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The dynamical charge-density response of bulk bismuth has been studied within time-dependent density
functional perturbation theory, explicitly accounting for spin-orbit coupling. The use of the Liouville–Lanczos
approach allows us to calculate electron energy loss spectra for excitation energies as large as 100 eV. Effects
of 5d semicore electronic states, spin-orbit coupling, exchange and correlation, local fields, and anisotropy are
thoroughly investigated. The account of the 5d states in the calculation turns out to be crucial to correctly describe
the loss spectra above 10 eV and, in particular, the position and shape of the bulk-plasmon peak at 14.0 eV at
vanishing transferred momentum. Our calculations reveal the presence of interband transitions at 16.3 eV, which
had never been discussed before. The origin of the peak at 5.8 eV is revisited as due to mixed interband and
collective excitations. Finally, our study supplements the lack of experiments at finite transferred momenta.

DOI: 10.1103/PhysRevB.95.094301

I. INTRODUCTION

Electron energy loss (EEL) spectroscopy in a transmission
electron microscope is the experimental technique established
in the early 1960s to probe (neutral) fluctuations of the
electronic density induced by an electronic beam, and in
particular plasma oscillations [1]. The energy loss of incoming-
beam electrons is measured from the double-differential cross
section, a quantity related to the imaginary part of the inverse
of the dielectric function. On the other hand, time-dependent
density functional theory (TDDFT) [2,3] in the adiabatic local
density approximation offers the best compromise between
computational cost and accuracy for the calculation of plas-
mons in cases where static excitonic effects are not essential
[4]. However, its use within the plane-wave pseudopotential
(PP) approach is limited to the description of low (valence)
energy losses, and alternate methods are required to treat losses
from the (deep) inner core [5–7].

The intermediate energy range—describing electronic ex-
citations spanning up to hundred electronvolts—is associated
with a considerable quantity of possible final (empty) states.
Because including this big number of states in the calculation
is hardly possible using standard methods, we have recently
proposed the Liouville–Lanczos (LL) approach to EEL and
inelastic x-ray scattering (IXS) spectroscopies [8–10]—a new
approach which enables us to cover any extended energy range
at a low computational cost. In this work, the LL method is
applied to compute the electronic susceptibility of bismuth up
to 100 eV, including excitations from 5d semicore states, and
enables us to supplement the lack of experimental data for
finite transferred momenta.

Bismuth (Bi) has the heaviest nucleus among group-V
semimetals and requires a proper treatment of relativistic

*Present address: Theory and Simulation of Materials (THEOS),
École Polytechnique Fédérale de Lausanne, 1015 Lausanne,
Switzerland.

effects. Instead of solving nonrelativistic Kohn–Sham (KS)
equations for scalar orbitals in combination with non- or
semirelativistic PPs, one has to account for the large spin-
orbit coupling (SOC) by solving Pauli-type KS equations for
two-component spinor wave functions and use fully relativistic
PPs. This theoretical problem is doubled by the computational
difficulty to handle twice the number of electronic bands
and, in fact, few studies including the effect of SOC have
been reported so far [11–15]. A notable exception is provided
by Refs. [13–15], which detail the effect of including both
5d semicore states and SOC when calculating the dielectric
properties of lead.

The semimetallic character of the band structure of Bi, i.e.,
the tiny overlap between the highest valence band and the
lowest conduction band, is due to the very large SOC, and it
leads to many interesting phenomena: very large de Haas–van
Alphen and Shubnikov–de Haas quantum oscillatory effects,
thermoelectricity, excitations of coherent phonons [8,16]. Plas-
mon excitations have been less studied, and the effect of SOC
on plasmons in Bi is unknown. At finite transferred momenta,
EEL spectra have not been studied, neither theoretically nor
experimentally. For vanishing transferred momentum, the EEL
spectrum has been studied for bulk bismuth experimentally
[17–23], and there is only one, to the best of our knowledge,
theoretical study which was performed by using the random-
phase approximation (RPA) [11]. More recently, Bi nanostruc-
tures were studied experimentally [24–29]. In this work we
present a TDDFT study of the EEL spectra of bulk Bi in the
wide (0–100 eV) energy range for vanishing transferred mo-
mentum and predict EEL spectra for various finite transferred
momenta. We believe that our results will be helpful for future
studies of bulk bismuth and its compounds and nanostructures.

The rest of this paper is organized as follows: In Sec. II
we describe the computational method and provide numerical
details of our calculations. In Secs. III and IV we present
EEL spectra of Bi at vanishing and finite transferred momenta,
respectively. Finally, Sec. V contains the conclusions, and the
appendix recalls details of the band structure of Bi [8].
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II. COMPUTATIONAL METHOD

A. Link between experiment and theory

In an EEL experiment, incident electrons with wave vector
ki undergo an inelastic scattering due to Coulomb interaction
with electrons and ions of the target sample [1]. They thus
transfer to the target an energy h̄ω—observed as a loss
of their kinetic energy—and a wave vector Q = ki − kf ,
where kf is the wave vector of the outcoming electron. The
double-differential cross section describes how many incident
electrons were scattered in the solid angle d� and transferred
the energy h̄dω [30]:

d2σ

d�dω
= − h̄

(πea0)2

1

Q2
Im[ε−1(Q, ω)], (1)

where a0 = h̄2/(m0e
2) is the Bohr radius, −e is the electron

charge, and m0 is the free-electron mass. In periodic solids the
transferred momentum can be presented as a sum of the wave
vector in the first Brillouin zone (BZ) q and the reciprocal
lattice vector G: Q = q + G. In Eq. (1), ε−1(Q, ω) is the
inverse dielectric function which is the diagonal element of the
inverse dielectric matrix, ε−1(Q, ω) ≡ ε−1(q + G, q + G; ω),
defined as [31,32]

ε−1(q + G, q + G′; ω)

= δG,G′ + 4πe2

|q + G|2 χ (q + G, q + G′; ω), (2)

where χ is the charge-density susceptibility, the poles of
which correspond to plasmon frequencies and single-particle
excitations.

For many systems, χ (Q, Q; ω) can be conveniently and
accurately computed by using TDDFT. Within the “conven-
tional” approach one first computes the independent-particle
polarizability, which involves the calculation of a large number
of empty states, and then solves the Dyson-like screening
integral equation in order to obtain the full susceptibility
[4], which implies the inversion and multiplication of large
matrices. Such a procedure must be repeated for each value
of the frequency, which precludes its use for large energy
ranges. While Bi can be studied by using such a “conventional”
approach, we have used our recently proposed LL approach
to EEL and IXS spectroscopies [8–10] within time-dependent
density functional perturbation theory (TDDFpT) [33–35],
which overcomes the drawbacks of the “conventional” ap-
proach and hence is more convenient for calculations of EEL
spectra in the extended energy range.

B. Liouville–Lanczos approach within time-dependent density
functional perturbation theory

In the LL approach, the frequency-dependent charge-
density susceptibility for any given transferred momentum
χ (Q, Q′; ω) is expressed as the matrix element—diagonal
with respect to Q and Q′—of the resolvent of the Liouvillian L̂
of the system. The charge-density susceptibility describes the
response of the monochromatic Q component of the charge-
density operator, n̂Q → eiQ·r, to a monochromatic perturbation
of the same wave vector, V̂ext,q = n̂Q; namely [8–10],

χ (Q, Q; ω) = (n̂Q, (h̄ω − L̂)−1 · [n̂Q,ρ̂◦]), (3)

where ρ̂◦ is the unperturbed density matrix, and (·,·) denotes
a scalar product.

We point out that no empty states are computed in the LL
approach, and the techniques of the (static) density functional
perturbation theory [33,36] are used: the projector on empty
states is expressed as the difference between the unity operator
and the projector on occupied states. Thus, only the occupied
(valence and semicore) states are computed.

Moreover, we do not perform the computationally ex-
pensive inversion of the matrix (h̄ω − L̂)−1, and instead we
use the Lanczos recursion algorithm [37]: the Liouvillian
is applied to an initial perturbed state, and afterwards the
result is iteratively continued yielding a series of Lanczos
coefficients. Such a recursive procedure is independent of
frequency. Using a small tridiagonal matrix composed of the
Lanczos coefficients, the charge-density susceptibility for a
given transferred momentum is obtained at any frequency by
inverting this tridiagonal matrix for the desired frequency.

Details of the LL approach to EEL and IXS spectroscopies
can be found in Refs. [8–10]. The limitations of the LL ap-
proach (as well as of the “conventional” TDDFT approach) in
the TDDFT pseudopotential framework are dictated by the PP
approximation and the accuracy of the exchange-correlation
(XC) functionals to describe the semicore electrons that are
excited in the extended energy range. They are discussed in
Sec. III. To plot the loss function, −Im[ε−1(Q, ω)], we added
a small imaginary component to the frequency, ω → ω + iη,
leading to a Lorentzian broadening of the EEL spectra.

C. Spin-orbit coupling in the linear-response problem

The major contribution of relativistic effects comes from the
core region and is accounted for in the construction of fully
relativistic PP, by solving in the atom the relativistic Dirac-
type KS equation for four-component spinor wave functions
[38–42]. Nonrelativistic (Pauli-type) KS equations are then
solved for valence electrons, the states of which are represented
by two-component spinor wave functions by using the fully
relativistic PP. This accounts for relativistic effects up to order
α2, where α is the fine-structure constant. The mass-velocity
and the Darwin correction form the scalar-relativistic (SR)
term, and SOC is due to the coupling of the spin and orbital
angular momenta. The latter is particularly important in a
heavy element like bismuth.

Formally, the time-independent Pauli-type KS equations
read

Ĥ ◦�◦
n,k = ε◦

n,k�
◦
n,k, (4)

and allow us to determine the ground-state two-component KS
spinor wave functions �◦

n,k, energies ε◦
n,k, charge density, and

potentials. Here, n is the band index, and k is the point in the
first BZ. The ground-state 2 × 2 Hamiltonian reads:

Ĥ ◦ = T̂ ◦ + V̂ ◦
H + V̂ ◦

XC + V̂ ◦
loc + V̂ ◦

NL, (5)

where T̂ ◦ is the kinetic-energy operator for independent
electrons, V̂ ◦

H is the Hartree potential, V̂ ◦
XC is the XC potential.

The PP is described by two contributions: V̂ ◦
loc is the local part

of PP, and V̂ ◦
NL is the nonlocal part, which is a sum of the SR

and SOC contributions. The reader is referred to Ref. [42] for
more details.
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The time-dependent (TD) linearized Pauli-type KS
equations are solved by mapping them onto a quantum
Liouville equation for the response density matrix. For a
monochromatic perturbation with wave vector Q, this equation
in the frequency domain reads [8–10]

(h̄ω − L̂) · ρ̂ ′
q(ω) = [V̂ext,q,ρ̂

◦], (6)

where ρ̂ ′
q(ω) is the response density matrix operator. Equation

(6) is defined in the two-component spinor space and, hence, it
must be understood as a 2 × 2 matrix equation in such a space.
The Liouvillian superoperator L̂ is defined through the “non-
interacting” and “interacting” operators (see Refs. [8–10]).
The former is defined as Ĥ ◦ − ε◦

n,k and includes the SOC
contribution explicitly [Eqs. (4) and (5)]. The interacting
operator is defined as the response Hartree and XC potentials,
which are expressed via the response charge density [i.e., the
local in space element of ρ̂ ′

q(ω)]. It is worth noting that the
response charge density does not depend explicitly on SOC
(i.e., does not contain any extra term due to SOC) but implicitly
through the response KS spinor wave functions, coming from
the self-consistent iterative solution of the quantum Liouville
equation using the Lanczos recursive algorithm. We would
like to stress that, in our study, both ground-state and TDDFpT
equations have been solved including SOC self-consistently.

In this work we use fully relativistic norm-conserving
PPs which we had developed for bismuth, using the method
of Ref. [42] as implemented in the QUANTUM ESPRESSO
package [43]. Neglecting SOC will mean that we neglect the
SOC nonlocal term in V̂ ◦

NL in Eq. (5) and keep only the SR
term. In this case no splitting of the KS energy levels due to
SOC is present. Obviously, in the SR approximation, usual KS
wave functions are used instead of two-component spinors,
and the nonrelativistic (TD) KS equations are solved.

D. Numerical details

The calculations have been performed by using density
functional theory (DFT) [44,45] and TDDFpT in a plane-wave
and PP framework using the QUANTUM ESPRESSO package
[43]. The EEL spectra have been computed by using the
turboEELS component [10], which contains the implementation
of the LL approach to EEL and IXS spectroscopies.

Bismuth crystallizes in the A7 rhombohedral structure with
two atoms in the primitive unit cell, and can be viewed as a
Peierls distortion of the simple cubic lattice [46]. A detailed
description of the geometry of Bi crystal can be found, e.g., in
Refs. [47–50]. We have used fully relativistic norm-conserving
PPs in the fully nonlocal (separable) form, in which the 5d

semicore electrons were either included in the valence region
[8,48], or frozen in the atomic core [49–51].

Spin-orbit coupling has been included in the calculations
self-consistently as explained in Sec. II C. When including or
neglecting SOC in the calculations, we have used the corre-
sponding theoretical equilibrium lattice parameters optimized
with or without SOC, respectively (see Table 5.1 of Ref. [8]).

We have considered two approximations for the XC
energy; namely, the local density approximation (LDA)
using Perdew–Zunger parametrization of the Ceperley–Alder
functional [52], and the generalized gradient approximation
(GGA) using Perdew–Burke–Ernzerhof parametrization

[53]. Within each of these approximations we have used the
corresponding theoretical equilibrium lattice parameters (see
Table 5.1 of Ref. [8]).

The two-component KS spinor wave functions have been
expanded in plane waves up to a kinetic-energy cutoff of 60 Ry,
which was sufficient to obtain converged EEL spectra in the
0–100 eV range. The first BZ was sampled with a 14 × 14 × 14
uniform k point mesh centered at the � point, and we have used
a Methfessel–Paxton smearing scheme [54] with a broadening
parameter of 0.02 Ry. The TDDFpT calculations have been
performed by using an adiabatic approximation for the XC
kernel (LDA or GGA). We used 2500 Lanczos iterations when
the 5d semicore states were included in the valence region,
and 8000 Lanczos iterations when they were frozen in the core
region, as well as the extrapolation scheme [9,55]. To plot
the EEL spectra we have used a Lorentzian smearing with a
broadening of 0.035 Ry. The crystal and XC local field effects
have been included.

III. ELECTRON ENERGY LOSS SPECTRA AT VANISHING
TRANSFERRED MOMENTUM ( Q → 0)

This section is devoted to the study of the main factors
which influence peak positions and intensities of the EEL
spectrum calculated at vanishing transferred momentum. We
analyze in particular the magnitude of the intensity integrated
up to 20 eV. By decreasing importance, we find the inclusion of
the 5d semicore states in the valence region (Sec. III A), local
field effects (LFE), the SOC effect (Sec. III B), and the choice
of the XC functional. The respective roles of LFE and of the
XC functional are reported in the Supplementary Material [56].

A careful attribution of the peaks is performed in Table I,
which is the main result of present section, and a detailed com-
parison is made with available experimental data (Sec. III C).
We show, in particular, that the inclusion of the 5d semicore
states in the valence region is crucial not only to reproduce the
peaks between 20 and 30 eV and the broad structure between
40 and 100 eV, but also to obtain the correct position and
shape of the bulk-plasmon peak at 14 eV. This analysis gives us
confidence in the reliability of the predictions made in Sec. IV.

Only the [111] trigonal direction is investigated and the
study of anisotropy is postponed to Sec. IV C.

A. Effect of 5d semicore states

The EEL spectra are widely different when 5d semicore
states are included in the valence region or when they are
frozen in the core (see Fig. 1). When 5d states are included in
the valence region, the integrated intensity of the EEL spectrum
over the range 0–500 eV is markedly increased by 60%.

Indeed, without an explicit account of the 5d semicore
states in the valence region, the broad structure between 40
and 100 eV is not present in the spectrum, indicating that this
structure is due to interband transitions from the 5d semicore
states to higher conduction bands (see Table I and appendix for
the details of the band structure). Neither are there peaks in the
range 20–30 eV, which are due to interband transitions from the
5d semicore states to the lowest conduction bands. The authors
of Ref. [57] have also shown that the EEL spectra of noble
metals at high energies do have structures due to excitations
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TABLE I. Peak positions (in eV) in the EEL spectrum of bulk Bi as obtained in this work for Q → 0 in the trigonal direction and as
measured in various experiments. The error bar in this work has been determined as the difference between peak positions computed within
TDDFpT using the LDA and GGA XC functionals. The last column indicates origins of the peaks.

Peak This work Ref.a Ref.b Ref.c Ref.d Ref.e Ref.f Origin

1 5.8 ± 0.1 5 5 5.3 ± 0.2 5.3 5.6 Mixed
2 10 9.9 ± 0.2 9.5 ± 0.2 8.0 ± 0.5 Surface plasmon
3 14.0 ± 0.2 13.95 ± 0.15 14 14.7 ± 0.2 14.4 ± 0.2 14.1 ± 0.3 14.5 ± 0.5 Bulk plasmon
4 16.3 ± 1.0 Interband
5 22.6 ± 0.1 24.45 ± 0.2 24 24.8 ± 0.2 24.6 24.5 ± 0.5 Interband from 5d states
6 25.9 ± 0.2 27.3 ± 0.2 27 27.8 28 28.0 ± 0.5 Interband from 5d states
7 29 29 ± 0.2 29.7
8 41.5 ± 0.5
9 51 ± 4 52 52 Interband from 5d states
10 57.5 ± 0.5

aWehenkel and Gauthe [23].
bGauthe and Wehenkel [22].
cPowell [17,18].
dZacharias [21].
eSueoka [20].
fWerner et al. [11].

from the semicore states. This is also true for some oxides, like
titania and zirconia [58,59]. In cuprous oxide instead, the 3s

and 3p semicore states are located at respectively −115 eV and
−70 eV below the top of the valence band and their inclusion in
the calculation has only a small effect on the plasmon position
[60].

More remarkably, the inclusion of the 5d semicore states in
the valence region turns out to be crucial to correctly find out
the position and shape of the bulk plasmon, which is defined as
a collective excitation of valence electrons. The bulk-plasmon
peak occurs at 14 eV (see Table I, peak 3), whereas when 5d

states are frozen in the core, it appears as a shoulder at 15.1 eV
and the spectrum is dominated by a peak at 18.4 eV (which is
otherwise not present in the EEL spectrum when 5d states are
included in the valence region, see Fig. 1). We point out the
fact that 5d states are localized and lie at low energies, −24.2

0 10 20 30 40 50 60 70 80 90 100
ω (eV)

0.0

0.5

1.0

1.5

2.0

2.5

-I
m

[ε
-1

(Q
, ω

)]
 

5d in valence
5d in core

FIG. 1. EEL spectra of bulk Bi in the wide frequency range 0–100
eV computed for Q → 0 in the trigonal direction within TDDFpT
by using the LDA XC functional, including SOC, with 5d semicore
states in the valence region or frozen in the core.

and −21.1 eV, and that the valence band structure is extremely
well reproduced when 5d semicore states are frozen in core
[51], but this turns out to be insufficient to correctly reproduce
the dielectric function beyond 10 eV.

When 5d states are included in the valence region, the
plasmon is redshifted by 1.1 eV and the shape of the spectrum
is widely different, as for instance the integrated intensity from
0 up to 20 eV is decreased by 18.3%. In consequence, in the rest
of the paper we show the results when 5d states are included
in the valence region.

B. Effect of spin-orbit coupling

The effect of spin-orbit coupling is responsible for a very
large splitting of the electronic energy states in Bi (see
appendix) and, therefore, the EEL spectrum is expected to be
sensitive to it. Although not as large as for the band structure,
the effect of SOC on the EEL spectrum of Bi is significant, as
can be seen in Fig. 2 [61]. When SOC is included, the position
of the bulk-plasmon peak at 14 eV does not change while the
integrated intensity up to 20 eV is decreased by 4.1%. We note
that the change in the intensity of the plasmon peak in Bi due
to SOC is similar to that in Pb (see Fig. 7.12 in Ref. [13]).
Contrastingly, the peak at 5.8 eV is hardly affected by SOC.
The peaks between 20 and 30 eV redshift with the inclusion
of SOC and their intensity changes only slightly. Such a shift
is due to the energy change of interband transitions, which is
itself a consequence of the SOC-induced splitting of the 5d

energy bands into O4 and O5 subshells [see Fig. 8(b)].
In the rest of this paper we present the results obtained

when SOC was included in the calculations (except Sec. IV A,
where we also show spectra without SOC).

C. Comparison with experiment in large
energy range (up to 100 eV)

The EEL spectra calculated using the LDA and GGA
XC functionals at vanishing transferred momentum agree
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0 10 20 30 40 50 60 70 80 90 100
ω (eV)
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1.5
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-I
m
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(Q
, ω

)]

with SOC
without  SOC

FIG. 2. EEL spectra of bulk Bi for Q → 0 in the trigonal direction
calculated with and without SOC at respective equilibrium lattice
parameters using the LDA XC functional and including 5d semicore
states in the valence region.

remarkably up to 100 eV with the experimental spectrum of
Ref. [23] (see Fig. 3). We summarize all the structures in the
EEL spectrum of Bi in Table I and define the error bar in
this work as the difference between peak positions computed
within TDDFpT by using the LDA and GGA XC functionals.
A detailed comparison of theoretical results obtained with
the LDA and GGA XC functionals can be found in the
Supplementary Material [56].

Peak 1 at 5.8 eV is found in our calculations. This peak
is observed as a shoulder in the experimental spectrum of
Ref. [23] and was clearly resolved in other measurements
[18,20–22]. As will be discussed later in Sec. IV A, our results
suggest that this peak is not solely due to interband transitions,
as believed before the present work: it is a resonant excitation
between interband transitions from the occupied 6p states to

empty 6p states, and the bulk plasmon, and thus, this excitation
has a mixed character. The discrepancy with experiment on
peak 1 is found to be in the range 0.2–0.8 eV (see Table I).

Remarkably, the position of the bulk plasmon at 14.0 eV
coincides between theory (both LDA and GGA) and experi-
ment (peak 3), and our results about Bi are an illustration of
the success of TDDFT in predicting plasmon peak positions.
Moreover, our calculations reveal the existence of an extra
structure (peak 4), which was not resolved in the experiments.
Such a structure is due to interband transitions and it appears
as a shoulder when using LDA, while within GGA peaks 3 and
4 have very similar intensities and hence they form a unique
broad structure. Such a plateau-like structure was not observed
experimentally, and hence LDA shows a closer agreement to
the experimental EEL spectrum in the range 10–20 eV.

Peaks 5 and 6 in the energy range between 20 and 30 eV
are due to interband transitions from the 5d semicore states to
the Fermi level and lowest empty states. These peaks show a
redshift of 1.1–2.2 eV with respect to the experimental peak
positions of Ref. [23] (see Table I), the scattering between
the experimental results themselves amounting for the non-
negligible value of ≈0.8 eV. The discrepancy between theory
and experiment can be due to two factors: First, the imprecision
of the energy position of the 5d semicore states within both
LDA and GGA is in part responsible for the discrepancy, as for
instance, with respect to the quasiparticle energies obtained
in photoemission experiments, the discrepancy on the 5d

semicore bands amounts to 2.8 eV (see appendix). TDDFT has
thus a limited accuracy for interband transitions, because the
positions of single-particle excitation energies depend on the
LDA and GGA KS energies, and our study illustrates the need
of GW corrections to blueshift this kind of excitations [62].
Second, one can expect a semicore hole effect in the 5d states
caused by the interaction between the excited electron and
the hole created in the 5d semicore state during the interband
transition. This electron-hole interaction is usually treated with
the Bethe–Salpeter approach [4,63,64] for valence electrons,

0 10 20 30 40 50

(a) (b)

60 70 80 90 100
ω (eV)

0.0

0.5

1.0

1.5

2.0

-I
m

[ε
-1

(Q
, ω

)]

Expt.
Theory (LDA)

1

3

5 6

9

4

0 10 20 30 40 50 60 70 80 90 100
ω (eV)

0.0

0.5

1.0

1.5

2.0

-I
m

[ε
-1

(Q
, ω

)]

Expt.
Theory (GGA)

1

3

5 6
9

4

FIG. 3. Theoretical EEL spectrum of bulk Bi for Q → 0 in the trigonal direction, calculated including SOC and using the (a) LDA XC
functional, (b) GGA XC functional, and the experimental data in arbitrary units from Ref. [23]. The intensity at 35 eV of the experimental
spectrum has been rescaled to the intensity at 35 eV of the theoretical spectrum to which it is compared. The numbering of the peaks and
their values are indicated in Table I. The theoretical spectra are given in absolute units, and have been computed at their respective equilibrium
lattice parameters.
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or with the Z + 1 approximation for core excitations [65], and
in both cases the excitation energy is redshifted.

Figure 3 shows that TDDFpT remarkably reproduces the
broad structure extending between 40 and 100 eV (peak 9),
thus validating our PP approximation for high-energy ex-
citations [66]. The most recent EEL experiments on bulk
bismuth [11] show that instead of one broad peak 9 (with
a maximum intensity at around 51–52 eV), two peaks were
found; namely, peaks 8 and 10 appearing at 41.5 and 57.5 eV,
respectively, in contradiction with all other experiments and
present theoretical study (see Table I). Such a discrepancy
should be attributed to some artifacts in the experiments of
Ref. [11]. New experiments with a higher accuracy are required
to clarify whether there is one or two bands.

Moreover, we do not find the surface-plasmon peak 2 at
∼10 eV, which was observed in several experiments reported
in Refs. [17,18,21,22], because we did not model a surface but
a bulk material. Neither do we find peak 7 at ∼29 eV. In fact,
the occurrence of some oxidation of bismuth can be suspected
in the experiments in which this peak has been observed
[17,18,21,22], because Bi2O3 has a peak at 29 eV, as was
pointed out by Wehenkel and Gauthe [23]. Our calculations
confirm that peak 7 does not come from the response of
nonoxidized bulk Bi.

As can be seen from Table I, the comparison of TDDFpT
results with the experimental ones in bismuth shows that the
more collective the character of the excitation, the more precise
the TDDFpT with respect to the experimental data.

Finally, it is worth noting that the RPA studies of EEL
of Bi of Ref. [11] do not show as good agreement with
the experimental EEL as our TDDFpT studies. In particular,
in Fig. 26 of Ref. [11], the RPA loss function has intense
spurious peaks in the range from 0 to 12 eV, which are not
observed experimentally, the main plasmon peak position is
underestimated by ∼2 eV, and the broad structure in the range
from 40 to 100 eV decays too fast to zero intensity (probably
because of not enough number of empty states included in
the calculations). Our calculations using the LL approach
to TDDFpT give instead a remarkable agreement with the
experimental data of Ref. [23] thanks to the full TDDFpT
level of approximation and, in particular, the broad structure
decays correctly because of the (in principle) infinite number
of empty states implicitly included in our calculations due
to the use of techniques of density functional perturbation
theory [33].

D. Real and imaginary parts of dielectric function

In this section we perform a more detailed comparison of the
theoretical EEL spectrum within the LDA and the experimental
EEL spectra of Bi (Refs. [21,23]) in the 0–35 eV range and
discuss the origin of the peaks by considering the real and
imaginary parts of the dielectric function, Re[ε(Q, ω)] and
Im[ε(Q, ω)], for Q → 0. We have computed the dielectric
function according to the definition, ε(Q, ω) ≡ 1/ε−1(Q, ω),
as explained in Ref. [10]. As shown in Fig. 4, overall there is
a very good agreement between theoretical data of this work
and the experimental ones. Re[ε] and Im[ε] follow closely the
experimental data and capture all the prominent features.

FIG. 4. (a) Real part of the dielectric function, Re[ε(Q, ω)],
(b) Imaginary part of the dielectric function, Im[ε(Q, ω)], (c) Loss
function, −Im[ε−1(Q, ω)], for Q → 0 in the trigonal direction as
obtained from the experiments (Refs. [21,23]) and as calculated in this
work within TDDFpT by using the LDA XC functional and including
SOC. The inset in panel (b) contains a zoom of Im[ε(Q, ω)] in the
region from 20 to 30 eV. The intensity of the experimental data was
rescaled in the same way as in Fig. 3(a).

From Figs. 4(a) and 4(b) the information about the origin
of the peaks can be obtained. Peak 1 in Im[ε] was also
found by Cardona and Greenaway at 5.3 eV in the optical
absorption experiment [67] and it was attributed to the
interband transitions from the occupied 6p states to empty
6p states. Since peak 1 is also present in the loss function [see
Fig. 4(c)], it has been also attributed to interband transitions
[18]. However, as will be shown in Sec. IV A, a strong
dispersion with Q of peak 1 reveals that its origin is due in part
to collective excitations. Therefore, we draw the conclusion
that peak 1 has a mixed nature.

We would like to point out a remarkable agreement of
the lower-energy part (ω < 14 eV) of the plasmon peak
(peak 3, Table I) with the experimental data of Ref. [21] [see
Fig. 4(c)]. In the theoretical loss function the plasmon peak
occurs [68] when Re[ε] = 0.16 and Im[ε] = 0.49, which is in
good agreement with the results reported in Ref. [23]; namely,
Re[ε] = 0.06 and Im[ε] = 0.50.

As was reported in Sec. III C and as can be seen in Fig. 4(c)
in the theoretical EEL spectrum there is a shoulder at 16.3 eV
(peak 4), which is due to interband transitions. This is so
because in Im[ε] there is a very weak shoulder at the same
energy, which was not resolved in the experiments due to its
low intensity.

It is known that, in general, a shift (from a fraction of
1 eV to several eV) can be observed between peaks due
to interband transitions in Im[ε] and −Im[ε−1] (see, e.g.,
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FIG. 5. EEL spectra with (solid lines) and without (dashed lines)
SOC of bulk Bi at various values of Q along the [111] direction in
framework of the reciprocal basis vectors of BZ (Å−1). Curves have
been shifted vertically for clarity. Calculations have been performed
within TDDFpT using the LDA XC functional. Red dashed lines are
guides for the eye showing the dispersion of the peaks.

Ref. [69]). However, such a shift in Bi is negligible for peaks
5 and 6. Indeed, these peaks in the EEL spectrum [Fig. 4(c)]
coincide with the peaks in the imaginary part of the dielectric
function [Fig. 4(b)], and hence they can unambiguously be
attributed to interband transitions.

The remaining differences between theory and experiment
in the real and imaginary parts of the dielectric function can
be attributed to the fact that, first, the plasmon peak is very
broad and, hence, it is not easy to find its maximum very
precisely and thus, also the values of Re[ε] and Im[ε] satisfying
the plasmon resonant condition, and second, the authors of
Ref. [23] used the Kramers–Kronig analysis which introduces
some uncertainty into the values of the dielectric function.

IV. ELECTRON ENERGY LOSS SPECTRA AT FINITE
TRANSFERRED MOMENTA ( Q �= 0)

In this section we present results which are totally pre-
dictive. They have been obtained by using the best level of
approximation which we could reach in this work; namely,
TDDFpT including 5d semicore states in the valence re-
gion, including SOC, including LFE, and using the LDA
XC functional. Moreover, in this section we analyze the
effect of SOC and anisotropy at finite transferred momenta.
Qualitatively similar results (not shown) were obtained by
using the GGA XC functional, the geometrical effect discussed
in the Supplementary Material [56] being the main source of
difference between GGA and LDA.

A. Dispersion and nature of the peaks

Figure 5 shows the EEL spectra of Bi at various values of
the transferred momentum Q along the [111] direction in the
framework of the reciprocal basis vectors of BZ, i.e., along
the trigonal axis (see, e.g., Ref. [48]). The analysis of the
dispersion of the peaks complements our analysis of the origin

of the peaks, which are summarized in the last column of
Table I.

When the transferred momentum Q is increased, the bulk-
plasmon peak 3 at 14 eV is blueshifted, showing a quadratic-
like dispersion, while the peaks 5 and 6 in the 20–30 eV
range do not change visibly their positions, which confirms
that they are caused by the interband transitions from the 5d

semicore states to the Fermi level and lowest empty states (see
appendix for the initial and final electronic states, Figs. 8(a)
and 8(b), respectively). The shoulder at 16.3 eV (peak 4) shows
a weak dispersion with Q, confirming that it is due to interband
transitions. When Q increases and reaches the critical value of
Qc ≈ 1.2 Å−1, bulk-plasmon peak 3 merges with peaks 4, 5,
and 6 which are due to the interband transitions, the spectrum
becomes very broad and its intensity is decreased. Such a
broadening of the EEL spectrum occurs because the energy of
the plasmon is transferred to excitations of the electron-hole
pairs [70].

As for peak 1 at 5.8 eV, it blueshifts largely when Q in-
creases. This observation suggests that the 6p → 6p interband
transitions are mixing with the bulk-plasmon excitation, hence
creating an excitation of a resonant mixed character. Thus, its
attribution is reconsidered by our results and the peak should
be regarded as having a mixed nature.

The EEL spectra at various values of Q were computed
when SOC was included and neglected by using corresponding
theoretical lattice parameters (see Table 5.1 of Ref. [8]). From
Fig. 5 one can see that the effect of SOC is more pronounced
for smaller values of Q, while for large Q it is less important.
More investigation are needed in order to explain such a trend.

B. Dielectric function at finite Q

Figure 6 shows a comparison of the loss function,
−Im[ε−1(Q, ω)], and the real and imaginary parts of the
dielectric function, Re[ε(Q, ω)] and Im[ε(Q, ω)], respectively,
for various values of the transferred momenta Q along the
[111] direction. It can be seen that, for small Q, the loss
function and the imaginary part of the dielectric function are
very different, but for large Q they become almost identical.
This is due to the fact that, for small transferred momenta Q, the
long-range component of the Coulomb potential is important,
whereas for large Q the short-range effects dominate [71,72].
The same trend has been observed by Weissker and co-workers
in silicon (see Fig. 20 in Ref. [72]).

C. Effect of anisotropy

The anisotropy is determined by the electronic band
structure and crystal local field effects [58,72]. We computed
EEL spectra of Bi at several transferred momenta Q along the
directions [111], [110], and [100] in the BZ (in the framework
of the reciprocal basis vectors) within TDDFpT by using the
LDA XC functional and including SOC. We find that the EEL
spectra are anisotropic at large transferred momenta Q, as can
be seen in Fig. 7. However, at small transferred momenta,
e.g., Q = 0.2 Å−1, the anisotropy is very small. When Q is
increased up to, e.g., 0.8 Å−1 or larger, the anisotropy becomes
very significant. At Q = 0.2 Å−1 and Q = 0.8 Å−1 peaks 5
and 6 due to the interband transitions from the 5d semicore
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FIG. 6. Real and imaginary parts of the dielectric function,
Re[ε(Q, ω)], Im[ε(Q, ω)], respectively, and the loss function,
−Im[ε−1(Q, ω)], at various values of the transferred momentum Q
along the [111] direction calculated within TDDFpT using the LDA
XC functional including SOC. In the lowest two panels, Im[ε(Q, ω)]
and −Im[ε−1(Q, ω)] were multiplied by a constant factor for better
visibility.

states are isotropic, in contrast with the plasmon peak 3, peak
4 due to interband transitions, and peak 1 of the mixed nature.
Also, we find that, by switching off SOC, the EEL spectra show
qualitatively the same anisotropic behavior with increasing Q

as when SOC is included in the calculations [8].
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FIG. 7. EEL spectra computed for several values of Q along
the [111], [110], and [100] directions in BZ (in framework of the
reciprocal basis vectors), within TDDFpT by using the LDA XC
functional and including SOC. Curves have been shifted vertically
for clarity.

V. CONCLUSIONS

We have presented a theoretical study of the EEL spectra
of bulk Bi at vanishing and finite transferred momenta.
The study has been done by using our recently developed
Liouville–Lanczos approach to EEL and IXS spectroscopies,
which allowed us to study energy losses up to 100 eV, a
wide excitation energy range of interest in bismuth. Spin-
orbit coupling has been included self-consistently in our
calculations.

The EEL spectrum at vanishing transferred momentum
have been found to be in remarkable agreement with available
experimental data. Including 5d states in the calculations is
crucial, as we have shown that the dielectric function is not
correctly described for energies larger than 10 eV when they
are frozen in the core. Our calculations reveal the presence
of interband transitions at 16.3 eV, which were previously
not identified because they were not distinguished from the
bulk plasmon. A careful experimental analysis of the relative
dispersion of the bulk plasmon and of the shoulder at 16.3 eV,
as done in present theoretical work, is called for. We have
presented the dependence of the dielectric function and of the
loss function on the value of the transferred momentum, and
have studied the influence of various effects such as SOC,
crystal and exchange-correlation local fields, and anisotropy.

Our results complement the lack of experimental data at
finite transferred momenta, and we have shown in particular
that, for values of Q larger than ≈1.2 Å−1, the plasmon decays
into electron-hole pairs. Finally, the peak at 5.8 eV is attributed
by the present work to a resonant coupling between 6p → 6p

interband transitions and the bulk plasmon. Measurements of
the EEL spectra of bulk Bi at vanishing and finite transferred
momenta are called for.
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APPENDIX: KOHN-SHAM BAND STRUCTURE

The electronic configuration of Bi consists of 6s26p3

valence electrons, 5d10 semicore electrons, and the lower-lying
electrons forming the core. In the DFT and tight-binding
calculations the 5d semicore electrons can be treated either
on the same footing as 6s and 6p valence electrons [48,73] or
frozen in the core [49,50,74–78]. In Ref. [48] it was reported,
however, that the inclusion of the 5d semicore electrons in PP
improves its transferability properties.

The KS band structure of Bi along some high-symmetry
directions in the BZ is illustrated in Fig. 8, which was calcu-
lated within DFT-LDA with and without SOC. The KS band
structure within DFT-GGA can be found in Ref. [8]. Here we
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present the DFT-LDA KS band structure for the analysis of the
EEL spectra within TDDFpT by using the LDA XC functional.

The effect of SOC on the band structure of Bi is crucial. The
first study showing this effect is Ref. [75]. Here we summarize
the results [8] which are needed for discussions in this work.
When SOC is not included in the calculations, Bi turns out
to be metallic, because there is an artificial crossing of bands
at the Fermi level [see Fig. 8(a)]. The semimetallic character
of the band structure is entirely due to SOC, which leads
to large splittings of all energy bands except s bands [e.g.,
6s bands in Fig. 8(a)]. The large splitting of 6p bands, in
turn, leads to an extremely small overlap around the Fermi
level between the lowest conduction band and the highest
valence band (see Tables 5.2 and 5.3 in Ref. [8]), resulting in a
Fermi surface consisting of one hole pocket at the T point and
three equivalent electron pockets at the L points [48,75,76].
The localized 5d semicore states lie more deeply and also
split due to SOC forming two groups of bands—O4 and O5

subshells [see Fig. 8(b)]. The 5d semicore bands show very
weak dispersion with respect to valence and conduction bands.

Both in DFT-LDA and DFT-GGA the 5d semicore states
appear on average at −24.2 and −21.1 eV when SOC is
included, and in the range [−22.2; −22.6] eV without SOC
[see Fig. 8(b)]. The photoemission data on Bi indicate that the
binding-energy values of the O4 and O5 subshells relative to
the Fermi level, which is taken to be zero, are −26.5 ± 0.5 and
−24.4 ± 0.6 eV, respectively [79]. This average discrepancy
of 2.8 eV between LDA (GGA) and photoemission data in
the description of the O4 and O5 subshells of the 5d semicore
shell is due to the limited accuracy of our approximations of
the XC energy, and a possible need to account for quasiparticle
corrections to the KS band structure by using the GW method
[80,81], which has been recently applied to Bi including SOC
[82]. Consequently, this has an effect on the peak positions in
the EEL spectra of Bi, which are due to transitions from the
5d semicore states to unoccupied states.
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