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Abstract—The increasing share of photovoltaic (PV) power
in the global energy mix presents a great challenge to power
grid operators. In particular, PV powers intermittency caused by
varying weather conditions can cause mismatches between energy
production and expectation. Battery Energy Storage Systems
(BESS) are often put forward as a good technological solution to
these problems, as they are able to mitigate PV power forecast
errors. However, the investment cost for such systems is high,
which makes their use in operational contexts difficult. In this
paper, we compare several strategies to manage a PV power
plant coupled with a BESS in a market environment. They are
obtained by stochastic optimization using a Model Predictive
Control (MPC) approach. This paper proposes an approach that
takes into account the ageing of the BESS, both at the day-ahead
level and in the real-time control of the BESS, by modeling the
cost associated with BESS usage. As a result, the BESS arbitrates
between compensating forecast errors and preserving its own life
expectancy, based on both PV production and price scenarios
derived from probabilistic forecasts. A sensitivity analysis is also
carried out to provide guidelines on the optimal sizing of the
BESS capacity, depending on market characteristics and BESS
prospective costs.

Index Terms—photovoltaics, solar power integration, storage
systems, electricity markets

I. INTRODUCTION

The significant share of PV power employed in several
countries causes discrepancies between expected and actual
energy production. This is a major issue for Transmission
System Operators (TSO), which have to ensure that energy
production and demand always match. Most countries apply
policies whereby the risk is borne by the PV plant operators,
which pay the TSO for any discrepancies between their day-
ahead forecast production and the real one.

BESS units are viewed as a very good solution to deal
with these problems, thanks to their ability to compensate for
errors in the forecasts. However, these systems are costly and
their actual financial benefit is difficult to quantify in the long
term, which makes PV plant operators reluctant to install them.
Thus, it is very important to define strategies that ensure the
optimal operation of a PV/BESS system, so that the benefit of
installing a storage system is maximized. Two strategies are
required: one for the day-ahead level when bids are submitted
to the electricity market, and one for the real-time control of
the BESS.

Several papers propose bidding strategies at the day-ahead
level for standalone large-scale BESS [1], [2]. The optimal

offering strategy is largely dependent on market design. The
standard method for real-time control of PV/BESS is Model
Predictive Control (MPC). This consists in optimizing the
control of the BESS on a receding horizon, in order to take into
account the forecast future state of the system when optimizing
the next time step. Different loss functions can be optimized on
the receding horizon. In most cases, the optimized function is
either the producers profit [3], [4] or the total energy imbalance
[5]. Some authors also propose an MPC approach to bid on
intra-day market sessions [6], [7].

However, several important points are often neglected in the
literature. The first element is the ageing cost of a BESS. It is
mentioned in [4] where constraints are defined to improve the
life expectancy of the BESS, and in [7] where the MPC loss
function is penalized by the total amount of energy flowing
in and out of the BESS. At the day-ahead level, [1] considers
ageing with a finer modeling. While few papers consider the
uncertainty of renewable energy forecasts, [2] and [8] model
this uncertainty using production scenarios.

Here, we compare several strategies to manage a PV power
plant coupled with a BESS in a dual-price market environment,
both at day-ahead and intra-day levels. These strategies take
into account inherent uncertainties in PV generation through
production scenarios derived from probabilistic forecasts and
scenario reduction. The strategies are obtained by stochastic
optimization using an MPC approach. In this paper, we pro-
pose to use a loss function that considers a fine modeling of
the ageing cost of the BESS at each level. This allows the
BESS to arbitrate between generating profit and preserving its
own life expectancy in day-ahead and real-time. A closed-form
solution to the market penalties minimization problem at the
real-time level is also proposed as a benchmark for the MPC
approach.

In section II, the different strategies for controlling the
PV/BESS system at the day-ahead level and in real-time are
presented. Section III presents the test case of the study,
and finally section IV presents the results and draws the
conclusions of the paper.

II. METHODS

A. Day-ahead Offering Strategy

Two methods are proposed for the day-ahead offering. The
first method is used when the BESS only participates in the



real-time control of the plant. The second one is used when
the BESS participates at both levels.

Both methods rely on the formulation of the revenue in
a dual-price electricity market. In that setup, imbalances are
settled at a different price depending on their sign. The revenue
of a PV/BESS participant for a given market time unit is:

R(S) = Sπ + (P − S)πR (1)

Where P is the energy production of the participant in
MWh, S is the energy sold at the day-ahead level in MWh,
π is the spot price in C/MWh and πRis the balancing price
in C/MWh i.e. the price that any participant has to pay
for its deviations from its day-ahead schedule. This price
is dependent on the sign of the imbalance, which means
πR = π+ if P > S, π− otherwise. The S bids can be
separated between the part coming from the stochastic PV
production SPV and the part coming from the deterministic
BESS planning SBESS . Similarly, the production is separated
between its stochastic part PPV and the energy coming from
the BESS PBESS . Since the BESS is controllable, it is
assumed that PBESS = SBESS . 1 can be rewritten as follows:

R(SPV , SBESS) = PPV π + (PPV − SPV )(π − πR)

+ SBESSπ − CBESS(SBESS) (2)

CBESS is the usage cost of the BESS obtained with the
rainflow counting algorithm [9]. The ageing of the BESS can
be divided in two components, i.e. the cycling ageing caused
by the cycling ageing of the BESS, and its calendar ageing,
which is the degradation caused by time. In the remainder of
the paper, we will focus on the cycling ageing of the BESS
and consider its calendar ageing as a given lifetime. The end
of life of the BESS is defined as the minimum lifetime given
by the cycling and calendar ageing.

When the BESS is not used at the day-ahead level, all of
the terms that depend on the battery are null, reducing the
revenue to equation 1. In these conditions, it has been proven
that the optimal bid B? that minimizes the penalties for the
producer is given by [10]:

B∗ = F−1

(
π − π+

π− − π+

)
(3)

Where F is a forecast Cumulative Distribution Function
(CDF) of the energy production of the plant. The application of
this strategy for a PV power plant thus requires a probabilistic
PV power forecasting model, and a forecasting model of the
spot and regulation prices.

When the BESS is used at both the day-ahead and the
real-time level, the entire formulation of the revenue from 2
is optimized. Since there is no constraint between SPV and
SBESS , the optimization problem is separable. We must then
solve the two problems:

S∗
PV = argmaxs∈R (PPV π + (PPV − s)(π − πR)) (4)

Without constraints, and

S∗
BESS = argmaxS∈R (Sπ − CBESS(S)) (5)

Under the constraints:

−ηDisS ≤ PPV (6)

− (Cap− EBESS)

ηCh
≤ S ≤ EBESS ∗ ηDis (7)

Where Cap is the total capacity of the BESS, EBESS is
the energy remaining in the BESS at the time considered, and
ηDis, ηCh are respectively the efficiencies of the BESS for
the discharge and the charge. The first constraint ensures that
the BESS is only charged from the PV plant and not from the
grid, and the second constraint ensures that the BESS cannot
contain more energy that its capacity, or less than 0.

The first subproblem is the same as the problem of the
participation without a BESS, so the solution from 3 is used.

For the second problem, we can identify the temporal part
of the problem from the second constraint. One of the essential
characteristics of PV power forecasts is the positive correla-
tion between the forecast errors and consecutive timesteps.
In other words, if a forecast error is positive (resp. negative)
for a given timestep, the forecast error for the following
timestep is also very likely to be positive (resp. negative).
This is a problem for BESSs, because since a BESS can com-
pensate forecast errors, a significant error present on several
consecutive scenarios would quickly either charge the BESS
to its maximum or discharge it to its minimum, depending
on the sign of the error. Due to the temporal correlation
of the errors, this worst case scenario is much more likely
than the consecutive distributions might suggest, if they were
considered independent.

To account for this temporal correlation, and to model the
uncertainty of the forecasts, a large number of PV production
scenarios are generated following [11]. Then, the scenarios are
reduced using a Partition Around Medoids (PAM) algorithm,
and the optimal day-ahead planning is computed by maximiz-
ing the median of the daily revenue using equation 2 summed
over the whole day. The energy remaining in the BESS is
tracked to ensure that the second constraint is respected.
Several risk levels are compared with the benchmark strategy
where the BESS is not considered at the day-ahead level.

Then the first method (the BESS only participates in the
real-time control of the plant) consists in bidding the solution
of the first subproblem using equation 3 with a forecast CDF
of the PV power and a deterministic forecast of the regulation
prices. This method is referred to as method DA0. When the
BESS participates in the bidding process, the two subproblems
are solved. This second method is referred to as method DA1.

B. Real-time Control

For the real-time control, two methods are defined.
The first one minimizes the term arising from imbalances

between the bids and the PV/BESS production. Since we are



in real time, the bids are already submitted and the market
has been cleared. Thus, the spot prices π are known and the
sole design variable is the BESS output PBESS . The BESS
is allowed to deviate from its planning SBESS to compensate
deviations coming from the PV power forecast error, thus we
do not have PBESS = SBESS anymore. In this case, the
revenue for the next time step writes:

R(PBESS) =PPV π − (PPV + PBESS − S) (π − πR)

+ PBESSπ − CBESS(PBESS) (8)

For the first method, we focus on reducing the penalties,
so we neglect the term PBESSπ and the BESS usage costs
CBESS(PBESS). The first neglected term represents a profit
that can be obtained from the difference in spot prices dur- ing
the day. However, this profit is supposed to have been taken
care of at the day-ahead level. Besides, this profit alternates
between positive and negative values depending on the charge
or discharge of the BESS. Its impact should then be reduced
when summed over several timesteps. On the other hand,
the penalty term (PPV + PBESS − S) (π − πR) is always
positive. Finally, neglecting the BESS usage costs allows us to
propose a closed form solution to the revenue maximization
problem.

The expectation of the penalty term Pen for the next time
step writes:

E(Pen) =

∫ Pn

0

(p+ PBESS − S)(π − πR)fPV (p)dp (9)

Where Pn is the maximum amount of energy that the plant
can produce on a given time step, and fPV is the Probability
Distribution Function (PDF) of the PV power. Since πR is
dependent on the sign of the imbalance, the expectation of the
penalty term must be rewritten:

E(Pen) =

∫ S−PBESS

0

(p+ PBESS − S)(π − π−)fPV (p)dp

+

∫ Pn

S−PBESS

(p+ PBESS − S)(π − π+)fPV (p)dp

(10)

On the French electricity market, the prices are defined so
that imbalances that support the grid imbalance at the national
level are not penalized. That is:

π+ = π, π− >π if the grid is short of energy (11)
π+ < π, π− =π if the grid contains excess energy (12)

We suppose that we have an estimation of the probability
pG for the grid to be short on the national level. We can then
substitute the forecast regulation prices π+, π− by random
variables πpos, πneg modeled by a sum of Dirac distributions:

πpos(x) = pGδ(x− π) + (1− pG)δ(x− π+) (13)
πneg(x) = pGδ(x− π−) + (1− pG)δ(x− π) (14)

Which gives:

E(Pen) =pG(π − π−)

∫ S−PBESS

0

(p+ PBESS − S)fPV (p)dp

+ (1− pG)(π − π+)

∫ Pn

S−PBESS

(p+ PBESS − S)fPV (p)dp

(15)

Using the variable change x = PPV − S, we get:

E(Pen) =pG(π − π−)

∫ −PBESS

0

(x+ PBESS)fPV (x+ S)dx

+ (1− pG)(π − π+)

∫ Pn−S

−PBESS

(x+ PBESS)fPV (x+ S)dx

(16)

Finally, using the Leibniz rule for differentiating under the
integral sign, we obtain:

dE(Pen)

dPBESS
=pG(π − π−)FPV (S − PBESS)

+ (1− pG)(π − π+)(1− FPV (S − PBESS)
(17)

The second derivative is:

d2E(Pen)

dP 2
BESS

=− pG(π − π−)fPV (S − PBESS)

+ (1− pG)(π − π+)fPV (S − PBESS) (18)

This second derivative is always positive by definition of
the regulation prices. Thus, when equaling the first derivative
to 0, we find the minimum:

P ∗
BESS = S − F−1

PV

 1

1 +
pG

1− pG

π− − π

π − π+

 (19)

The first method is then to compute a forecast distribution of
the PV power, deterministic forecasts of the regulation prices,
and the probability that the system will be short, and to inject
them into this optimal solution. Although the solution is in
closed form, the BESS constraints prevent the use of this
solution more than one time step ahead, and the BESS usage
cost is neglected. This is referred to as method RT1.

The second method is very similar to the offering strat-
egy including the BESS, using a Model Predictive Control
(MPC).This means that the whole revenue formulation from 8
is maximized over the N next time steps, then the first time
step of the optimization result is used as the command for
the BESS. This allows taking into account the future forecast



Fig. 1. Flowchart of the control algorithm

state of the system in the real-time control. Besides, two more
differences exist with the offering strategy including BESS.

The first one is that since we are in a real-time setting,
the spot prices and bids are known, as for the first real-time
strategy. As a result, the sole design variable is the BESS
command. The second difference is that we introduce a new
constraint to the real-time optimization:

SBESS ≤ EBESS (20)

This constraint ensures that the day-ahead BESS planning
is not violated, and mitigates the antagonist effect of using
the BESS in real time when a day-ahead schedule has already
been set. This second method is referred to as RT2.

III. TEST CASE

A simulation of the control of the PV/BESS is performed
for a large PV plant located in France for a whole year (June
2016 to June 2017). It is located at longitude 1.20569, latitude
43.56022 and has an installed power of 6 876 kWp. Several
storage sizings are evaluated.

The entire control is carried out taking an MPC approach.
For each time step, the PV power and market quantities
forecasts are updated based on the inputs known at the time.
Then, if the day-ahead market closes for the considered time
step, bids are submitted for the next day using one of the
two methods from section II-A. The command for the next
time step is obtained using one of the two methods from II-B.
Then, the process goes to the next time step, updates the BESS
State Of Charge (SOC), the PV power and market quantities
forecast, and continues the algorithm until the final time step.
A flowchart of the algorithm is represented on figure III.

PV power forecasts are obtained from an Analog Ensemble
model [12] using Numerical Weather Prediction (NWP) from

TABLE I
EVALUATED STRATEGIES

Strategy DA control RT control
S0 (benchmark) DA0 RT0

S1 DA0 RT1
S2 DA0 RT2
S3 DA1 RT1
S4 DA1 RT2

the European Center for Medium-range Weather Forecasting
(ECMWF), along with in situ measurements and satellite
data to improve short-term forecasts. Spot price forecasts are
obtained using a Support Vector Regression (SVR), using
forecasts of national electricity demand provided by the French
TSO along with the month, hour and day of the week. Reg-
ulation prices are obtained by a k-nearest neighbor approach
conditioned by the spot price forecast.

The BESS considered in the test case is a Lithium-Ion
storage system. Ageing parameters for the rainflow counting
algorithm are taken from [13] and [14]. Regarding costs,
prospective values for the year 2030 from [14] are used in
the base case, that is a 200 C/kWh investment cost, although
the sensitivity to this parameter is studied in section IV-B.

Different combinations of day-ahead and real-time methods
are evaluated. The sensitivity of the results to the installed
capacity of the BESS and its investment costs is studied,
providing guidelines on the sizing of the BESS for such
applications. The different method combinations tested are
summarized in I.

IV. RESULTS

A. Test Case Results

The results of the study are shown on table IV.
It is clear from the results that all of the strategies con-

tribute to reducing the imbalance of the plant. The more
storage capacity is available, the greater the reduction of the
imbalances, except for strategy S3. For this strategy, the day-
ahead method is in opposition with the real-time method,
since there is no constraint to ensure that the day-ahead
storage planning remains feasible when performing the real-
time control. The higher the storage capacity, the more errors
can be compensated, but the more the BESS is used in real-
time. It seems that an equilibrium for this strategy exists at
a storage capacity of around 25 % of the installed power,
because the imbalance is lowered until this capacity is reached,
and then increases again.

The strategies S2 and S4, which use the second method
for the real-time control of the PV/BESS, provide a lower
diminution of penalties than strategies S1 and S3, compared to
the imbalance diminution. Thus, the second real-time control
method seems to be less able to compensate critical errors,
which generate significant penalties. However, since the usage
cost of the batteries is included in the second real-time method,
the battery life loss is significantly lower for strategies S2 and
S4. Still, even if this usage cost is decreased, the BESS life



TABLE II
EVALUATION RESULTS

Storage capacity = 10 % of installed power over an hour
S1 S2 S3 S4

Error reduction (%) 3.27 3.93 3.81 3.61
Penalties reduction (%) 3.67 3.56 3.94 2.21

Average energy price improvement (%) 0.16 0.11 0.16 0.025
BESS life loss (%) 1.78 1.08 2.39 1.32

Storage capacity = 25 % of installed power over an hour
S1 S2 S3 S4

Error reduction (%) 6.26 6.80 7.00 5.73
Penalties reduction (%) 8.56 6.30 7.14 4.74

Average energy price improvement (%) 0.40 0.21 0.27 0.12
BESS life loss (%) 0.96 0.69 1.51 0.84

Storage capacity = 50 % of installed power over an hour
S1 S2 S3 S4

Error reduction (%) 9.64 5.92 0.62 7.05
Penalties reduction (%) 13.2 8.61 3.22 5.82

Average energy price improvement (%) 0.60 0.46 0.15 0.30
BESS life loss (%) 0.64 0.23 0.87 0.54

loss is only a few percent. In the worst case, (strategy S3, 10
% of the installed power as storage capacity), the battery loses
2.39 % of its life expectancy. Counting only the cycle ageing,
the BESS would last 40 years, which is longer that the typical
10-20 years life expectancy of batteries due to calendar ageing
[15].

Ultimately, we deduce that it is not interesting to focus
on the cycle ageing since it is low compared to the calendar
ageing. Besides, using the BESS in a day-ahead setting does
not significantly improve revenue. This is because the typical
gap between the spot prices on a given day that can be used
for generating profit in a day-ahead setting is much smaller
than the gap between regulation prices and spot prices that is
used to generate profit in a real-time setting. Thus, the most
relevant strategy is strategy S1, which proposes a day-ahead
schedule without considering storage capacity, then uses the
storage to minimize penalties in real time with the optimal
control proposed in II-B.

However, even for strategy S1, which focuses only on
minimizing the imbalances, the energy price improvement is
low compared to the penalty reduction. This can be explained
by both the efficiency of the BESS, which dissipates an amount
of energy proportional to the cycling, and the small gap
between spot prices and regulation prices compared to other
electricity markets [16]. These two effects are studied in the
sensitivity analysis of the results in section IV-B.

B. Sensitivity Analysis

As shown by the results, strategy S1 seems to be the most
relevant for a PV/BESS participating in an electricity market.
Since it does not rely on storage parameters, a sensitivity
analysis has been performed on various parameters on the
study that does not change the PV/BESS control.

Two parameters are studied: the spread between the spot and
regulation prices, and the round-trip efficiency η = ηChηDis

of the BESS. The energy price improvement over S0 is plotted
for several values of these parameters on Fig. 2, all other
parameters from the test case being equal. The numbers along

the lines show the value of the parameter for the given line.
For the price spread, the number indicates the multiplication
factor between the real spread and the one used to produce
the results, that is for the line with number 3, the spread used
to produce the results is three times larger than the real one.

As expected, the average energy price improvement in-
creases with the gap between spot and regulation prices, and
with the round-trip efficiency of the BESS. It appears that the
price improvement is impacted more by the gap than by the
efficiency. As the round-trip efficiency increases, the marginal
improvement it makes to the energy price goes down. Besides,
it cannot increase above 1. In contrast, the marginal increase
from a price spread increase is steady.

Finally, Fig. 3 plots the minimal BESS size for which the
PV/BESS is profitable, that is the minimal size for which the
BESS pays back its investment cost before its end of life.
The price spread is also considered, as the optimal BESS size
is computed for several spread multiplication factors. With a
unitary multiplication factor (that is, with real data from the
test case), the required storage capacity is quite high even for
low prospective costs. However, when the spread increases,
the required capacity becomes affordable.

V. CONCLUSION

In this paper, several strategies have been studied for the
participation of a PV power plant coupled with a BESS
in a dual-price electricity market. The key findings are the
following:

• Due to the frequent small cycling of the battery, the
cycling ageing is low compared to the calendar age- ing
of a Lithium-Ion battery. Besides, because of a greater
gap between the spot and regulation prices than between
the spot prices at different instants of the day, it is more
profitable to use the BESS only for compensating forecast
errors.

• A BESS contributes efficiently to reducing a plants im-
balance and penalties. However, because of the energy



(a) Sensitivity to price spread (b) Sensitivity to round-trip efficiency

Fig. 2. Sensitivity analysis

Fig. 3. Minimal profitable BESS size

dissipated by the batteries and the relatively low penalties
for solar power, the improvement in the average energy
price is limited.

• A sensitivity analysis reveals that the cause of a low
energy price improvement is mainly the small gap be-
tween spot prices and regulation prices. Increasing this
gap generates much greater revenue than reducing the
dissipated energy.

• The optimal sizing of the BESS is dependent on the BESS
investment costs and round-trip efficiency. In any case,
the investment is quite high because, to be profitable, the
storage capacity must always be in the same order of
magnitude as the installed power of the plant over an
hour.
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Otadui, S. Bacha, and A. Padrós, “Management Strategy for Market
Participation of Photovoltaic Power Plants Including Storage Systems,”
IEEE Transactions on Industry Applications, vol. 52, no. 5, pp. 4292–
4303, 2016.
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