Precision feeding of lactating sows: development of a decision support tool to handle variability
Raphaël Gauthier, Frédéric Guay, Ludovic Brossard, Christine Largouët, Jean-Yves Dourmad

To cite this version:
Raphaël Gauthier, Frédéric Guay, Ludovic Brossard, Christine Largouët, Jean-Yves Dourmad. Precision feeding of lactating sows: development of a decision support tool to handle variability. 69. Annual Meeting of the European Federation of Animal Science, Aug 2018, Dubrovnik, Croatia. hal-01949645

HAL Id: hal-01949645
https://hal.science/hal-01949645
Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Identification of biological variables associated with robustness of piglets at weaning

A. Buchet1,2, E. Merlot1, P. Mormède3, E. Terenina3, B. Lieubeau4, G. Mignot4, J. Hervé4, M. Leblanc-Maridor4,5 and C. Belloc5

1UMR PEGASE, Agroampus, INRA, 35590 Saint Gilles, France, 2Cooperl Innovation, BP 60238, 22403 Lamballe, France, 3Université de Toulouse, INPT ENSAT, INRA, 31326 Castanet-Tolosan, France, 4IECM, INRA, Oniris, Université Bretagne loire, 44307 Nantes, France, 5BIOEP AR, INRA, Oniris, Université Bretagne Loire, 44307 Nantes, France; arnaud.buchet@cooperl.com

The robustness of a piglet at weaning can be seen as its ability to express optimal growth without any health problems and regardless of weaning conditions. The identification of the level of the robustness of piglets at weaning could allow implementing targeted cares and treatments. The aim of this study was to identify some biological markers measured around weaning that could be associated with the growth of the piglet after weaning. Blood variables (n=62) describing immunity, stress, oxidative status and metabolism were measured at 26 and 33 days of age on piglets (n=288) from 16 commercial farms selected with contrasting sanitary statuses (deteriorated: SS- or good: SS+). The sanitary status of the farm was significantly associated with 37 of 67 variables measured (P<0.05). Thus, piglets reared on SS- farms showed higher activation of the immune system, mobilization of body reserves and oxidative stress after weaning than SS+ piglets. In order to evaluate differences in robustness within farms, the relative ADG from 26 to 47 days of age was calculated (RADG = ADG from 26-47 days of age divided by live weight at 26 days), and piglets were then classified according to the median of their farm in classes of low or high RADG (RADG- or +). This classification was considered as a proxy of robustness. After weaning, RADG+ piglets showed greater immune activation (neutrophil count), lower mobilization of body reserves (non esterified fatty acids and creatinine) and a higher concentration in vitamin A, an antioxidant vitamin, compared to RADG- piglets.