4 × 6 + 8 × 6)/14 ≈ 5.14 (the average being taken over all
the faces of the Kelvin cell).

The membrane content is evaluated by measuring the closure
ratio of windows separating the pores, using the following proce-
dure. Over several hundred windows observed on both the top and
bottom sample surfaces, the proportion of fully closed windows xc is

Fig. 2. Characterizations of dried-gelatin foam materials: top view of foam sample (a), degree of anisotropy (b), membrane closure ratio (c), and membrane thickness (d).
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Fig. 3. Morphological properties measured on foam samples for S1(�), S2(◦), S3(♦), S4(×), S5(�), S6(�), S7(�), S8(�), S9(�), and S10(+). The results are shown for the normalized
edge length distributions (a), the normalized face area distributions (b), and the distributions of faces with E edges (c). The integral of each distribution is normalized to unity.

measured. Therefore, the proportion of open windows, denoted by
xo, is xo = 1 − xc. For each window, the closure ratio of membrane
rc is also measured: rc = 1 − √

Ael/Apo, where Apo is the window
area (the area of the corresponding polygonal face) and Ael is the
aperture area (the area of the fitting ellipse with the aperture, see
Fig. 2c). The average of the closure ratio 〈rc〉 is then calculated. In
the following, a distinction will be made between the mean closure

Fig. 4. Distribution function of the window closure ratio measured on foam sam-
ples. The results are shown for: S1(�), S2(◦), S3(♦), S4(×), S5(�), S6(�), S7(�), S8(�),
S9(�), and S10(+).

ratio 〈rc,c〉 of closed windows (equal to one) and the mean for open
windows, denoted by 〈rc,o〉. The three mean closure ratios are related
by the following equation: 〈rc〉 = xc + xo×〈rc,o〉. Note that in order to
get all the structural information required for the PUC modeling, this
treatment is refined by separating the “square-like” windows having
4 or less edges (referred to as ‘sq′), from the “hexagon-like” windows
having more than 4 edges (referred to as ‘he′).

The structural characterization is completed by a measurement
of the membrane thickness through SEM images (Fig. 2d). From ten
micrographs, the average thickness was measured to be equal to
1.5 ± 0.25 lm, which is close to thicknesses measured for similar
polymer foams [22,24].

Fig. 4 shows the cumulative distribution function of window clo-
sure ratio for each sample, and Table 1 gives the corresponding mean
value 〈rc,o〉 and proportion of closed windows xc. The gelatin concen-
tration Cgel (varying from 12% to 18%) in the foaming solution appears
as a control parameter to tune the membrane content of foam win-
dows. It appears that samples prepared with the same gelatin con-
centration may result in different mean closure ratios after drying.
The mapping between the fabrication parameters and the cellular
morphology parameters is given through an experimental design.

It is worth mentioning that the closure ratio of membranes for
the larger windows tends to be slightly smaller than the one for
the smaller windows, for all foam samples: rhe

c � rsq
c (the big win-

dows are more likely to rupture than small ones). One may however
simplify this feature by considering, on average, that all the open
windows of the PUC have the same closure ratio, given by 〈rc,o〉 =
(rsq

c xsq
o + rhe

c xhe
o )/(xsq

o + xhe
o ). As shown in Table 1, such a statistical

approach leads to a firm trend in which the level of closure ratio 〈rc,o〉
increases with the increasing proportion of fully closed windows xc,
which leads to an increase of membrane content 〈rc〉 from foam S1 to
foam S10.
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Table 1
Microstructural characteristics of foam samples.

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Cgel (%) 12 13 16 16 16 17 18 18 18 18
xc (%) 7.1 16.7 21.0 30.7 40.4 46.3 50.8 68.8 77.9 86.2
〈rc〉 0.33 0.44 0.47 0.60 0.65 0.73 0.74 0.83 0.91 0.94
〈rc,o〉 0.28 0.32 0.33 0.38 0.41 0.50 0.47 0.45 0.58 0.55
xsq

o (%) 20.8 18.4 15 12.7 10.4 8.2 6.6 6.1 6.3 3.4
xsq

c (%) 4.2 8.1 12.4 16.1 19.8 23.6 22.1 17.9 18.2 24.9
xhe

o (%) 72.1 64.9 64 56.6 49.2 45.5 42.6 26.1 15.8 11.2
xhe

c (%) 2.9 8.6 8.6 14.6 20.6 22.7 28.7 50.9 59.7 61.3

2.3. Acoustic measurements

We determined the macroscopic parameters by acoustic mea-
surements performed in a three-microphone impedance tube
(length: 1 m, diameter: 40 mm); see Ref. [30] and references therein.
The test frequency ranges from 4 Hz to 4500 Hz with a step size
of 4 Hz. Note that the three-microphone impedance tube method
consists in measuring the pressure transfer functions, H12 and H13,
between the microphones (see Fig. 5). The sound absorbing coeffi-
cient at normal incidence SACNI is estimated as SACNI = 1−∣∣p−/p+

∣∣2,
in which, p− and p+ are respectively the pressure created by the
outgoing and the ingoing waves at the surface of the sample. Based
on these measured data, Panneton and Olny [12,13] proposed an
inverse characterization method to estimate the transport proper-
ties of porous materials. This characterization method requires the
porosity and the static viscous permeability k0 as input parame-
ters using the approximate but robust JCAL semi-phenomenological
model [8,9,11]

Samples showing high permeability, i.e., k0 > 10−9m2, were
characterized by a direct measurement of the pressure drop DPsp as
a function of the volumetric air flow rate Q. This was achieved within
steady state conditions in a Darcy flow regime (ReDb

= VoDbq/g < 1,
where g is the dynamic viscosity of the fluid), as specified in the stan-
dard ISO 9053:1991. The Darcy permeability was then determined as
follows:

k0 = gQHsp/ADPsp , (1)

with the thickness of sample H sp ≈ 20 mm and the circular cross-
sectional area A ≈ 12.57 cm2. More precisely, the permeability of
each sample was measured for various static airflows ranging from
350 to 70 cm3/s (with incremental reductions) and determined by
interpolation for a linear airflow velocity of 0.5 mm/s. The relative
error of this measure is lower than 10%. The static viscous perme-
ability value k0 can also be determined as the imaginary part of
the low frequency behavior of the effective density q̃ [12]: k0 =
−g/limy→0[�(yq̃)], where y is the angular frequency. Using this
method, the air permeability is determined asymptotically based on
the frequency range [ 80–800] Hz. Because the fluid saturating the
porous medium is generally air in the context of sound absorbing

materials, any contribution to viscosity due to the nature of the fluid
can be excluded. Then, the use of the airflow resistivity s = g/k0

(Nsm−4) is preferred to that of the static viscous permeability k0

(m2). For foams having a significant fraction of closed windows, the
inverse method just described above [12,13] used to characterize the
transport parameters fails to determine the parameters governing
the thermal effects, i.e., the thermal characteristic length K′ [11] and
the static thermal permeability k′

0 [9].

2.4. Experimental results and discussion

Fig. 6 illustrates the evolution of the sound absorbing coefficient
at normal incidence as a function of the membrane content 〈rc〉.

As the membrane content increases, the sound absorption
coefficients display a transition from the most open pores (S1,
〈rc〉 = 0.33) to the least open ones (S10, 〈rc〉 = 0.94). This analysis
shows that the highest sound absorbing values (at constant thick-
ness, 20 mm) arise for intermediate situations (S6, 〈rc〉 = 0.73). For
〈rc〉 = 0.73, visco-thermal losses are produced such that SACNI ∼
100% absorption peak can be obtained at ∼1600 Hz. The sound
absorption increases monotonically when rc increases for 〈rc〉 < 0.73
and then decreases monotonically when 〈rc〉 continues to increase
above the critical value 〈rc〉 = 0.73. At low membrane contents,
most of the pores are fully open: consequently, the sound waves can
propagate through the foam without strong losses, and be reflected
on the rigid backing. On the other hand, at high membrane contents,
the sound waves can hardly penetrate into the cellular foam and
most of their energy is reflected instead of being transmitted and
absorbed by the porous structure.

Because most of the sound absorbing behavior of porous media
can be derived from analytic semi-phenomenological [8,9] models
once estimates of transport parameters are obtained, a further anal-
ysis of the measured transport coefficients of the porous samples
under study is clearly necessary. The following remarks can be made
regarding the transport parameters (see Table 2 and Fig. 12).

• Because membranes obstruct some windows, increasing 〈rc〉
reduces the mean aperture size and thus, increases the static
airflow resistivity s . As well as affecting the flow resistivity, the

Fig. 5. Experimental setup of the three-microphone impedance tube method.
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Fig. 6. Effect of the mean closure ratio on the sound absorbing coefficient at normal
incidence with a sample thickness of 20 mm and a rigid backing.

membrane closure ratio has an important effect on tortuosity.
Membrane closure ratio, in turn, increases the fluid path length
and therefore, the tortuosity a∞. The increase in tortuosity
with closure ratio accounts for the lowering of the frequency of
the quarter wavelength resonance shown in Fig. 6.

• Similarly, closing some windows or reducing the aperture size
of open windows, reduces the values of the viscous character-
istic length K, since K is defined as a pore-volume-to-surface
ratio in which a weighting procedure [Eq. (7)] substantially
favors the smaller apertures. Note that the values of K/Db are
close to the mean aperture radius 〈Ro〉, calculated by including
the closed windows for which Ro = 0 (Fig. 12a).

• The ratio K′/K is close to 2 for small values of 〈rc〉 (as observed
in fibrous materials; see for instance Appendix 5.C of Ref. [7]).
However, it turns out that K′/K should increase significantly

as 〈rc〉 → 1 since in the meantime K→0 [and K′ → K′
fc, see

Eq. (18)].
• Furthermore, we note that the formal inequality k′

0 ≥ k0 [31]
is verified experimentally, and that k′

0/k0 also diverges when
〈rc〉 → 1 as k0 → 0 as shown in Fig. 12. At constant pore
size Db, k′

0 decreases slowly with increasing membrane content
(fluid-structure interface) whereas k0 decreases strongly with
membrane content (fluid obstruction).

3. Distinction between aperture size and fraction of closed
windows: numerical simulations

3.1. Unit cell modeling approach

The space-filling arrangement of Kelvin’s cell is a good repre-
sentative structure for real cellular foams with equal-sized bubbles
or cells of equal volume [32]. The idealized Kelvin’s tetrakaidecahe-
dron is widely used for modeling foams having high porosity[27].
The cell is a 14-sided polyhedron with 6 square and 8 hexagonal
faces. In order to use this cell to study cellular materials, the cross
sections of the struts of this framework might be modeled using
different shapes; such as circular, triangular or concave triangular.
Interestingly, the ligament shape has relatively limited influence on
the macroscopic acoustic properties [20,33], so that the strut can be
treated using simple shapes (e.g., triangular tubes with a constant
cross section). Thus, the cell skeleton is made of idealized ligaments
having a length L, and an equilateral triangular cross-section of edge
side r (see the Appendix A). Fig. 7a shows the periodic unit cell used
to represent the local structure of the foam samples. The correspond-
ing finite-element mesh is shown in Fig. 7b. Note that all hexagonal
windows and three square windows are located in the cube and that
six square windows (half counted as they are shared by cells outside
the cube) belong to the faces of the cube. Due to the periodicity, the
square windows within the opposite cube faces are linked, i.e. both
are either closed or open at the same time.

In this work, the boundary value problems (BVPs) governing
visco-thermal loss mechanisms are solved by using the finite ele-
ment method (at convergence, the mesh contains 207, 361 tetrahe-
dral elements, see Fig. 7b). A commercial code, Comsol Multiphysics
v5.2, was used. As we are interested in membrane induced-effects
on the transport and sound absorbing properties, we partially or
totally close the windows by adding rigid membranes with a thick-
ness of 2 lm. The latter membranes constitute a rigid geometric
barrier of negligible thickness. The macroscopic linear elastic prop-
erties of three-dimensional periodic unit cell models have also been
computed elsewhere by taking into account the properties of the
base material (e.g., Young’s modulus and Poisson’s ratio) [23,34], and
a strong contribution of the membrane thickness was found. Inves-
tigating the role of linear elastic properties of the base material and
membrane thickness in more detail in the full three-dimensional
finite-element model considered here is more difficult because one
can no longer use the symmetry properties of a regular periodic unit

Table 2
Transport parameters of the fabricated foam samples.

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Mean closure ratio, 〈rc〉 0.33 0.44 0.47 0.60 0.65 0.73 0.74 0.83 0.91 0.94
Mean aperture radius, 〈Ro〉(lm) 161 136 125 105 81 64 62 34 25 21
s (kN s m−4) direct meas. 1.7 3.0 4.0 7.0 10.6 Out of range
s (kN s m−4) acoustic meas. 1.7 4.6 5.1 10.5 8.7 22.8 37.3 41.4 185 1360
a∞(−) 1.06 1.4 1.69 2.4 2.4 3.78 4.5 5.9 – –
K (lm) 224 165 179 103 95 51 44 67 – –
k′

0 (×10−10m2) 170 190 170 – 130 – – – – –
K′ (lm) 490 665 420 – 400 – – – – –
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Fig. 7. PUC: skeleton geometry (a) and pore-space mesh (b).

cell which reduces significantly the number of elastic constants to
be identified numerically. In the case of an open window, the hole
in the membrane is circular. As we attempt to make a numerical
reconstruction of real foams, the number of closed windows and the
size of the window aperture in the PUC are based on the microstruc-
tural characterization of the real samples. The global closure ratio of
the cell can be tuned by varying the number of partially closed win-
dows. Therefore, the number of closed hexagons and closed squares
per cell are determined by the following equations: Nsq

o = �6 ×
xsq

o /
(

xsq
o + xsq

c

)
� and Nhe

o = �8 × xhe
o /

(
xhe

o + xhe
c

)
� where � • � denotes

the nearest integer (round) function. The number of fully closed win-
dows is then equal to Nsq

c = 6 − Nsq
o and Nhe

c = 8 − Nhe
o . The aperture

radius of windows is chosen in accordance with the characterized
closure ratio Ro = (Apo/p)0.5 × (1 − rc,o), with Apo = 3

√
3D2

b/16 for
hexagonal windows and D2

b/8 for square windows.
Thus, a reconstructed PUC involves Nsq

c fully closed squares and
Nhe

c fully closed hexagons. However, different spatial distributions of
fully closed windows are possible (except in the simplest cases, e.g.,
fully open or fully closed cell). The total number of possible config-
urations Nt is given by the product of two binomial coefficients (see
Fig. 8 for one configuration of each PUC):

Nt =
(

6
Nsq

c

)
×
(

8
Nhe

c

)
. (2)

A 2D representation of the Kelvin cell is useful to localize the posi-
tion of the closed windows (Fig. 9): the windows numbered from 1 to
3 are associated with squares shared between two cells and located
at the face of the cube enclosing the PUC, the windows numbered
from 4 to 6 are associated with squares located within the cube, and
those from 7 to 14 are associated with hexagons located within the
cube. For each configuration, it is possible to define an array in which
each element is associated with a window in the PUC, and contains
“1” if the window is closed or “0” otherwise. Hence, as soon as the
numbers of closed hexagonal windows and closed square windows
are defined, all possible configurations of PUC can be found by cal-
culating all permutations of 0 and 1 in the array. We show in Fig. 9b
an example of different configurations associated with the simple
case, Nsq

c = 1 and Nhe
c = 0. These configurations are also depicted in

Fig. 11a(I) in a tabular form, where each line of the table corresponds
to a geometrical configuration (Table 3).

Among all the possible configurations associated with the same
number of closed windows, some of them have, with respect to the
physical problem considered, a similar behavior. A trivial example
is obtained by rotating a given configuration around the axis corre-
sponding to the direction of sound propagation (x-axis), for instance.
Other transformations (rotations, translations) exploiting the sym-
metries of the Kelvin cell also preserve the behavior of the cell. We
define a set of 13 transformations as shown in Fig. 10. For each trans-
formation, by comparing the original configurations [Fig. 11a(I)] to

Fig. 8. Illustration of some typical reconstructed PUC corresponding to microstructural characteristics of foam samples S1 to S10. Graphs of the periodic unit cell (a)–(k)
corresponding to PUC1–PUC10. Note that, for each PUC, only one configuration among many is depicted.
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Fig. 9. (a) Reconstruction of a tetrakaidecahedron cell with a 2-dimensional pattern, direction of x axis is perpendicular to faces 1 and 4; (b) the possible configurations associated
with PUC1 (Nsq

c = 1 and Nhe
c = 0).

the transformed configurations [Fig. 11a(II)], we can find the equiva-
lent configurations and associate them together [Fig. 11a(III)]. Then,
by considering the results obtained for all transformations, a global
calculation of equivalent configurations is performed [Fig. 11a(IV)];
as we show in Appendix B. Thanks to this calculation of equivalent
configurations, the number of reference configurations, Nr , we have
to compute is drastically reduced compared to the total number of
configurations,Nt (Table 4).

In porous media, pores (or cells in foam) can be disconnected
from the percolating pore-network in which fluid flow occurs [35]. In
agreement with this result, our PUC simulations predict that, when
the number of closed windows is significant, i.e., Nsq ≥ 2 and Nhe ≥ 4,
no flow through the PUC is possible for several configurations. The
number of such closed configurations,Nt,c, is given in Table 4. There-
fore, the ratio of the total number of open configurations to the total
number of configurations, (Nt − Nt,c)/Nt , gives the probability of
finding a cell within the percolating pore-space, which is also equal
to Rop, the ratio of the open porosity 0o to the total porosity 0,

Rop = 1 −Nt,c/Nt. (3)

3.2. Calculations of visco-thermal parameters

3.2.1. Definition of non-acoustic parameters
In this section, we briefly introduce the BVPs that are

used for computing the macroscopic properties of the JCAL
semi-phenomenological model with 6 input parameters. This

Table 3
Definition of the transformations of the original configuration [123456 |
7891011121314].

Symmetry Shown in Transformed configuration

Cell permutation Fig. 10a [4 5 6 1 2 3|11 12 13 14 7 8 9 10]
Origin point O Fig. 10b [1 2 3 4 5 6|13 14 11 12 9 10 7 8]
Rotation 180◦ around Ox Fig. 10b [1 2 3 4 5 6| 9 10 7 8 13 14 11 12]
Rotation 180◦ around Oy Fig. 10b [1 2 3 4 5 6|14 13 12 11 10 9 8 7]
Rotation 180◦ around Oz Fig. 10b [1 2 3 4 5 6|12 11 14 13 8 7 10 9]
Rotation 180◦ around Oz1 Fig. 10b [1 3 2 4 6 5|13 12 11 14 9 8 7 10]
Rotation 180◦ around Oy1 Fig. 10b [1 3 2 4 6 5|11 14 13 12 7 10 9 8]
Rotation 90◦ around Ox Fig. 10b [1 3 2 4 6 5| 8 9 10 7 12 13 14 11]
Reflection in plane Oyz Fig. 10c [1 2 3 4 5 6|11 12 13 14 7 8 9 10]
Reflection in plane Oxy Fig. 10c [1 2 3 4 5 6|10 9 8 7 14 13 12 11]
Reflection in plane Oxz Fig. 10c [1 2 3 4 5 6| 8 7 10 9 12 11 14 13]
Reflection in plane Oxz1 Fig. 10d [1 3 2 4 6 5| 9 8 7 10 13 12 11 14]
Reflection in plane Oxy1 Fig. 10d [1 3 2 4 6 5| 7 10 9 8 11 14 13 12]

semi-phenomenological model relies on two purely geometrical
parameters (0, K′) defined directly from the local geometry of
the representative unit cell as 0 =

∫
Yf

dV/
∫
YdV , and K′ =

2
∫
YdV/

∫
∂YdS [11]. Here, Y is the periodic unit cell and Yf denotes

the volume of fluid. The 4 remaining transport properties are com-
puted from the solution fields corresponding to three group of PDEs
over the unit cell.

Viscous flow: The low Reynolds number flow of an incompress-
ible Newtonian fluid is governed by the usual Stokes equations in the
fluid phase [36,37]:

gDv − ∇ p = −G with ∇ .v = 0 in Yf , (4a)

v = 0 on ∂Y, (4b)

v and p are Y − periodic, (4c)

where G = ∇pm is an imposed macroscopic pressure gradient (a
constant unit vector) and ∇p is a microscopic pressure gradient,
which is periodic from cell to cell. Symbols v and p are the veloc-
ity and pressure of the fluid, respectively. It can be shown that the
non-vanishing components vx of the local velocity field are given by
vx = −k0xxGx/g. Here, k0xx is a scaled velocity field. Thus, the (scalar)
static viscous permeability k0xx is calculated as

k0 = k0xx = 0
〈
k0xx

〉
, (5)

where the symbol 〈.〉 indicates a spatial average over the fluid-phase.
Inertial flow: In the high frequency limit, the viscous bound-

ary layer becomes negligible and the fluid tends to behave as a
perfect one, having no viscosity except in the vicinity of the bound-
ary layer. Consequently, the perfect incompressible fluid formally
behaves according to the potential flow problem [8,37]:

∇ .E = 0 with E = −∇ v + e, in Yf , (6a)

E.n = 0, on ∂Y, (6b)

v is Y − periodic, (6c)
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Fig. 10. The symmetry property of the periodic unit cell.

where e is a constant unit vector, E is the solution of the boundary
problem having −∇ v as a fluctuating part, and n is the unit normal
to the boundary of the pore region. The viscous characteristic length
K and the high frequency tortuosity a∞ are then calculated through

K =
2
∫
Yf

|E|2dV∫
∂Y|E|2dS

,a∞ =
〈|E|2〉
〈|E|〉2

. (7)

Thermal effect: Under the excitation of an external harmonic
source with angular frequency y, in a pore having a cross-section
with dimensions much smaller than the wavelength, the pressure
is uniform over the cross section (uniform and steady source term).
This constancy follows from a simple two-scale analysis. A proof is
given in Appendix A of Ref. [9]. To the lowest order, the excess tem-
perature field then originates from a spatially uniform, harmonic,
heating in the air domain, with perfect absorbing conditions on
the solid boundaries. This problem was investigated by Rubinstein
and Torquato [38] using the method of homogenization. The static
thermal permeability is given by:

k′
0 = 〈u〉, (8)

where the scaled temperature field u solves the canonical equations,

Du = −1, in Yf , (9a)

u = 0, on ∂Y. (9b)

It is worthwhile noticing that Du is dimensionless. Therefore, u and
k′

0 have the dimension of a surface.

3.2.2. Calculation of the average of non-acoustic parameters
For the purpose of the calculation of non-acoustic properties, the

configuration of each unit cell is considered based on the spatial dis-
tribution of the fully closed faces. Of course, this distribution has
no influence on the geometric parameters (i.e., the thermal char-
acteristic length K′ and the porosity 0, for PUCs without a closed
pore-space).

In order to compute the effective macroscopic transport param-
eters, for each unit cell of foam sample, let us first introduce two
averaging operators:

〈.〉V =
1
Vf

∫
Yf

.dV , (10a)

〈
gj
〉
N =

1
Nt

Nt∑
j=1

gj =
1
Nt

Nr∑
k=1

nkgk, (10b)

in which nk is the number of equivalent configurations having the
same value gk. Hence only one representative configuration among
nk is selected to perform the numerical computation. In the total
number of possible configurationsNt for each unit cell in Eq. (2), this
involves typically Nr reference configurations (see Section 3.1). The
values ofNt andNr are summarized in Table 4.

Then, the effective static viscous and thermal permeabilities of
each foam sample were deduced from the averages of the local per-
meability fields k0xxj and uj of each configuration. It follows that:
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Fig. 11. (a) Major steps in the equivalent configuration calculation and (b) graphs representing steps III and IV. This figure depicts the simple case where Nsq
c = 1 and Nhe

c = 0.

k0 =
〈〈

k0xxj
〉
V

〉
Nt

, k′
0 =

〈〈
uj
〉
V

〉
Nt

. (11)

Similarly, the effective viscous characteristic length and high fre-
quency tortuosity are obtained from the solution field Ej for the
potential flow problems:

K =
2
〈∫

Yf
|E|2j dV

〉
N〈∫

∂Y|E|2j dS
〉
N

,a∞ =

〈
〈|E|2j 〉V

〉
N(〈〈|E|j〉V
〉
N
)2

. (12)

Yf is the fluid-filled domain, and ∂Y is the fluid-solid interface in a
unit cell Y. Details of the above solved local fields are presented in
the previous section. Note that because the number of windows is
limited in the Kelvin unit-cell, for PUCs with a relatively high num-
ber of closed faces (i.e., S8 to S10), some configurations correspond
to disconnected fluid flow. This leads us to consider that all the
corresponding solution fields are equal to zero.

3.3. Calculations of sound absorbing properties using the JCAL
analytical model

The transport parameters k0, K, a∞ and k′
0 presented in

Section 3.2 arise in the low- and high-frequency limits of the
dynamic frequency-dependent permeability/compressibility. In this
section, we describe how these parameters, independent of angu-
lar frequency y, were used to construct simple analytical models
(using mathematical principles) described in this section of the
visco-inertial [8] and isothermal/adiabatic [9] responses for arbitrary
angular frequency y.

From the macroscopic perspective, the equivalent-fluid approach
consists of substituting a rigid porous medium by an effective fluid.
This fluid is characterized by an effective density q̃(y) [8] and an

effective bulk modulus K̃(y) [9,11] as follows [7]:

q̃(y) = q0

⎡
⎣a∞ − j

0s

yq0

√
1 + jy

q0

g

(
2ga∞
s0K

)2
⎤
⎦ , (13)

and

K̃(y) = cP0

⎡
⎢⎣c − (c − 1)

⎧⎨
⎩1 − j

0g

k′
0q0Npry

√
1 + j

4k′
0

2Nprq0y

gK′202

⎫⎬
⎭

−1
⎤
⎥⎦

−1

.

(14)

In these equations, s is the airflow resistivity, q0 and g are the
density and dynamic viscosity of the ambient fluid at rest (i.e., air),
P0 the atmospheric pressure, c = Cp/Cv the ratio of heat capaci-
ties at constant pressure and volume, Npr the Prantdl number, j the
imaginary unit, y = 2pf the angular frequency.

The wave number k̃c(y) and the characteristic impedance Z̃c(y)
at normal incidence of a layer of equivalent-fluid backed by an
impervious rigid wall are given by [7],

k̃c(y) = y

√
q̃(y)/K̃(y), Z̃c(y) =

√
q̃(y)K̃(y) . (15)

The sound absorbing coefficient (SAC) at normal incidence (NI) of
this porous layer is related to the impedance Z̃s(y) at the surface
x = −Hsp of the sample,

SACNI = 1 −
∣∣∣∣∣ Z̃s(y) − Z0

Z̃s(y) + Z0

∣∣∣∣∣
2

, (16)

with Z0 is the impedance of the air, and Z̃s(y) = −j Z̃c(y)
0 cot[k̃c(y)Hsp].
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Fig. 12. Dimensionless transport properties for real foam samples (×) and 2-parameter models: PUC computation (◦), EM model (�) obtained using the procedure described at the
end of Section 4, Eq. (19). The mean aperture radius 〈Ro〉, calculated by including the closed windows (Ro = 0), is added (�) by plotting 〈Ro/Db〉 and allows for a comparison with
K/Db . Note that the samples S1 to S10 are ordered by increasing mean closure ratios. The error bars on computed values of macroscopic parameters are calculated by considering
an error on the characterization of 〈rc,o〉 equal to ±0.05.

4. Results and discussion

At first, we consider the prediction performance of our “2-
parameter” microstructural model (at constant pore size), that
requires both the number of closed windows per cell and the size
of the window aperture (Section 3.1). Fig. 12 shows that the com-
puted transport parameters compare well to the characterized ones.
However, the computed values of tortuosity are lower than the char-
acterized ones. These differences could be due to the limited size
of our numerical samples. It is known that in percolating mate-
rials [35], the number of cells required for calculations when the
fraction of open windows, xo, is close to the percolation threshold
(1.5/Nv ≈ 0.11, where Nv = 14 is the pore neighbor number of the
Kelvin structure), should be superior to a few thousands. The fraction
of open windows for sample S10, equal to 1 − 0.86 = 0.14, is very
close to the percolation threshold. We can illustrate the limitation of
our unit cell modeling by comparing their predicted fraction of open
porosity obtained by pore-network calculations performed on large
samples in Ref. [35]. As expected, Fig. 12d shows that a modeling

approach based on a simple PUC does not accurately predict the open
porosity of the real cellular foam samples containing a high fraction
of closed windows. We also note that another explanation is possi-
ble due to an experimental bias: the microstructural characterization
of foam samples was done on the cut extremity of samples, and not
on the foam sample used to perform the acoustic measurements. As
sample drying occurs by water transfer through the borders of sam-
ples, the proportion of open windows in the border could be slightly
higher in the extremity than in the bulk of the foam samples.

Thus, it appears clearly that these models taking into account
both the proportion of closed window and the closure ratio give
quite good estimates of macroscopic parameters. What about the
simplest models taking into account one of the two microstructural
descriptors? Two “1-parameter” models are considered in the fol-
lowing: (i) the HP model built by considering a fully open foam with
a uniform membrane closure ratio tuned in such manner that the
computed permeability is equal to the characterized one (it could
include closed windows, i.e., square ones) [24], (ii) the DAD semi-
empirical model of Doutres et al. which considers the fraction of

Table 4
PUC characteristics corresponding to foam samples S1–S10. In particular, it illustrates the huge discrepancy between the total number of possible configurations Nt and the
reduced number of reference configurationsNr .

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Unit cell PUC1 PUC2 PUC3 PUC4 PUC5 PUC6 PUC7 PUC8 PUC9 PUC10

Nsq
c 1 2 3 3 4 4 5 4 4 5

Nhe
c 0 1 1 2 2 3 3 5 6 7
Nt 6 120 160 560 420 840 336 840 420 48
Nr 2 6 6 38 36 36 12 36 36 2
Nt,c 0 0 0 0 0 0 0 94 135 32
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Fig. 13. Comparison of the dimensionless transports predictions obtained for PUC computations and: the HP method (a, b and c), or the DAD method (d, e and f). The results are
shown for: PUC computation values (◦), HP values (�), and DAD values (�). Note that the samples S1 to S10 are ordered by increasing mean closure ratio, 〈rc〉.

closed windows without taking into account the closure ratio of open
windows [20]. Fig. 13 allows the predictions of these “1-parameter”
models at constant pore size to be compared with those of the model
presented in this paper. Apart from k0 which is an input parameter
taken from experiments, the macroscopic parameter values calcu-
lated with the HP model are globally close to our “2-parameter” PUC
model. However, the viscous and thermal characteristic length, K and
K′, for foams having a low fraction of closed windows (e.g., S1) are not
well estimated. For a relatively low mean closure ratio, 〈rc〉 (i.e., S1,
〈rc〉 = 0.33), ignoring the presence of closed windows and consider-
ing that the system can be described by membranes at the periphery
of open windows instead, could lead to an overestimation of the vis-
cous and thermal characteristic lengths by a factor of two. The DAD
model was developed from the standpoint of a cellular morphology
which differs significantly from the one studied here, Fig. 13 (right
panel). Therefore, it cannot be used to predict the transport parame-
ters of a cellular structure exhibiting both partially open and closed
windows in a given proportion. Concerning the SAC predictions of

our computational method, Fig. 14 shows that the global trend of
experiments is well reproduced by our calculation method. However,
a systematic difference between experiments and PUC computations
is observed: it is as if the PUC computed curve related to materials
having a closure ratio slightly lower than that of the corresponding
real foam. The discrepancy could be due to both a systematic error
in the PUC calculation (as expected for the porosity, but also for the
tortuosity) and/or a bias in the microstructural characterization as
described before.

Thus, it appears necessary to take into account both the propor-
tion of open windows xo and the closure ratio of membrane rc to
get an accurate estimation of macroscopic parameters and sound
absorption coefficient. This result is in agreement with the fact that
for at least two parameters, the thermal characteristic length K′ and
the static viscous permeability k0, their physical modelings require
us to consider both the fraction of open windows and the window
aperture size. Indeed, by considering the idealized geometry of the
chosen foam skeleton, the thermal characteristic length, K′, can be
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Fig. 14. Sound absorbing coefficients at normal incidence SACNI of samples, Eq. (16): experiments (orange filled zone), PUC computations with 0 = 0.98 (blue filled zone with
full line), PUC computations with 0 = 0o,computed (red filled zone with dashed line), Eq. (3). The results are shown from top to bottom as: foams S1 to S5 (left panels), and foams
S6 to S10 (right panels). The curves are calculated by using the computed macroscopic parameters shown in Fig. 12, and their uncertainties are related to the estimation of errors
on macroscopic parameters calculated by considering an error on the characterization of 〈rc,o〉 equal to ± 0.05. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

fully calculated. The detail of the calculation is given in Appendix A
for our idealized Kelvin cell. By neglecting a term due to the thickness
of membranes, the thermal characteristic length is given by:

Db

K′ =
Db

K′
c

− Nv

0

(
1
8

xsq
o +

3
√

3
16

xhe
o

)
(1 − rc)2, (17)

where K′
c is the thermal characteristic length of the fully closed

foam.
Eq. (17) shows clearly that the thermal characteristic length K′

depends on both the proportion of open windows xo and the closure
ratio of membrane rc.

Alternatively, in the framework of the characterization of par-
tially reticulated foam samples, K′ can be related to the thermal
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characteristic length, K′
c, associated with a fully closed foam, as

follows:

1
K′ =

1
K′

c
− 〈Ao〉Nv

0D3
b

, (18)

where 〈Ao〉 is the mean window aperture area.
The mean window aperture area depends on the aperture win-

dow size distribution which can be evaluated from the closure ratio
distribution. The value of the thermal characteristic length of a fully
closed foam, K′

c, appears as the lower bound of the thermal charac-
teristic length, K′. For a real foam [27], the ratio volume/surface is
close to Db/(5.3 3√2), leading to K′

c/Db ≈ 0.3.
We consider now the other transport parameter for which a “2-

parameter” modeling is required. A model of effective medium (EM)
for foam permeability, recently established [35], predicts that the
foam permeability, k0, depends on the amount of closed windows,
the membrane aperture size and their proportions. In this model,
foam is described as a network of connected pores and the fluid flow
through it is governed by a local Darcy law based on the pressure
drop at the scale of the membrane aperture. Then, the fluid flow
between two connected pores is assumed to be the product of a local
permeability and the difference between pore pressures. Moreover,
as predicted by the Sampson law, the local permeability depends on
the cube of the membrane aperture size. Then, the distribution of
membrane aperture radius, Ro,i, leads to a distribution of local per-
meability, ki. Considering the structure of the pore-network and the
distribution of local permeability, a mean local permeability k′ is cal-
culated by a self-consistent approach. Finally, foam permeability, k0,
is deduced from the mean local permeability. Therefore, the foam
permeability can be estimated by the following equations:

2
Nvk′ =

∑
i

x′
i

ki +
(

Nv
2 − 1

)
k′

, (19a)

k0 = Ropswk′, (19b)

where k′ denotes the mean local permeability, Nv was defined as the
pore neighbor number which is equal to 14 for the Kelvin cell, Rop

was the value of the open porosity ratio as given by Eq. (3), sw is
a coefficient depending on the structure of the porous medium and
ranging between 3 and 4, ki = R3

o,i/3Db is a local permeability asso-
ciated with an open window having an aperture radius equal to Ro,i,
and x′

i is the fraction of open windows inside the open pore space cal-
culated by including closed windows. The subscript i refers to open
windows having the same aperture radius Ri and, therefore, the same
local permeability, ki. Note that the closed windows have a local per-
meability equal to 0 and a proportion given by 1−∑i,ki �=0x′

i. Eq. (19a)
is not an explicit formula, but one can easily evaluate k′ by using an
iterative solver. Approximate formulae are given in Ref. [35] allowing
us to estimate the fraction of open porosity Rop and the open win-
dow fraction within the open pore-space x′

i by measuring the open
window fraction and the average number of neighbor pores. The size
of aperture Ro,i is calculated from the characterized closure ratios rc,i
and the mean size of bubbles Db: Ro,i = (1 − rc,i)

〈
(Apo/p)0.5/Db

〉
Db,

with
〈
(Apo/p)0.5/Db

〉
=

[
8

14 ( 3
√

3
2p )0.5 + 6

14 ( 1
p )0.5

]
21.5 ≈ 0.27.

Moreover, closure ratio distributions shown in Fig. 4 allow us to cal-
culate the fraction xi of windows having an aperture size equal to Ri.
Fig. 12 shows that the EM model predictions are in good agreement
with experimental measurements and PUC computed values.

5. Conclusion

The work described in this paper investigates, both numerically
and experimentally, the capability of millifluidic techniques to obtain
light-weight cellular foams with tailored acoustical properties. The
simple and yet versatile fabrication route proposed in this study con-
sists in modifying the mass concentration of the polymeric solution,
and it was shown that this approach allows bio-based solid cellu-
lar foams with controlled pore size and tuned membrane level to
be obtained. The foam samples thus produced exhibit monodisperse
pores with an assembly of closed and open windows, characterized
by an appropriate aperture ratio. The dependence of the trans-
port and sound absorbing properties on the membrane content was
demonstrated. In particular, samples with increased sound absorp-
tion properties (visco-thermal losses) were successfully manufac-
tured. The experimental evidence was further supported by com-
putational results, in which the transport properties are predicted
by combining multiscale simulations with an averaging procedure.
The latter involves all independent configurations of the membrane
content, identified using the experimental distribution. These results
confirm the relevance of the fabrication strategy in the production
of raw materials with optimal sound proofing capabilities. The com-
bination of our improved understanding of the structure/property
of rigid foams, together with the recently developed analysis of the
acoustics of permeo-elastic materials [39], provides great scope for
in-depth investigations of better absorption abilities of solid foams
with thin membranes [40], and for the development of new foam
materials with purpose designed properties.
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Appendix A. Reconstruction of periodic unit cell

In this appendix, we focus on the calculation of the geometrical
parameters, porosity 0 and thermal characteristic length K′, associ-
ated with the idealized foam geometry considered in this work. As
the porosity depends on the volume of pore-space and the thermal
characteristic length depends on its surface, the effect of membranes
on each parameter is very different. Due to the low thickness of
membranes, their volume is negligible compared to the volume of
ligaments and vertices. Therefore, the calculation of porosity can be
performed on a cell containing no membrane. In the following, we
consider this configuration as a starting point, and we then focus on
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Fig. 15. Detail of an interconnection of four half-ligaments in the Kelvin cell.

the effect of membrane surface on the thermal characteristic length,
K′.

At first, let us consider the case of a fully open cell (containing no
membrane) having a Kelvin structure. The cell structure is then made
of 24 ligaments and 12 vertices, all identical to each other. Fig. 15
shows an interconnection of four half-ligaments. Note that, in the
Kelvin cell, the angles between ligaments are not equal to the tetra-
hedral angle (≈109.5◦) and have not all the same value: two angles
are right (to form a square window), and two angles are equal to 120◦
(to form a hexagonal window). Moreover, due to the chosen shape of
ligaments, each half-ligament is a truncated triangular prism and the
vertex is an irregular octahedron.

The total solid volume over the unit cell is equal to the volume of
48 half-ligaments,

Vsolid = 24 × 2 × (
Vlig + Vver

)
, (A.1)

where Vlig = VI + VII and Vver = VIII with,

VI =

√
3

4
r2

(
L
2

− r

√
6 − 1

2
√

2

)
, VII =

r3

4
tan h, and VIII =

√
6 − 1
12

r3.

(A.2)

Then, the porosity of the open cell structure is calculated as follows

0 = 1 − Vsolid

D3
b

= 1 − 3
√

3√
2

(
r

Db

)2

+ C0

(
r

Db

)3

, (A.3)

with C0 = 10 − 3
√

6.
Note that the previous calculation is valid until the opposite lig-

aments of a window interact with each other leading to the closure
of square windows. Therefore, the following conditions on the liga-
ment width or on the porosity 0 require that: r

Db
≥ 1

2(
√

6−1)
(closure

of squares) or 0 ≥ 0.67. By considering Eq. (A.3), it is possible to
estimate the width of ligaments from the porosity as follows:

r
Db

=

√√√√ 1 − 0

3
√

3√
2

− C0
r

Db

≈
√√√√√ 1 − 0

3
√

3√
2

− C0

√
(1−0)

√
2

3
√

3

. (A.4)

Now, we focus on the calculation of the thermal characteristic
length defined as K′ = 2Vp/Ap where Vp and Ap are respectively the
volume and the surface of the pore-space. The thermal characteristic
length is directly linked to the specific surface Sp = Ap/D3

b leading
to K′/Db = 20/(SpDb). In the case of a fully open cell, the surface of
the pore-space is the surface of the ligaments and vertices. By con-
sidering the surfaces of triangular prisms and those of tetrahedra, we
obtain after some calculations:

Sp,oDb =
Ap,o

D2
b

=
36r√
2Db

+ Cs,0
r2

D2
b

, (A.5)

with Cs,0 = 12
√

2
[√

4 − √
6 − (

√
6 + 1)

]
.

For a cell having some membranes, we must consider their sur-
face, Amembrane, which depends on the closure ratio of hexagonal and
square windows, rc,he and rc,sq,

SpDb =
Ap,o

D2
b

+
Amembrane

D2
b

, (A.6)

where Amembrane =
∑6

i=1 Ac,sq,i +
∑8

j=1 Ac,he,j with

Ac,sq,i = 2L2

⎡
⎣(1 −

√
6 − 1√

2

r
L

)2

− (1 − rc,sq,i)2

⎤
⎦ , (A.7a)

Ac,he,j = 3
√

2L2

[(
1 − 1√

2

r
L

)2

− (1 − rc,he,j)2

]
. (A.7b)

After some computations, we obtain:

SpDb =

[
3
2

+ 3
√

3 + Cs,1
r

Db
+ Cs,2

(
r

D2

)2
]

−
[

Nv

4
xsq

o (1 − rc,sq)2 +
3
√

3Nv

8
xhe

o (1 − rc,he)2

]
, (A.8)

with Cs,1 = 6
(

1 + 3
√

2 − 2
√

3 − √
6
)

and Cs,2 =

6
(

7 +
√

32 − 8
√

6 − √
8 − √

12 − √
24
)

.
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The terms within the first brackets are related to the specific sur-
face of a fully closed cell, and the ones in the second brackets are
related to the aperture surface of windows.

Then, from the previous calculation, we deduce the expression of
the thermal characteristic length, K′:

Db

K′ =
Db

K′
c

0c

0
− Nv

80
xsq

o (1 − rc,sq)2 − 3
√

3Nv

160
xhe

o (1 − rc,he)2, (A.9)

where K′
c and 0c(≈ 0) are respectively the thermal characteristic

length and the porosity of a fully closed cell.
For the case of a PUC with an identical closure ratio of membrane

rc, we obtain,

Db

K′ =
Db

K′
c

0c

0
− Nv

0

(
1
8

xsq
o +

3
√

3
16

xhe
o

)
(1 − rc)2, (A.10)

with

Db

K′
c

=
1

20c

[
3
2

+ 3
√

3 + Cs,1
r

Db
+ Cs,2

(
r

D2

)2
]
. (A.11)

By calculating the thermal characteristic length K′
c of a fully closed

cell for various values of the porosity using the previous equation, we
found that the ratio K′

c/Db is almost constant in the range of porosity
[0.67; 1]: K′

c/Db ≈ 0.3 ± 0.02.

Appendix B. Global calculation of equivalent configurations

We consider the response of a system defined in Section 3.1.
Specifically, we wish to show that, for the particular case at hand in
which the reconstruction of real foams is addressed by means of both
the number of closed windows and the size of window aperture, a
drastic reduction of the number of calculations to be considered can
be obtained. This calculation is carried out in an iterative way and
consists of browsing the graph of linked configurations with the aim
to define a set of equivalent configurations, Fig. 11b. At the begin-
ning of the iterative process, the first line of the table found at the
end of the step III is used as a starting equivalent configurations list.
All configurations associated with the configurations from the start-
ing list are added to it to build a new list of equivalent configurations.
This list becomes the starting list in the iterative process. As previ-
ously, this list is used to build a new list, etc. The process is repeated
until the starting list and the recalculated list are equal. At the end
of the iterative process, the set of configurations equivalent to the
first one is identified. Then, the calculation is repeated with a line
which has still not been visited. When all configurations have been
visited, the calculation is finished. The major steps in the equivalent
configurations calculation are summarized in Fig. 11.
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