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ABSTRACT

In this paper a new approach to geometrically model and characterize 2D silhouette images of two-phase flows
is proposed. The method consists of a 3D modeling of the particles population based on some morphological
and interaction assumptions. It includes the following steps. First, the main analytical properties of the
proposed model – which is an adaptation of the Matérn type II model – are assessed, namely the effect of the
thinning procedures on the population’s fundamental properties. Then, orthogonal projections of the model
realizations are made to obtain 2D modeled images. The inference technique we propose and implement to
determine the model parameters is a two-step numerical procedure: after a first guess of the parameters is
defined, an optimization procedure is achieved to find the local minimum closest to the constructed initial
solution. The method was validated on synthetic images, which has highlighted the efficiency of the proposed
calibration procedure. Finally, the model was used to analyze real, i.e., experimentally acquired, silhouette
images of calibrated polymethyl methacrylate (PMMA) particles. The population properties are correctly
evaluated, even when suspensions of concentrated monodispersed and bidispersed particles are considered,
hence highlighting the method’s relevance to describe the typical configurations encountered in bubbly flows
and emulsions.

Keywords: 3D modeling, finite point process, Matérn point process, stochastic geometry, particles size
distribution, two-phase flow.

INTRODUCTION

Complex random structures are ubiquitous in many
industrial applications and fields of science, from
physics to biology or agronomy. Typical problems
involve emulsions (Maaß et al., 2011; Lau et al., 2013),
porous media (Arns et al., 2003; Biswal et al., 2009)
and materials characterization (Ohser and Schladitz,
2009), biological tissues (Nagata, 2000; Mrkvička and
Mattfeldt, 2011) or plant anatomy (Muthukannan and
Latha, 2015; Kubı́nova et al., 2017). In multiphase
chemical processes, in particular, it is generally desired
to extract information on geometrical characteristics
and on spatial distribution from 2D images of the
population of particles involved. Hence in bubbly flow,
geometrical characteristics such as the volume fraction
or the total surface of the population of bubbles
define the rate of mass transfer and mixing on which
the efficiency of gas-liquid process depends. In this
article, population of particles refers to a collection
of individuals which are either bubbles, droplets or
calibrated solid spheres.

The choice of the model that properly describes
a random structure is driven by the nature of the
observable data. Here, the data are assumed to be

2D binarized images, also called silhouette images
(Descombes, 2011; Zafari et al., 2015), where the
digitized set is composed of 0 while 1 is assigned
to the image’s background. A stochastic modeling
approach has already been used by Kracht et al.
(2013) to characterize bubble images. The authors
proposed a planar Boolean model of disks with a
specific inference technique to retrieve the bubble
size distribution. However, the population of bubbles
they studied was rather diluted with little or no
overlapping objects. Here, the populations studied are
dense and their 2D silhouette images correspond to
orthogonal projections of the components. Since an
orthogonal projection of an opaque body is a many-to-
one mapping, the projected planar image of the body
results in a loss of information. The situation is even
worse when other bodies, whose projections may non-
trivially overlap in the image, are added (Baddeley
and Jensen , 2004). This is typically the case for two-
phase flow images (de Langlard et al., 2018) for which
classical stereological or image analysis methods fail
to retrieve 3D geometrical characteristics.

A different approach is proposed here that can
be divided into two steps. First, a 3D marked point
process model that is representative of the population
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of particles is built, while making a priori realistic
assumptions. The main assumptions made are on the
spherical shape of the particles, and on the type of
interaction between them. Thus, the marks correspond
to the radius of the particles. Besides, as in most
practical cases the particles are confined in a vessel
and interact with its walls, it is more consistent to
incorporate the interaction of the domain W with
the point process in the designed model. Second, the
reliability of the model is evaluated by comparing
2D synthetic images (also called modeled images in
this paper) – obtained by orthogonal projection of
its 3D realizations – and the corresponding ground
truth silhouette images. From a theoretical viewpoint,
the projected point process is well defined since
the length l of W in the projection direction is
finite. Note that it would not have been the case
for any other homogeneous point processes, as, e.g.,
the homogeneous Poisson point process in R2 (its
projection onto the x-axis is everywhere dense on any
bounded interval).

The present paper is organized as follow. In
the first section, the experimental materials and
methods used to acquire silhouette images of the
two-phase flows are detailed. The theoretical basis
of the model, namely the Matérn point process, and
its basic properties are reminded, and the proposed
methodology to model 3D populations of particles
is described. Typical results are given in the second
section. The sensitivity to the model parameters is
tested, and the model predictions and experimental
(i.e., real) images are compared. These results are
further discussed in the last section.

MATERIALS AND METHODS

EXPERIMENTAL SETUP
Suspensions of solid particles are particularly

convenient to acquire validation data: they can
mimic the main features of any two-phase flow,
while avoiding the coalescence and breakage events
frequently encountered with bubbles and droplets.
Using solid particles hence enables a precise
knowledge of the dispersed phase properties. In
this study, mixtures of calibrated PMMA particles
(purchased from GoodfellowTM) and brine are
considered. The salt concentration is tuned to adjust
the liquid and the solid densities in order to prevent
buoyancy effects. Two populations of spherical
particles are constructed: a monodipserse population
of radius r = 0.75 mm and a volume fraction (in the
liquid) of 1.5%, and a bidisperse population of radius
r1 = 0.5 mm and r2 = 0.75 mm with a volume fraction

of 2.24%. The proportion of particles of radius r1 is
equal to 63% of the total number of particles. The
uncertainty on the radius given by the supplier is of
±0.025 mm. The suspensions are enclosed in a stirred
tank provided with perfectly plane walls.

The optical setup is composed of a green
collimated light-source and a CMOS camera (1.1
MPixel, 12 bits) from the brand PhotronTM, model
Fastcam SA3 60K, associated to a camera lens Carl
ZeissTM, model Makro-Planar T* 100 mm f/2. The
spatial resolution of the images is 1024× 1024 where
100 px is equal to 3.62 mm. The depth of the tank
along the optical axis is 4.5 cm. Acquisitions are
conducted at 50 Hz, or frame per seconds (fps), with
an exposure time of 1/30000 s. The optical setup is
calibrated with the camera placed in such a way that
the middle of the tank belongs to its object focal plane.
Due to a high depth of field, the whole volume of
measure can be recorded without significant blur. A
photograph of the experimental setup and a typical
acquired image are shown in Fig. 1.

(a) Photograph of the image acquisition setup.

(b) Image of a suspension of calibrated PMMA
spheres in water.

Fig. 1. Photograph of the experimental setup and of the
two-phase flow.
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As the images are very contrasted with sharp
transition between the background and the region
of interest, no specific pre-processing is required. A
crop of the images to remove the window effect on
each corner, and a classical thresholding using Otsu’s
method are used. A final process is applied to remove
very small objects corresponding to the presence of air
bubbles stuck on the tank glass or dust. A binarized
image of a calibrated population of the mono-disperse,
resp. bi-disperse, population of PMMA spheres is
shown in Fig. 11 (a), resp. in Fig. 13 (a) . The final size
of the window of observation is 29.3×37×45 mm3.

MODELING THE SILHOUETTE IMAGES

The principle of the modeling approach is
illustrated in Fig. 2. The 3D domain W is a stripe
of R3 and is denoted by W = R2 × [0, l], where l is
its length along the projection direction. Within it,
an observation window, Wobs, is considered. It is a
rectangular cuboid of length l along the projection
direction.

Briefly, the proposed methodology is the
following:

1. Build a 3D model of the population. A hard-
core spheres model is considered in this study.
Besides the simplification it implies, this model is
consistent with most physical problems. Similarly
to particle-particle interactions, particles-wall
interactions are modeled by the hard-core
interaction too ;

2. Achieve its orthogonal projection on a 2D
plane, representing the sensor plane and evaluate
the properties of the obtained 2D modeled
image. Just as real silhouette images, the
modeled image is considered as a realization
of an isotropic homogeneous random closed set,
meaning invariance under rotation and translation
of the distributional properties of the random set ;

3. Compare and adjust the modeled and real images
using functional characteristics of random sets.
The model parameters are then determined by
numerical optimization.

In the following, the first two steps are described
under the “Building the 3D model” subsection,
whereas the last step is discussed in the “Model
calibration” one.

Fig. 2. Representation of the silhouette images
modeling. A 3D model of hard-core spheres is chosen
and orthogonal projections of its realizations are
constructed to model the silhouette images of two-
phase flows.

Reminder on Matérn’s type II point
process

Matérn’s type II point process (Matérn, 1960) is
a thinning of an underlying homogeneous Poisson
point process in Rd of intensity λ . The thinning rule
introduces a hard-core distance, denoted by R, between
the resulting points: if two points are closer than
2R, the last arrived one is removed. The time of
arrival of a point is usually modeled using a uniform
random variable taking values on the unit interval.
Such a process can be considered as a marked Poisson
point process, where the first mark is R (constant and
positive) and the second mark stands for the time of
arrival.

Matérn’s model can be generalized to a non
deterministic mark assuming that R follows a
probability law. This generalization provides more
flexibility in view of practical applications. If F is the
distribution function of the random mark R, it has been
shown by Stoyan and Stoyan (1985) that the retention
probability g of a point in Rd with mark r can be
expressed by:

g(r) =
1− exp

(
−λκ

∫ +∞

0 (r+ y)dF(dy)
)

λκ
∫ +∞

0 (r+ y)dF(dy)
, (1)
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with κ the volume of the unit ball in Rd .

This retention probability also enables to derive
explicitly the intensity of the Matérn point process,
denoted λat , i.e., the intensity of the point process after
thinning:

λat = λ

∫ +∞

0
g(r)F(dr) , (2)

and the probability density function (p.d.f), denoted
fat , of the radius after thinning (Månsson and Rudemo,
2002):

fat(r) =
1∫ +∞

0 f (x)g(x)dx
f (r)g(r) , (3)

where f is the underlying p.d.f for F , the continuous
distribution function of the radius before thinning.

Starting from this generalization, an adaptation
of the Matérn (type II) hard-core point process is
proposed to address the case of interaction between
particles and the boundary of W denoted by ∂W .

Building the 3D model

Definition

By R3 we denote the Euclidean space which
is equipped with the Borel σ -algebra on the usual
topology. W is equipped with the induced topology
by the one of R3, and hence by the corresponding
Borel σ -algebra. Let (Ω,B,P) be a probability space,
(C,F ) a measurable space where C denotes the space
of point patterns in W where the number of points is
finite for any bounded Borel sets, and F the σ -algebra
generated by the mappings ϕ → ϕ(B), where ϕ is a
sequence of points and ϕ(B) is the number of points in
the bounded Borel set B ⊂W . Then, a general point
process can be seen formally as a random variable
taking values in (C,F ) (Daley and Vere-Jones, 2003).

We consider first a Poisson point process of
intensity λ in W . For each point, a mark is generated
independently and identically distributed according to
the distribution function F on R+.

The proposed model is a thinning of a Poisson
point process of intensity λ resulting from the two
following rules:

1. first, the thinning rule of Matérn’s type II model
is applied (see previous section): for two marked
points (x1,r1, t1) and (x2,r2, t2), if ||x1 − x2||2 ≤
r1 + r2 then the point arrived at time max(t1, t2) is
deleted. The deletion is effective only at the end of
the process ;

2. an independent second thinning rule is applied:
a marked point (x,r, t) located at x, with radius
r arrived at time t is removed with probability
1 − exp(−U(x,r, t)). The function U , called
interaction function, is positive on W ×R+× [0,1]
and takes values in R+∪{+∞}.
Hence, in the proposed methodology, the model

is fully specified by three parameters: the intensity
λ of the Poisson point process, the mark distribution
function F , and the choice of the interaction function
U .

Main Properties
Following these thinning procedures, the mean

number of points and the corresponding mark
distribution function are related to the retention
probability g(x,r). Its definition is therefore of prime
importance.

The retention probability
The analytical expression for the retention

probability g is given in Proposition 1 below:

Proposition 1 The retention probability g(x,r) of the
point located at x ∈W with radius r is given by:

g(x,r) =
∫ 1

0
exp
(
−
(

U(x,r, t)+

λ t
∫

∞

0
ν(Bx(r+ y)∩W )F(dy)

))
dt , (4)

where Bx(r+ y) denotes the ball centered at x and of
radius r+ y and ν(.) is the Lebesgue measure.

Proof We write X :=W ×R+× [0,1]. The underlying
marked Poisson point process taking values in X can
be seen as an inhomogeneous Poisson point process of
intensity measure dΛ := λ dxF(dy)dt.

For any point (x,r, t) of X, the process of
points that wins over the point (x,r, t) is also an
inhomogeneous Poisson point process as a thinning of
an inhomogeneous Poisson point process. Its intensity
measure can be expressed by

λ1{s≤ t}1{z ∈ Bx(r+ y)∩W}dzF(dy)ds . (5)

Then, the total number of points follows a Poisson
distribution of expectation

λ t
∫ +∞

0
ν(Bx(r+ y)∩W )F(dy) . (6)

Hence, the probability that a point (x,r, t) is retained
after the thinning process equals the probability that
there is no point of the inhomogeneous Poisson point
process of expectation in Eq. 6, which is

exp
(
−λ t

∫ +∞

0
ν(Bx(r+ y)∩W )F(dy)

)
. (7)
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We now introduce the interaction function U
and the corresponding probability exp(−U(x,r, t))
that the point (x,r, t) is retained due to this
interaction. Multiplying the retaining probability
related to the particle-particle interactions, Eq. 7, by
exp(−U(x,r, t)), provides the retaining probability
accounting for the complete thinning process.
Integrating over the time, it reads

g(x,r) =
∫ 1

0
exp
(
−
(

U(x,r, t)+

λ t
∫

∞

0
ν(Bx(r+ y)∩W )F(dy)

))
dt . (8)

�

Choice of the interaction function U

The choice of the interaction function is motivated
by two main reasons:

1. to simplify the formula for the retention probability
of Eq. 4;

2. to verify the hardcore hypothesis for the particles-
wall interaction in order to be consistent with most
multiphase flow applications where studied objects
(droplets, bubbles or solid particles) evolve inside
a finite domain (a pipe, a tank, a reactor, etc.).

In this aim, we define the hard-core particle-wall
interaction function U , such as

U(x,r, t)=


+∞ , if Bx(r)∩WC 6= /0,

λ t
∫ +∞

0 ν(Bx(r+ y)∩WC)F(dy) ,
otherwise.

(9)

Hence, the retention probability g(x,r) is equal to 0
when the ball centered at x and of radius r intersects
∂W . Otherwise, we have g(x,r) = g(r) (as defined in
Eq. 1) if the ball Bx(r) is entirely included in W .

It is worth noting that g(x,r) only depends on r
and on the coordinate x3 along the projection direction
(Oz) and r in this setting. Then, we rather write g(x3,r)
instead of g(x,r).

Relations between the parameters before and after
thinning

It is worth mentioning that (1/l)
∫ l

0 g(x3,r)dx3
is the retaining probability of a point of
radius r randomly located in W , while
(1/l)

∫ +∞

0
∫

W g(x3,r)dxF(dr) represents the retaining
probability of a random point of the underlying marked
point process. Alternatively, one can exchange the
integrals with Fubini’s theorem.

Simplifying these probabilities with respect to the
chosen U gives the two corollaries:

Corollary 1 The intensity λat of the proposed model
is

λat =
λ

l

∫ l/2

0
(l−2r)g(r)F(dr) . (10)

Corollary 2 We assume that the distribution function
F of the radius has a density f . Then, the probability
density function fat of the radius distribution after
thinning is

fat(r) =

{
0 , if r > l/2 ,
k−1(l−2r)g(r) f (r)

(11)

where k =
∫ l/2

0 (l−2r)g(r) f (r)dr is the normalization
constant.

Illustration of the effect of the thinning rules

The effect of the two thinning procedures is
illustrated in Fig. 3 where the initial mark density f
and the one obtained after thinning fat are compared.
The histogram of the marks on 500 realizations of
the Matérn model is also plotted to highlight the
consistency between Corollary 2 and the simulations.

The intensity after thinning calculated from Eq. 10
equals 0.5090 whereas the estimated one from the
simulations equals 0.5114, hence a relative difference
around 0.5%.

Fig. 3. Comparison of the density of the mark before
and after thinning with the interaction function of
Eq. 9. The length of W equals l = 7. The initial
mark distribution is a gamma distribution with shape
parameter k = 4 and scale parameter θ = 0.2. The
intensity λ of the underlying Poisson point process
equals 0.7.
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Model calibration
It is here assumed that the model is completely

described by the intensity λ and a set of morphological
parameters (the bold font is used to emphasize that θθθ is
a n-tuple and not a scalar). The aim of the calibration
procedure is to infer the best values of vector θθθ and
of λ such that the modeled images (i.e., resulting from
the projections of the 3D model) fit the experimental
images we intend to analyze. This calibration process
is achieved by numerical optimization.

Numerical optimization

Several functionals can be used to characterize
a region of interest in an image in terms of
spatial distribution and of morphological aspect of
the homogeneous random closed set to analyze.
Among them, the covariance and the opening
function (granulometry) are the classical statistics used
(Matheron, 1972; Diggle, 1981; Dereudre et al., 2014)
and have been chosen in this study.

The covariance C of a random closed set Ξ on R2

is defined as the following probability:

∀rrr ∈ R2, C(rrr) = P(o ∈ Ξ∩Ξrrr) , (12)

where o is the origin and Ξrrr = Ξ+ rrr is the translation
of Ξ by the vector rrr. For a homogeneous and isotropic
random set, C depends only on the distance r = ||rrr||.
An unbiased estimator Ĉ of C is:

Ĉ(rrr) =
ν
(
Ξ	{o,rrr}∩W	r

2D

)
ν(W	r

2D )
, (13)

where ν(·) is the Lebesgue measure, 	 is the erosion
operation from mathematical morphology and W	r

2D is
the erosion of the bounded Borel set W2D ⊂ R2 by the
disk of radius r.

Similarly, the opening function O of a random
closed set Ξ on R2 is defined as the following
probability:

∀r ≥ 0, O(r) = P(o ∈ Ξ◦Bo(r)) , (14)

where Bo(r) is the disk centered at the origin
and of radius r and ◦ is the classical opening
operation (composition of an erosion and a dilation)
of mathematical morphology. An unbiased estimator
Ô of O is:

Ô =
ν
(
Ξ◦Bo(r)∩W	2r

2D

)
ν(W	2r

2D )
. (15)

Starting from these two unbiased estimators
(Eqs. 13 and 15), the optimization problem can

be formulated as the minimization of the convex
combination of the L2-norm of the model and data
covariance difference on one hand, and of the L2-norm
of the model and data opening function difference on
the other hand, i.e.:

argmin
λ ,θθθ

α

||Ĉdata||22

∣∣∣∣∣∣Ĉmodel(λ ,θθθ)−Ĉdata

∣∣∣∣∣∣2
2
+

(1−α)

||Ôdata)||22

∣∣∣∣∣∣Ômodel(λ ,θθθ)− Ôdata)
∣∣∣∣∣∣2

2
, (16)

where Ĉmodel(λ ,θθθ) (resp. Ômodel(λ ,θθθ)) is the
estimated average covariance (resp. average opening
function) of the random set obtained by projections
of the 3D model, Ĉdata (resp. Ôdata) is the estimated
average covariance (resp. average opening function)
of the real images, and α ∈ [0,1] is a weight parameter
fixed by the user. In general, the closer to 1 is α , the
more distributional and topological information are
captured by the model. Contrariwise, the closer to 0,
the more morphological aspects are retrieved by the
model.

In this study, a direct search type algorithm
(Davidon , 1991; Audet and Dennis, 2002) is used to
find the local minimum of this optimization problem.
As the space of feasible solutions is large, this
optimization procedure can be very computationally
time expensive. To reduce this cost, a special attention
has to be paid to the the choice of the initial solution.

Initialization procedure

The steps of the initialization procedure are the
following:

1. fit a 2D boolean model of disks on the images ;

2. deduce the 3D parameters after the two thinning
procedures ;

3. invert the formula of Corollaries 1 and 2 to obtain
an initial solution for the minimization routine.

Each of the three steps is detailed below.

Fitting a 2D boolean model of disks

The problem of finding the parameters of a boolean
model of disks for a two-parameters law has been
addressed by Diggle (1981); Hall (1985), and Weil
(1988).

For our purpose, we use the estimation of densities
method proposed by Weil (1988). Based on the area
density AA, perimeter density LA and Euler-Poincaré
characteristics density χA of a planar Boolean model,
the method of densities consists of solving a system of
three equations. If we consider a disc as typical grain,
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these equations link the latter densities to the intensity
λ2D of the underlying Poisson point process, to the
mean µ2D and the standard deviation σ2D of the radius
distribution. This system of equations derived by Weil
(1988) for a Boolean model of discs in the plane is the
following: AA = 1−q ,

LA = 2πλ2Dµ2Dq ,
χA = q×

(
λ2D− 1

4π
(2πλ2D µ2D)

2
)
,

(17)

with q = exp(−λ2Dπ(µ2
2D + σ2

2D)). The final set of
solution is denoted by (λ2D,µ2D,σ2D).

The characteristics AA, LA and χA are estimated
using the procedure of Mrkvička and Rataj (2009).
Briefly, the approach of Mrkvička and Rataj (2009)
consists of solving a linear regression model. The
solution of this model corresponds to estimates of the
intrinsic volume densities of the ε-parallel set of Ξ (for
ε > 0) which can be used as approximation of those of
Ξ itself for small ε .

Alternatively, if one would like to fit a boolean
model of circular grains with a non-parametric law for
the radius distribution, the relatively recent method of
Emery et al. (2012) using the closed relation between
geometric covariogram and covariance can be used.

Deduction of λat and fat

Once we have (λ2D,µ2D,σ2D), it is easy to
determine the set of parameters (λat ,µat ,σat) after
thinning. The radius distribution after thinning for the
proposed model is equivalent to the radius distribution
of the projected marked point process (the orthogonal
projection of a sphere is a disk of same radius).

Moreover, the number of particles in the
observation window Wobs is conserved in its 2D
counterpart W2D. The only possibility that the number
of particles differs is if the projected point process in
the plane is not simple, i.e. if at least two points can
have the same location. This would be the case if at
least two points in Wobs can have the same coordinate
along the projection direction. However, this event has
probability 0.

Hence, the set of parameters after thinning is
(λat ,µat ,σat), with: λat = λ2D/l ,

µat = µ2D ,
σat = σ2D ,

(18)

from which fat can be deduced.

Derivation of the initial solution

To deduce the initial guess of λ0 and f0 from
the previously calculated values of fat and λat ,
Eqs. 10 and 11 must be inverted. The inversion
process is not straightforward as the two equations
are interdependent, and involve complex generalized
integrals. As a consequence, the determination
of (λ0,µ0,σ0) is achieved numerically with an
optimization routine. It is moreover assumed that the
probability law of the radius after thinning is the same
as the one before thinning.

RESULTS

SENSITIVITY ANALYSIS

Before proceeding to real image analysis, and as
several parameters are involved, the sensitivity of the
proposed methodology is first investigated. Synthetic
images, fully characterized, is used in this aim.

Test of the inference procedure

The robustness of the inference procedure is
evaluated on projection’s images of the proposed
model, considering a gamma law for the radius
distribution. The size of the observation window Wobs
is fixed to 10× 10× 10 and the model parameters to
λreal = 1, µreal = 0.2 and σreal = 0.1. A set of 200
realizations of synthetic images, as the one displayed
in Fig. 4 is simulated, and we apply the calibration
method with its three steps for the initialization
procedure. Three values of the weight parameter α are
considered: α = 0, α = 1/2, and α = 1.

First, a 2D boolean model of disks is fitted. To that
end, the mean area density, the perimeter density and
the Euler-Poincaré characteristic density are calculated
from the whole set of images. The application of
the method of densities leads to λ2D = 7.84, µ2D =
0.211, and σ2D = 0.066 as well as the corresponding
parameters after thinning λat = 0.784, µat = 0.211
and σat = 0.066. It provides the initial solution of the
optimization procedure λ0 = 1.11, µ0 = 0.221, and
σ0 = 0.07, from which the three optimization routines
for Eq. 16 are run. The obtained results are gathered in
Table 1 where they are compared with the real ones.

For α = 0, the parameters found are very close to
the true solution: a small deviation of around 5% is
obtained for the intensity, and less than 3.5% for the
mean and standard deviation of the radius distribution.
For α = 1/2 (resp. α = 1), the deviation from the
true intensity value is around 9.5% (for both value
of α), about 5.5% (resp. 4%) for the mean and 2%
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(resp. 9%) for the standard deviation of the radius
distribution. The corresponding fitted covariances and
opening functions are provided in Fig. 5.

Fig. 4. Example of a synthetic image obtained by an
orthogonal projection of a realization of the proposed
model with intensity λreal = 1 and radius distribution
Γ(4,0.05).

Robustness to the volume fraction

Increasing the volume fractions of spheres in the
population is considered to test the robustness of the
calibration procedure.

Let VV be the volume fraction of the population
of particles (i.e. after thinning). As we deal with non-
interpenetrating particles, it follows

VV = λatκEFat [R
3], (19)

where Fat denotes the cumulative distribution function
of the radius after thinning, κ the volume of the unit
ball of R3, and EFat [.] the expectation under Fat .

Table 1. Results of the calibration procedure on
the synthetic images when a gamma distribution is
chosen both to generate the synthetic images and for
the modeling approach. Three values of the weight
parameter α have been tested: 0, 1/2 and 1. The
results are reported for a single optimization routine.

Real Init
Weight parameter α

0 1/2 1

λ̂at 0.811 0.856 0.770 0.889 0.898
µ̂at 0.186 0.213 0.192 0.176 0.179
σ̂at 0.091 0.066 0.092 0.093 0.083

(a) Fitted covariance

(b) Fitted opening function

Fig. 5. Comparison of the characteristics of the real
data (synthetic images from the proposed model) and
of the modeled images. The radius distribution used
in the modeling is the same as the one to generate
the images (a gamma law Γ(4,0.05)). The real data
characteristics are plotted in red circles.

According to Eqs. 10 and 11, it reads

VV =
1
l

∫ l/2

0
r3(l−2r)(λκg(r)) f (r)dr . (20)

If we consider VV as a function of λ , it is clear that
VV is a non-decreasing function of λ . Moreover, taking
the limit when λ → ∞ gives:

VV,lim =
1
l

∫ l/2

0
r3(l−2r)

1∫ +∞

0 (r+ y)3 f (r)dy
f (r)dr .

(21)

Keeping the same radius distribution (only the
initial intensity λ is changed to impact on the
volume fraction), the corresponding function VV (λ ) is
illustrated on Fig. 6. Notice that VV depends also on the
mean and standard deviation of the radius distribution,
which are kept constant here.
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Fig. 6. The volume fraction function after thinning
with respect to the intensity λ for a gamma radius
distribution with mean 0.2 and standard deviation
0.1. The limit VV,lim when λ → ∞ equals respectively
10.13%.

To assess the accuracy of the proposed method
regarding the volume fraction, several values of VV
are tested while keeping l = 10. For each value
VV,i, a set of synthetic images is generated and the
calibration procedure is tested on each set. To account
for the sampling effects (due to the estimation of the
covariance and opening function), the optimization
routine is run several times (50 times in practice) for
each value of VV,i. The results are presented in Fig. 7
for α = 1/2.

Fig. 7. Relative error of the estimated parameters for
several volume fractions VV of particles in W. The
gamma radius distribution has a mean of 0.2 and
standard deviation of 0.1. The circles represent the
mean of the relative error for each parameter and the
error bars the standard deviation for 50 simulation
tests for each value of VV .

For the considered volume fractions, the mean
relative errors of the mean and the standard deviation
with their counterpart are between 0.5% and 7%. The
same behavior is observed for the intensity except, for
the volume fraction VV = 1% where the mean relative
error is around 12%, and for VV = 7% where the mean
relative error is around 10%. This will be discussed in
the next section.

Sensitivity to the initial solution
The sensitivity of the optimization procedure to

the initial solution are investigated using the same
set of parameters as in the first case study, while
different deviation’s magnitudes for the initial solution
are tested.

We can express the set of perturbed initial solution
in the following form

(λ ∆
0 ,µ

∆
0 ,σ

∆
0 ) = (λ ,µ,σ)× (1+∆) , (22)

where (λ ,µ,σ) is the theoretical set of parameters
before thinning and ∆ := (∆λ ,∆µ ,∆σ ) is the vector of
perturbations for each parameter.

Here, we start from the difference of the previous
constructed initial solution and the real one. In the
first case study, the initial solution (before thinning)
can be recovered with ∆λ = ∆µ ≈ 0.1 and ∆σ =−0.3.
From this value of the vector ∆, the magnitude of the
perturbation is increased stepwise to find the largest
value of ∆ such that the algorithm still converges to a
satisfactory local minimum. Therefore, several values
of ∆ are chosen:

– ∆1 = (0.15,0.15,−0.35) ;

– ∆2 = (0.20,0.20,−0.40) ;

– ∆3 = (0.25,0.25,−0.45) ;

– ∆4 = (0.30,0.30,−0.50) .

The results of the calibration procedure for these
4 sets of perturbed initial solution are provided in
Table 2, where the relative errors (λ real

at − λ̂at)/λ real
at ×

100% are computed (similarly for the mean and
standard deviation).

Table 2. Relative error for each parameter for several
perturbed sets of the initial solution. The first row
corresponds to the relative errors obtained in the first
case study.

λ̂at µ̂at σ̂at

(λ0,µ0,σ0) 9.5% -5.5% 1%
∆1 = (0.15,0.15,−0.35) 4% -4% 5%
∆2 = (0.20,0.20,−0.40) 4% -8% 9%
∆3 = (0.25,0.25,−0.45) 3% -13% 15%
∆4 = (0.30,0.30,−0.50) -11% -5% 20%
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For the two smallest perturbed initial solutions
(λ ∆1

0 ,µ∆1
0 ,σ∆1

0 ) and (λ ∆2
0 ,µ∆2

0 ,σ∆2
0 ), the maximum

relative error on the set of parameters is less than
5% and 9% respectively. More significant errors are
obtained for the two other perturbations.

Robustness to polydispersity
Lastly, a final test is undertaken for a radius

distribution which is not unimodal, in order to check
the capacity of the inference procedure to recover
the characteristic radius of the spheres as well as the
proportion of each sub-population.

The generated population of spheres corresponds
to a mixture of 1/3 of spheres with radius r1 = 0.5 and
of 2/3 of spheres with radius r2 = 0.75. The radius
distribution is characterized by the following discrete
probability law, i.e.,

∀r ≥ 0 , P(r) = βδr1(r)+(1−β )δr2(r) , (23)

where β ∈ [0,1] corresponds to the proportion of
spheres of radius r1 before thinning.

The set of synthetic images is generated in the
observation window Wobs = 20×20×20 with intensity
λ = 0.05, r1 = 0.5, r2 = 0.75 and β = 1/3.

Following the initialization routine, a Boolean
model of disks is fit on the images giving the following
set of parameters: λ2D = 0.895, µ2D = 0.653 et σ2D =
−0.0001. While the intensity λ2D is still relevant for
the initialization, the mean and the standard deviation
are difficult to interpret, as here the radius distribution
is neither unimodal nor continuous, and are therefore
not sufficient to recover the parameters of interest
(r1,0,r2,0,β0).

If it is possible to observe directly isolated balls
from the image, then the two specific radius can be
extracted and the optimization routine is used only to
determine (λ ,β ). Otherwise, if no isolated balls are
observable because of the overlapping, then the initial
radius (r1,0,r2,0) have to be determined using the slope
discontinuities in the opening function (Fig. 8).

The last important parameter to consider is the
proportion of spheres of radius r1 after thinning. Either
βat is known and β0 can be determined analytically, or
βat is unknown and β0 is chosen empirically and used
in the optimization routine.

Therefore, we fix λ0 = λ2D/l = 0.041 and three
settings are investigated:

1. βat is known and (r1,r2) is unobserved:
Then, (r1,0,r2,0) is determined with the opening
function. We find r1,0 = 0.49mm and r2,0 =
0.72mm.

The proportion β in the modeled population can
be directly evaluated from the one after thinning,
βat . Indeed, Eqs. 1 and 23 lead to the following
retention probability:


g(r1) =

1− exp
(
−λκ

(
β (2r1)

3 +(1−β )(r1 + r2)
3
))

λκ(β (2r1)3 +(1−β )(r1 + r2)3)

g(r2) =
1− exp

(
−λκ

(
(1−β )(2r2)

3 +β (r1 + r2)
3
))

λκ((1−β )(2r2)3 +β (r1 + r2)3)
(24)

Hence, β0 can be deduced from λ0,r1,0, and r2,0
for

Pat(r1) = k−1(l−2r1)g(r1)P(r1)

⇐⇒ βat = k−1
β (l−2r1)×

1− exp
(
−λκ

(
β (2r1)

3 +(1−β )(r1 + r2)
3
))

λκ(β (2r1)3 +(1−β )(r1 + r2)3)
,

(25)

where k is the corresponding normalization
constant.

Fixing β0 = 1/3, the best result is achieved for
α = 0: λ̂ = 0.0482, r̂1 = 0.521, r̂2 = 0.731 and
β̂ = 0.27.

2. βat is unknown and (r1,r2) is unobserved:

If there is no a priori information on βat , β is
initialized to 1/2.

For the case considered here, the best result is
also obtained for α = 0: λ̂ = 0.0533, r̂1 = 0.506,
r̂2 = 0.751 and β̂ = 0.379.

3. βat is unknown and (r1,r2) is observed:

By identifying isolated balls, (r1,r2) = (0.5,0.75)
are measured. It remains to determine λ and β .

As previously, we fix β0 = 1/2. The best result is
obtained for α = 0 with λ̂ = 0.046 and β̂ = 0.24.

The fitted covariance and opening function obtained in
the three cases for α = 0 are compared in Fig. 8.

In each case the opening function is quite well
replicated. However, a shift in the covariance is visible.
For α = 1/2, the estimated parameters are similar for
the first setting while significant deviations from the
true values are noted for the two others.
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(a) Fitted opening function

(b) Fitted covariance

Fig. 8. Characteristics of the fitted model on a set of
synthetic images generated from the same model with
a bi-disperse radius distribution. The result is obtained
for one optimization routine.

APPLICATION TO REAL IMAGES

First experiment: monodisperse population of
spheres

The population of particles is here composed
of spheres of fix radius r = 0.75. The estimated
covariance in the three main directions (horizontal,
diagonal and vertical) is provided in Fig. 9. The
observed similarity of the covariance in the three
directions validates the isotropy assumption of the
considered random set.

The results obtained are provided in Table 3
assuming a constant radius distribution in the inference
procedure.

The best fitting covariance and opening functions
are obtained for α = 0 or α = 1/2 (see Fig. 10).
From a geometrical point of view, a difference of
0.004mm (taking into consideration the manufacturing
uncertainty of 0.025mm on the radius) are found. The
relative error on the mean number of particles is 2.5%.

Table 3. Results of the calibration procedure on the
calibrated PMMA spheres when a constant radius is
chosen.

Real Init
Weight parameter α

0 1/2 1

λ̂at 0.0085 0.0085 0.0087 0.0087 0.0078
r̂1 0.75 0.842 0.779 0.779 0.842

Fig. 9. Mean covariance on 100 silhouette images of
the population of PMMA spheres in the three main
directions.

For completeness, we give a qualitative
comparison between a modeled image and a binarized
experimental one in Fig. 11.

Second experiment: bidisperse population of
spheres

The population of particles is here composed of
two sub-populations: the first one, with a proportion
β = 0.63, is composed of spheres with radius r1 =
0.5mm, and the second subpopulation of spheres with
radius r2 = 0.75mm.

The initialization procedure leads to λ0 = 0.0196,
r1,0 = 0.0505, r2,0 = 0.758, and we fixed β0 = 1/2.
The results of the optimization routine are provided
in Table 4. The best fitted covariance and opening
function are obtained for α = 1/2 (Fig. 12). A
comparison of the binarized experimental images and
modeled images for this set of parameters is also
supplied in Fig. 13. Instead, for α = 1, there is no
change in the radius values from the initial solution
and significant deviations of both fitted functional
characteristics from the real ones are observed.
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(a) Fitted covariance

(b) Fitted opening function

Fig. 10. Fitted characteristics for the two-phase flow
where the dispersed phase is a controlled population
of monodispersed PMMA spheres (r = 0.75mm). The
real data characteristics are plotted in red circles. The
mean characteristics of the fitted model on a set of
100 images are represented in blue lines and its 95%
envelope in black dashed-lines.

Table 4. Results of the calibration procedure on the
bi-disperse calibrated PMMA spheres population.

Real Init
Weight parameter α

0 1/2 1

λ̂at ' 0.023 0.0171 0.0171 0.0179 0.0186
r̂1 0.5 0.505 0.579 0.567 0.505
r̂2 0.75 0.758 0.758 0.742 0.758
β̂at ' 0.63 0.52 0.51 0.41 0.25

(a) Example of an experimental binarized image

(b) Example of a modeled image

Fig. 11. Qualitative comparison between an synthetic
image coming from the calibrated model (for α =
1/2) and an experimental image of the monodisperse
population of PMMA spheres.

DISCUSSION

In the previous section, the first three experiments
conducted on the synthetic images enabled to validate
the calibration routine proposed. They moreover
enabled to quantify the sensitivity of the procedure
regarding the volume fraction of the population of
spheres, and the initial solution of the optimization
routine. The last test case was designed to evaluate the
behavior of the algorithm when the radius distribution
of the particles is not unimodal.

In the first case study, we observe that the
proposed optimization routine performs well for a
weight parameter α = 0 (resp. α = 1/2): the maximum
relative error for the intensity is less than 5% (resp.
9.5%), 3.5% (resp. 5.5%) for the mean and 2% for
the standard deviation of the radius distribution. For
α = 1, with a relative around 9%, the estimation
of the standard deviation is rather coarse, hence
the deviation for the opening function. This result
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(a) Fitted covariance

(b) Fitted opening function

Fig. 12. Fitted characteristics for the two-phase
flow where the dispersed phase is a controlled
population of bi-dispersed PMMA spheres. The real
data characteristics are plotted in red circles. The
mean characteristics of the fitted model on a set of
100 images are represented in blue lines and its 95%
envelope in black dashed-lines.

emphasizes that the opening function captures most
of the geometrical information. Changing the volume
fraction has little effect on the fitting parameters, thus
highlighting a weak sensitivity to the VV value. There
are two exceptions: i) when very few information
is present on the images (VV = 1%), and ii) when
the images are almost black (more than 90% of the
images is covered). Conversely, the accuracy of the
statistical inference depends on the initial solution,
and on how far it is from the true solution. Indeed,
as shown in Table 2, if the initial solution deviates
more than 20% from the real values of intensity and
mean parameter, and 40% from the standard deviation,
then significant deviations can be expected (for at least
one of the parameters). The numerical test regarding

(a) Example of an experimental binarized image

(b) Example of a modeled image

Fig. 13. Qualitative comparison between a synthetic
image coming from the calibrated model (for α =
1/2) and an experimental image of the bidisperse
population of PMMA balls.

bimodal populations, demonstrates the efficiency of
the proposed optimization procedure when mixtures
of particles exhibiting different radii are considered.
The results highlight that the geometrical information
is well retrieved regardless of whether the proportions
of each sub-population is known or whether the two
radius are observed. Nevertheless, the results are less
reliable if the weight parameter α is not equal to
0. This indicates that the opening function better
compensates for the lack of information due to the
overlapping.

At last, validation on real images of two simulated
two-phase flows emphasizes the relevance of the
model. On the one hand, the test on a monodisperse
population of PMMA spheres demonstrates that the
information of interest (the radius and the mean
number of particles per unit volume) is quite well
retrieved. However, while the covariance is well fitted,
a significant deviation on the right part of the opening
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function is noticed. It has been observed during the
experiments that the PMMA spheres had a tendency
to stick to each other when touching, leading to
the appearance of larger aggregates. This typical and
not expected behavior cannot be reproduced by the
proposed model, hence explaining the higher value
of the real opening function predicted for the larger
radius r. On the other hand, the model deviation is
more evidenced in the experiment with the bidisperse
population of PMMA spheres. The best results in
terms of covariance and opening function fitting are
obtained for α = 1/2 where λ̂at = 0.0179, r̂1 = 0.567,
r̂2 = 0.742 and βat = 0.41, corresponding to a relative
error for r1 of 13% and for r2 of 1%. Moreover,
the intensity is underestimated by about 22%. It is
difficult to conclude whether this underestimation is
due to the violation of the uniformity assumption on
which is based the calculation of λreal or to hidden
information that cannot be retrieved. Besides, keeping
the covariance in the objective function enables to
control the model deviation, while still obtaining
reasonable results for the radius.

The numerical experiments have shown that the
weight parameter α can influence the accuracy of the
fitted parameters. As a rule of thumb, we advise to
always consider the opening function, as the driven
functional characteristics as it contains most of the
geometrical information. Moreover, at r = 0 its value
corresponds to the volume fraction of the random
set and then enables to control the intensity λ .
As an a posteriori check, the adjustment on other
functional characteristics such as the spherical contact
distribution function or the morphological functions
can also be considered for model validation.

Finally, it is worth noting that the construction of
the initial solution is based on fitting the silhouette
images with a boolean model of disks. However, the
images of the two-phase flows should not be strictly
modeled by a boolean model because 3D interactions
between the particles exist, that can be retrieved in
the 2D images. Statistical tests of the boolean model
hypothesis, such as proposed in Mrkvička (2009),
should confirm this conjecture.

CONCLUSION

In this study, we have demonstrated that 3D
modeling is a new and promising approach for
characterizing two-phase flows. The validation
on synthetic images proves its reliability, and
the application on real suspensions of, possibly
polydispersed, PMMA spheres illustrates its relevance
in the case of a dense flow. The proposed method has

several advantages: i) it enables to model both the
actual (i.e., 3D) particles population in the flow and
their 2D silhouette images, ii) the image acquisition
process is taken into consideration, iii) important
physical characteristics of the particles can be derived
from the proposed model, iv) realistic volume fraction
can be handled without significant loss of precision,
v) at last it is easy to implement, thus convenient for
practical/engineering applications.

Although the case of spheres may not seem the
most relevant for correlating 3D properties from 2D
images, this first step was of paramount importance
for the validation of the implemented mathematical
transformations and the proposed interaction function.
Considering spheres also facilitated the realization of
experimental validation. Given the good performances
exhibited by the proposed methodology, while applied
to spheres, two main improvements are currently being
developed in order to enhance both the domain of
application and the flexibility of the model regarding
typical dispersed systems.

The first one is aimed at generalizing the model
to non-spherical particles, in particular to ellipsoids
frequently encountered in bubbly flows (de Langlard et
al., 2018). The difficulty lies in the construction of the
initial solution, as the relationships between the 2D and
3D geometrical characteristics for random ellipsoids
are not straightforward.

The second improvement is aimed at modeling
more complex interactions between the particles. This
will require a more general deletion process. Based
on the recent work of Teichmann et al. (2013), the
deletion probability p can depend on the value of
its mark, rather than removing the point surely. This
generalization may be used to model phenomena such
as coalescence or breakage.
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