
HAL Id: hal-01949458
https://hal.science/hal-01949458v1

Preprint submitted on 10 Dec 2018 (v1), last revised 23 Oct 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Error analysis of some operations involved in the Fast
Fourier Transform

Nicolas Brisebarre, Mioara Joldes, Jean-Michel Muller, Ana-Maria Naneş,
Joris Picot

To cite this version:
Nicolas Brisebarre, Mioara Joldes, Jean-Michel Muller, Ana-Maria Naneş, Joris Picot. Error analysis
of some operations involved in the Fast Fourier Transform. 2018. �hal-01949458v1�

https://hal.science/hal-01949458v1
https://hal.archives-ouvertes.fr

Error analysis of some operations involved in
the Fast Fourier Transform

Nicolas Brisebarre
CNRS, LIP, Université de Lyon, France
nicolas.brisebarre@ens-lyon.fr

Mioara Joldeş
CNRS, LAAS, Toulouse, France

joldes@laas.fr

Jean-Michel Muller
CNRS, LIP, Université de Lyon, France
jean-michel.muller@ens-lyon.fr

Ana-Maria Naneş
Technical University of Cluj-Napoca, Romania

anamaria.nanes@yahoo.com

Joris Picot
ENS de Lyon, LIP, Université de Lyon, France

joris.picot@ens-lyon.fr

December 10, 2018

Keywords. Floating-point arithmetic, Fast Fourier Transform, Rounding
error analysis.

Abstract

We are interested in obtaining error bounds for the classical FFT al-
gorithm in floating-point arithmetic, for the 2-norm as well as for the
infinity norm. For that purpose we also give some results on the relative
error of the complex multiplication by a root of unity, and on the largest
value that can take the real or imaginary part of one term of the FFT of a
vector 𝑥, assuming that all terms of 𝑥 have real and imaginary parts less
than some value 𝑏.

1

1 Introduction and notation
The Fast Fourier Transform was introduced in 1965 by Cooley and Tukey in its
modern form [4, 5, 14], but can be traced back to Gauss [7]. It is widely used in
digital signal processing [15]. It also plays a central role in fast mutiple-precision
arithmetic, since it lies at the heart of some of the most efficient big polynomial
and big integer multiplication algorithms [21, 13].

Several studies have been devoted to the accuracy of Fast Fourier Transforms
and fast algorithms for related transforms such as the DCT [18, 8, 20, 9, 16, 17].

The Discrete Fourier Transform (DFT)

𝑍 = (𝑍0, 𝑍1, . . . , 𝑍𝑁−1)

of
𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑁−1) ∈ C𝑁

is (𝐹𝜔𝑧
𝑡)𝑡, where

𝐹𝜔 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 𝜔 𝜔2 · · · 𝜔𝑁−1

1 𝜔2 𝜔4 · · · 𝜔2(𝑁−1)

...
...

...
...

...
1 𝜔𝑗 𝜔2𝑗 · · · 𝜔𝑗(𝑁−1)

...
...

...
...

...
1 𝜔𝑁−1 𝜔2(𝑁−1) · · · 𝜔(𝑁−1)(𝑁−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and 𝜔 = 𝑒−2𝑖𝜋/𝑁 .

Note that some authors use the matrix (1/
√
𝑁) · 𝐹𝜔 (in order to make the

DFT a unitary transformation).
In this paper, we will consider the radix-2 FFT algorithm, and we will assume

that 𝑁 = 2𝑛 is a power of 2. More precisely we will assume that the algorithm
being implemented is the one described in pseudocode in Fig. 1, and illustrated,
in the case 𝑁 = 8 by Fig. 2. The presentation of the Algorithm in Fig. 1 aims at
clarity and simplicity: in practice one will seldom implement FFT as presented
in that figure, if only to have in-place calculation and consequently save memory,
or to parallelize/vectorize the computation. However, if the dependency graph
of the operations remains unchanged, our analyses remain valid.

2

/* Radix-2 FFT Algorithm */
/* We assume the values omega[k,j] = exp(-i*j*pi/2ˆ(k-1)) are

precomputed and stored, and reverse(n,j) is the n-bit
number whose binary representation is the mirror image of
the n-bit representation of j */

Function reverse(n,j)
return

∑︀n−1
k=0

(︀
(j&(2n − 1) ≫ k) mod 2

)︀
≪ (n− 1 − k)

end
Function OneStep(x,k,n)

N = 2n;
block_size = 2k;
N_blocks = N/block_size ; /* Number of independent order-2ˆk
FFTs */

for block_number from 0 to N_blocks− 1 do
first_index = block_number · block_size;
for j from 0 to block_size/2 − 1 do

j1 = j + first_index;
j2 = j1 + block_size/2;
y[j1] = x[j1] + omega[k,j] · x[j2];
y[j2] = x[j1]− omega[k,j] · x[j2];

end
return y

end
end
Function FFT(x, n)

N = 2n;
for j from 0 to N− 1 do

y[j] = x[reverse(n,j)];
end
for k from 1 to n do

y = OneStep(y,k,n);
end
return y

end

Figure 1: Pseudocode for the radix-2 FFT algorithm.

3

𝑥0

𝑥4

𝑥2

𝑥6

𝑥1

𝑥5

𝑥3

𝑥7

+

−

+

−

+

−

+

−

Step 1
(𝑘 = 1)

+

+

×
−𝑖

−

−

+

+

×
−𝑖

−

−

Step 2
(𝑘 = 2)

+

−

+

−×

+

−×

+

−×
𝑒−

3𝑖𝜋
4

−𝑖

𝑒−
𝑖𝜋
4

Step 3
(𝑘 = 3)

𝑋0

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋7

Figure 2: The various computations performed during an 8-point FFT. The
first step can be viewed as 4 independent 2-point FFTs, and the first two steps
constitute two independent 4-point FFTs.

4

We assume that we use a radix-2, precision-𝑝, floating-point arithmetic with
unbounded exponent range (which implies that the results presented in the
paper hold in “real life” floating-point arithmetic provided that overflows and
underflows do not occur). If 𝑥 ∈ R, define RN(𝑥) as 𝑥 rounded to nearest.
This is the default rounding mode in IEEE 754 arithmetic [10], so that when
the instruction c = a*b appears in a program, what is effectively computed is
𝑐 = RN(𝑎𝑏). We have

|𝑥− RN(𝑥)|
|𝑥|

6
𝑢

1 + 𝑢
< 𝑢, (1)

where 𝑢 = 2−𝑝 is called the rounding unit. We also have

|𝑥− RN(𝑥)| 6 1

2
ulp(𝑥), (2)

where the ulp function (ulp is an acronym for unit in the last place) is defined
as

ulp(𝑥) =

{︂
0 if 𝑥 = 0
2⌊log2 |𝑥|⌋−𝑝+1 otherwise.

One easily notices that if ulp(𝑥) · 2𝑝−1 6 |𝑥| 6 ulp(𝑥) ·
(︀
2𝑝−1 + 1/4

)︀
, then

RN(𝑥) = ulp(𝑥) · 2𝑝−1, and |𝑥 − RN(𝑥)| 6 1
4ulp(𝑥). This leads us to the

definition of another “ulp” function:

ulp*(𝑥) =

{︂
ulp(𝑥) if |𝑥| >

(︀
2𝑝−1 + 1

4

)︀
· ulp(𝑥),

1
2ulp(𝑥) otherwise,

for which we always have |𝑥 − RN(𝑥)| 6 1
2ulp*(𝑥). Of course, ulp* is almost

always equal to ulp, but in the iterative algorithm of Section 5, where we ma-
nipulate values that are frequently just above a power of 2, using ulp* instead
of ulp makes a non-negligible difference.

In Section 5 we will also use the notation RZ(𝑥) for 𝑥 rounded towards
zero. Functions RN (for all inputs) and RZ (for positive inputs) are increasing
functions: if 0 6 𝑡1 6 𝑡2 then RZ(𝑡1) 6 RZ(𝑡2) and RN(𝑡1) 6 RN(𝑡2). Note that
ulp(𝑥) and ulp*(𝑥) are increasing functions of |𝑥|. Hence, if we know a bound
𝐵 on |𝑥|, we can deduce a bound (1/2)ulp*(𝐵) 6 (1/2)ulp(𝐵) on |RN(𝑥) − 𝑥|.

If 𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑁−1) ∈ C𝑁 , we will use the standard notations

||𝑧||2 =
√︀
|𝑧0|2 + |𝑧1|2 + · · · + |𝑧𝑁−1|2

(2-norm) and
||𝑧||∞ = max

𝑖=0,...,𝑁−1
|𝑧𝑖|.

(infinity norm). We will also use the following notation:

||𝑧||⊥∞ = max
𝑖=0,...,𝑁−1

{max (|ℜ(𝑧𝑖)|, |ℑ(𝑧𝑖)|)} .

We remind the classical inequalities

||𝑧||∞ 6 ||𝑧||2 6
√
𝑁 · ||𝑧||∞, (3)

5

||𝑧||⊥∞ 6 ||𝑧||∞ 6
√

2 · ||𝑧||⊥∞. (4)

Choosing which norm should be used for expressing bounds on numerical
errors depends much on the problem being dealt with. For expressing the error
of the FFT, and assuming 𝑥 is the input, 𝑋 is the exact result and �̂� is the
computed result, most authors give a bound on

||𝑋 − �̂�||2
||𝑋||2

,

also called root mean square (RMS) relative error. The reason is twofold: first,
the 2-norm appears naturally in many signal processing applications, and sec-
ond, the well-known relation ||𝑋||2 =

√
𝑁 · ||𝑥||2 makes error bounds in terms of

2-norm easier to obtain than error bounds in terms of infinity norms. However,
for applications such as the multiplication of big integers (or large polynomials
with integer coefficients), we know that the components of the final “exact”,
theoretical, result of a calculation must be integers. We wish to retrieve these
integers by rounding to the nearest integer the coefficients of the actually com-
puted result. For this strategy to work properly, we must be certain that these
coefficients are within distance less than 1/2 from the exact value: in such a
case, we need a bound on ||𝑋 − �̂�||⊥∞, given a bound on ||𝑥||⊥∞.

The set of the floating-point numbers is invariant through a multiplication
by a power of 2, and if 𝑡 = 2𝑘𝑥 then RN(𝑡) = 2𝑘RN(𝑥). A consequence of this
is that if 𝑋 is the exact DFT of 𝑥, if �̂� is the computed value of that DFT
using the FFT algorithm in floating-point arithmetic, then if we compute with
the same algorithm the DFT of 2𝑘𝑥, we will obtain 2𝑘�̂�, so that the relative
error will be the same. Therefore, if we wish to bound the relative error of the
FFT algorithm, it suffices to focus (for instance) on input values 𝑥 such that
1/2 6 ||𝑥||⊥∞ < 1.

Let us now consider error bounds proposed in the literature. We start with
the results based on the 2-norm.

Just one year after the publication of the seminal paper by Cooley and Tukey,
Gentleman and Sande [6] gave the following result (adapted here to radix-2 FFT
and correctly rounded floating-point arithmetic)

Theorem 1 ([6]). Assume radix-2, precision-𝑝 arithmetic, with rounding unit
𝑢 = 2−𝑝. Let �̂� be the computed 2𝑛-point FFT of 𝑥 ∈ C2𝑛 , and let 𝑋 be the
exact value. Then

||𝑋 − �̂�||2
||𝑋||2

6 8.48 · 𝑛 · 𝑢.

Again adapted to the modern context of correctly rounded arithmetic, and
assuming that the real and imaginary parts of the roots of unity are rounded to
nearest, Theorem 1 of [18] gives

Theorem 2 ([18]). Assume radix-2, precision-𝑝 arithmetic, with rounding unit
𝑢 = 2−𝑝. Let �̂� be the computed 2𝑛-point FFT of 𝑥 ∈ C2𝑛 , and let 𝑋 be the

6

exact value. Then

||𝑋 − �̂�||2
||𝑋||2

6
[︁
𝑛 · (5 +

√
2) − 5

]︁
· 𝑢 + 𝒪(𝑢2).

In his book [9], Higham proves the following result.

Theorem 3 ([9]). Assume radix-2, precision-𝑝 arithmetic, with rounding unit
𝑢 = 2−𝑝. Assume the roots of unity used in the algorithm are known with error
less than or equal to 𝜇. Let �̂� be the computed 2𝑛-point FFT of 𝑥 ∈ C2𝑛 , and
let 𝑋 be the exact value. Then

||𝑋 − �̂�||2
||𝑋||2

6
𝑛𝜂

1 − 𝑛𝜂
,

where
𝜂 = 𝜇 +

4𝑢

1 − 4𝑢
·
(︁√

2 + 𝜇
)︁
.

After having proved that the relative error of the naive complex multiplica-
tion algorithm is bounded by

√
5 ·𝑢, Percival [16] deduces the following theorem.

The proof of the bound
√

5 · 𝑢 in [16] turned out to be slightly incorrect: see [2]
for a complete proof.

Theorem 4 ([16]). Assume radix-2, precision-𝑝 arithmetic, with rounding unit
𝑢 = 2−𝑝. Assume the roots of unity used in the algorithm are known with error
less than or equal to 𝜇. Let �̂� be the computed 2𝑛-point FFT of 𝑥 ∈ C2𝑛 , and
let 𝑋 be the exact value. Then

||𝑋 − �̂�||2
||𝑋||2

6 (1 + 𝑢)𝑛 · (1 + 𝑢
√

5)𝑛 · (1 + 𝜇)𝑛 − 1.

Assuming 𝑛 ≪ 1/𝑢 (which always holds in practice), and assuming that the
real and imaginary parts of the roots of unity are rounded to nearest, the bound
given by Theorem 2 is around (6.41 · 𝑛− 5) · 𝑢, the bound given by Theorem 3
is around 6.36 · 𝑛 · 𝑢, and the bound given by Theorem 4 is around 3.94 · 𝑛 · 𝑢.

Calvetti [3] and Schatzman [20] take a different approach to the roundoff
error analysis of the FFT. They try to estimate the statistical distribution of
the error on the result. They end up with an error that grows like

√
𝑛. We will

not consider that approach here, because we want to obtain sure error bounds.
Of course, from bounds involving the 2-norm, one can deduce bounds in-

volving the other norms, using (3) and (4). For instance, from

||𝑋 − �̂�||2
||𝑋||2

6 𝐵, (5)

one can deduce
||𝑋 − �̂�||∞

||𝑋||∞
6 𝐵

√
𝑁, (6)

7

or
||𝑋 − �̂�||⊥∞ 6 𝐵 ·𝑁 ·

√
2 · ||𝑥||⊥∞. (7)

The bounds (6) and (7) are the best that one can deduce from (5). However,
they are not necessarily the best that one can deduce from a direct analysis of
the algorithm in terms of infinity norms.

Henrici [8] gives an analysis based on the infinity norm. He shows the fol-
lowing result.

Theorem 5. (Theorem 13.1c of [8]) Assume radix-2, precision-𝑝 arithmetic,
with rounding unit 𝑢 = 2−𝑝. Assume that the roots of unity used in the algorithm
are known with error less than or equal to 𝜇, and that the complex arithmetic
operations are performed with relative error bounded by the same constant 𝜇.
Let �̂� be the computed 2𝑛-point FFT of 𝑥 ∈ C2𝑛 , and let 𝑋 be the exact value.
Then

||�̂� −𝑋||∞ 6 2𝑛(2𝑛 + 1) · 𝜇 · ||𝑥||∞ + 𝒪(𝑢2).

For several recent reasons, it is worth reexamining the problem of finding
tight error bounds on the computation of Fast Fourier Transforms in floating-
point arithmetic:

∙ first, before Percival’s paper [16], the relative error bound
√

5 · 𝑢 on the
naive complex multiplication algorithm was not known;

∙ the FMA instruction, which evaluates expressions of the form 𝑎𝑏+ 𝑐 with
one rounding only, is now widespread: it is specified by the IEEE-754
Standard on Floating-Point Arithmetic [10], and available in all recent
general purpose processors of commercial significance. It was recently
shown [11] that with an FMA, the relative error bound on the complex
multiplication becomes 2𝑢;

∙ when implementing the multiplications by roots of unity that occur in the
FFT, we approximate “exact” multiplications 𝜔 · 𝑥 by “rounded” multi-
plications of �̂� by 𝑥, where �̂� approximates 𝜔, and is a number whose
real and imaginary parts are floating-point numbers. Most analyses use a
global error bound on these approximations: this simplifies the study and
makes it possible to express the error bound on the FFT as a simple ex-
pression. However, the approximation error of the multiplication depends
much on 𝜔 (it is even rather frequently null: values 𝜔 = ±1,±𝑖 are not
so rare), and since the values of 𝜔 are known in advance, one can try to
obtain better, if less simple and elegant, error bounds.

The sequel of the paper is organized as follows. We first bound the relative
error that can occur when multiplying a complex number by a root of unity in
floating-point arithmetic. To be able to use (1) or (2) to bound the error of the
floating-point operations, we need to bound, as tightly as possible, the largest
value that a variable can take at Step 𝑘 of the FFT algorithm. This is done in
Section 3. These results are used to analyze Step 𝑘 of the FFT algorithm in

8

Section 4.1 (similarly to what Percival did in [16], but slightly more accurately
and with more details). Then, we derive a relative error bound (for the 2-norm)
of the FFT algorithm in Section 4.2.

Finally, Section 5 gives an iterative algorithm that provides an error bound
in terms of the || · ||⊥∞ norm, sometimes tighter than what one could deduce from
the known bounds in terms of 2-norm and (7).

2 Relative error of the multiplication of a com-
plex number by a root of unity

In this section, we try to bound as tightly as possible the error resulting from
the approximation of 𝜔𝑥, where 𝜔 is a root of unity and 𝑥 a floating-point
number, by 𝐴𝑙𝑔(�̂�, 𝑥), where �̂� = RN(ℜ(𝜔))+𝑖 ·RN(ℑ(𝜔)) and 𝐴𝑙𝑔 is a complex
multiplication algorithm that is adequately chosen. Let us first consider the
error resulting from the approximation of 𝜔 by �̂�.

2.1 Relative error of the approximation of a complex num-
ber in floating-point arithmetic

2.1.1 Case of an arbitrary complex number

Let 𝑧 ∈ C, 𝑧 = 𝑥 + 𝑖𝑦, with 𝑥, 𝑦 ∈ R. The complex number 𝑧 is approximated
by 𝑧 = �̂� + 𝑖𝑦, with �̂� = RN(𝑥) and 𝑦 = RN(𝑦). We will denote 𝑧 = RN(𝑧).
The componentwise relative error committed when approximating 𝑧 by 𝑧 is

max

{︂⃒⃒⃒⃒
𝑥− �̂�

𝑥

⃒⃒⃒⃒
,

⃒⃒⃒⃒
𝑦 − 𝑦

𝑦

⃒⃒⃒⃒}︂
6

𝑢

1 + 𝑢
< 𝑢.

The normwise error committed when approximating 𝑧 by 𝑧 is⃒⃒⃒⃒
𝑧 − 𝑧

𝑧

⃒⃒⃒⃒
6

𝑢

1 + 𝑢
< 𝑢. (8)

2.1.2 Case of a root of unity

The bound (8) can be significantly improved when the absolute value of 𝑧 is 1
(which is the case when 𝑧 is a root of 1). In such a case, since |𝑥| and |𝑦| are
less than or equal to 1, we have |𝑥− �̂�| 6 𝑢/2 and |𝑦 − 𝑦| 6 𝑢/2, so that⃒⃒⃒⃒

𝑧 − 𝑧

𝑧

⃒⃒⃒⃒2
=

(𝑥− �̂�)2 + (𝑦 − 𝑦)2

1
6

𝑢2

2
,

so that ⃒⃒⃒⃒
𝑧 − 𝑧

𝑧

⃒⃒⃒⃒
6

𝑢√
2
. (9)

Of course, one should not forget that the 2𝑛𝑑 and 4𝑡ℎ roots of 1 are exactly
represented in floating-point arithmetic.

9

For a given floating-point format (i.e., a given precision 𝑝) and a given 𝑁 ,
one can also compute in advance the largest relative error attained when approx-
imating an 𝑁 𝑡ℎ root of 1. In several cases (especially when 𝑁 is not too large),
this leads to bounds significantly smaller than (9). For instance, if 𝑁 = 128, in
single-precision/binary32 arithmetic (i.e., 𝑝 = 24), the largest relative error is
0.500 · 𝑢, which is significantly smaller than (

√
2/2) · 𝑢 ≈ 0.707 · 𝑢. Examples

are given in Table 1.

Table 1: Largest relative error attained when approximating an 𝑁 𝑡ℎ root of 1 in
precision-𝑝, binary, floating-point arithmetic. All errors in this table have been
rounded up.

𝑁 2 or 4 8 16 32 128 2048 32768

𝑝 = 24 0 0.288 · 𝑢 0.487 · 𝑢 0.500 · 𝑢 0.500 · 𝑢 0.633 · 𝑢 0.707 · 𝑢
𝑝 = 53 0 0.616 · 𝑢 0.616 · 𝑢 0.616 · 𝑢 0.616 · 𝑢 0.641 · 𝑢 0.697 · 𝑢
𝑝 = 113 0 0.692 · 𝑢 0.692 · 𝑢 0.692 · 𝑢 0.692 · 𝑢 0.692 · 𝑢 0.692 · 𝑢

In the following, ∆𝑧 is a bound on the relative error committed when ap-
proximating 𝑧 by 𝑧 = RN(ℜ(𝑧)) + 𝑖RN(ℑ(𝑧)).

2.2 Multiplication of a complex number by a root of 1
Normwise relative error bounds on complex multiplication have been derived
by Brent et al. [2] for the “naive” algorithm (10), and by Jeannerod et al. [11]
assuming an FMA instruction is available, i.e., using (11) or one of the algo-
rithms derived from (11) using symmetries. Let 𝑎 + 𝑖𝑏 be a complex number,
with 𝑎, 𝑏 floating-point numbers. We wish to evaluate 𝑧 = 𝑥 + 𝑖𝑦 = (𝑎 + 𝑖𝑏) · 𝜔,
where 𝜔 = 𝑐 + 𝑖𝑠 is a root of 1. Since, in general, 𝑐 and 𝑠 are not floating-point
numbers, they are approximated by 𝑐 = RN(𝑐) and 𝑠 = RN(𝑠). The normwise
relative error due to that approximation has been studied in Section 2.1.

Let 𝑧 = �̂� + 𝑖𝑦 be the computed product. We consider two cases.

∙ Naive multiplication{︂
�̂� = RN(RN(𝑎𝑐) − RN(𝑏𝑠)),
𝑦 = RN(RN(𝑎𝑠) + RN(𝑏𝑐)).

(10)

∙ Multiplication with an FMA{︂
�̂� = RN(𝑎𝑐− RN(𝑏𝑠)),
𝑦 = RN(𝑎𝑠 + RN(𝑏𝑐)).

(11)

Define 𝑧* = (𝑎 + 𝑖𝑏)�̂�, with �̂� = 𝑐 + 𝑖𝑠. If the naive multiplication is used
then |𝑧 − 𝑧*| 6 𝑢

√
5 · |𝑧*| (see [2]), and if multiplication with FMA is used

10

then |𝑧 − 𝑧*| 6 2𝑢 · |𝑧*| (see [11]). Note that (11) is interesting only when
we want to minimize normwise errors (which is the case here). If one wishes
to minimize componentwise errors with an FMA instruction, there are better
solutions, based on Kahan’s algorithm for evaluating expressions of the form
𝑎𝑐− 𝑏𝑑 [11, 12]. In the following, let us define

𝜌× =

{︂
𝑢
√

5 if (10) is used,
2𝑢 if (11) is used.

We have,
|𝑧 − 𝑧| 6 |𝑧 − 𝑧*| + |𝑧* − 𝑧|

Let us first bound |𝑧 − 𝑧*|. We have,

|𝑧 − 𝑧*| = |(𝑎 + 𝑖𝑏) · [(𝑐 + 𝑖𝑠) − (𝑐 + 𝑖𝑠)]|
= |𝑎 + 𝑖𝑏| ·

⃒⃒⃒
(𝑐+𝑖𝑠)−(𝑐+𝑖𝑠)

𝑐+𝑖𝑠

⃒⃒⃒
6 |𝑧| · ∆𝜔.

We also have |𝑧* − 𝑧| 6 𝜌× · |𝑧*|, so that⃒⃒⃒⃒
𝑧* − 𝑧

𝑧

⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝑧* − 𝑧

𝑧*

⃒⃒⃒⃒
·
⃒⃒⃒⃒
𝑧*

𝑧

⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝑧* − 𝑧

𝑧*

⃒⃒⃒⃒
·
⃒⃒⃒⃒
�̂�

𝜔

⃒⃒⃒⃒
6 𝜌× ·

⃒⃒⃒⃒
�̂�

𝜔

⃒⃒⃒⃒
.

Hence 𝑧 approximates 𝑧 with a relative error bounded by

∆𝜔 + 𝜌× ·
⃒⃒⃒⃒
�̂�

𝜔

⃒⃒⃒⃒
6 ∆𝜔 + 𝜌× · (1 + ∆𝜔). (12)

The bound (12) is rather tight. For instance, in binary64/double precision
arithmetic (i.e., 𝑝 = 53), if we use multiplication with an FMA (i.e., (11)), with
𝜔 = exp(−7133𝜋/220) and 𝑧 = 5495961505303309/252+𝑖·4506137113525543/242,
the relative error is 2.455𝑢, whereas the bound given by (12) is 2.460𝑢.

3 Largest values that can occur when computing
the FFT of a vector

Assuming that the chosen rounding mode is round-to-nearest, when we perform
an arithmetic operation 𝑎⊤𝑏, where 𝑎 and 𝑏 are floating-point numbers, what is
actually computed is RN(𝑎⊤𝑏). Using (1) and the fact that RN is an increasing
function, from a bound 𝑀 on |𝑎⊤𝑏|, we can deduce a bound on the rounding
error committed when performing that operation:

|RN(𝑎⊤𝑏) − (𝑎⊤𝑏)| 6 1

2
ulp(𝑀) 6 𝑢 ·𝑀.

We aim at using that property to bound the rounding errors occurring when
performing FFTs. This requires bounding all intermediate values that appear
in the calculation. This is what we deal with in this section.

11

3.1 A simple bound
Assume that 𝑍 = (𝑍0, 𝑍1, . . . , 𝑍𝑁−1) is the order-𝑁 = 2𝑛 DFT of 𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑁−1).
We have ||𝑍||2 =

√
𝑁 · ||𝑧||2, therefore

||𝑍||∞ 6
√
𝑁 · ||𝑧||2 6 𝑁 · ||𝑧||∞.

Note that ||𝑍||∞ can be equal to 𝑁 · ||𝑧||∞: just consider 𝑧 = (1, 1, 1, . . . , 1), for
which we have 𝑍 = (𝑁, 0, 0, 0, . . . , 0). Hence, if the real and imaginary parts of
the terms 𝑧𝑖 are of absolute value less than 𝑏, then the real and imaginary parts
of the terms 𝑍𝑖 will be of absolute value less than 𝐵 = 𝑁𝑏

√
2.

Since the first 𝑘 steps of an order-𝑁 FFT can be viewed as 𝑁/2𝑘 independent
FFTs of order 2𝑘, we deduce that the intermediate values computed at Step 𝑘
have absolute values of the real and imaginary parts less than 2𝑘𝑏

√
2.

As we are going to see, with a significantly more involved reasoning, one can
replace the constant

√
2 ≈ 1.414 by 4/𝜋 ≈ 1.273.

3.2 Some improvement
Let us now try to obtain a tighter bound.

Let 𝑋 = (𝑋0, 𝑋1, . . . , 𝑋𝑁−1) be the DFT of 𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑁−1). We
have

𝑋𝑗 = 𝑥0 + 𝜔𝑗𝑥1 + 𝜔2𝑗𝑥2 + · · · + 𝜔(𝑁−1)𝑗𝑥𝑁−1,

with 𝜔 = exp(−2𝑖𝜋/𝑁).
Consider a vector 𝑥 that maximizes the absolute value of the real part of

𝑋𝑗 under the constraints ||𝑥||⊥∞ 6 𝑏 (the reasoning is straightforwardly similar
if we want to maximize the imaginary part). Without loss of generality we
assume that the real part of 𝑋𝑗 is nonnegative. Since all the 𝑥𝑘 can be chosen
independently, we maximize the real part of 𝑋𝑗 by maximizing separately all
the terms ℜ(𝜔𝑗𝑘𝑥𝑘) = cos(2𝑗𝑘𝜋/𝑁)ℜ(𝑥𝑘)+sin(2𝑗𝑘𝜋/𝑁)ℑ(𝑥𝑘), i.e., by choosing
ℜ(𝑥𝑘) = 𝑏 · sign(cos(2𝑗𝑘𝜋/𝑁), and ℑ(𝑥𝑘) = 𝑏 · sign(sin(2𝑗𝑘𝜋/𝑁), so that the
maximum value of |ℜ(𝑋𝑗)| is 𝑏 · 𝑆𝑗 , where

𝑆𝑗 =

𝑁−1∑︁
𝑘=0

(| cos(2𝑗𝑘𝜋/𝑁)| + | sin(2𝑗𝑘𝜋/𝑁)|) .

Hence the bound we are looking for is 𝐾𝑁 = max𝑗=0...𝑁−1 𝑆𝑗 . Table 2 gives
the values of 𝐾𝑁 and 𝐾𝑁/𝑁 for the first powers of 2.

Let us show that we always have 𝐾𝑁 6 4
𝜋 ·𝑁 and 4/𝜋 is optimal.

Let 𝑚 ∈ N ∖ {0}, we have

𝐾𝑚

𝑚
=

1

𝑚
max

𝑗=0,...,𝑚−1

{︃
𝑚−1∑︁
𝑘=0

(| cos(2𝑗𝑘𝜋/𝑚)| + | sin(2𝑗𝑘𝜋/𝑚)|)

}︃
.

12

Table 2: First values of 𝐾𝑁 and 𝐾𝑁/𝑁 . If the terms 𝑥𝑘 have the absolute
values of their real and imaginary parts less than or equal to 𝑏, then the terms
𝑋𝑘 have the absolute values of their real and imaginary parts less than or equal
to 𝑏𝐾𝑁 , and that bound is attained.

𝑁 𝐾𝑁 𝐾𝑁/𝑁

8 4 + 4
√

2 = 9.6568 · · · 1.20710678 · · ·
16 20.10935 · · · 1.2568348730 · · ·
32 40.6126815 · · · 1.269146298451 · · ·
64 81.421870499 · · · 1.272216726561699 · · ·
128 162.9419354883 · · · 1.2729838710026031 · · ·
256 325.932960826184 · · · 1.27317562822728390 · · ·
512 651.890465652999852 · · · 1.273223565728515337 · · ·
1024 1303.7932031908053959 · · · 1.2732355499910208944 · · ·
2048 2607.592542309575146472 · · · 1.273238546049597239488 · · ·
4096 5215.1881525813276653152 · · · 1.2732392950638006995398 · · ·
8192 10430.37783914351841639453 · · · 1.27323948231732402543878 · · ·
∞ 4/𝜋 = 1.2732395447351626861 · · ·

We now define, for all 𝑚, 𝑗 ∈ N, 𝑚 ̸= 0,

𝛾𝑗
𝑚 =

1

𝑚

𝑚−1∑︁
𝑘=0

(| cos(2𝑗𝑘𝜋/𝑚)| + | sin(2𝑗𝑘𝜋/𝑚)|) .

For all 𝑥 ∈ R, let 𝑓(𝑥) := | cos(𝑥)| + | sin(𝑥)|. The function 𝑓 is (𝜋/2)-periodic.
Since 1 6 𝑓(𝑥) 6

√
2/2 for all 𝑥, we have, for all 𝑚, 𝑗 ∈ N, 𝑚 ̸= 0,

1 6 𝛾𝑗
𝑚 6

√
2

2
, hence 1 6

𝐾𝑚

𝑚
6

√
2

2
. (13)

Lemma 1. For all 𝑚, 𝑗 ∈ N ∖ {0} such that (𝑗,𝑚) = 1, we have 𝛾𝑗
𝑚 = 𝛾1

𝑚.

Proof. Since 𝑗 and 𝑚 are relatively prime, we have

{𝑘 mod 𝑚, 𝑘 = 0, . . . ,𝑚− 1} = {𝑗𝑘 mod 𝑚, 𝑘 = 0, . . . ,𝑚− 1}.

Hence,

𝛾𝑗
𝑚 =

1

𝑚

∑︁
𝑥∈{ 𝑗𝑘

𝑚 ,06𝑘6𝑚−1}
𝑓(2𝜋𝑥) =

1

𝑚

∑︁
𝑥∈{ 𝑘

𝑚 ,06𝑘6𝑚−1}
𝑓(2𝜋𝑥) = 𝛾1

𝑚.

Lemma 2. For all 𝑚, 𝑗 ∈ N ∖ {0}, we have 𝛾𝑗
𝑚 = 𝛾

𝑗/(𝑗,𝑚)
𝑚/(𝑗,𝑚) = 𝛾1

𝑚/(𝑗,𝑚).

13

Proof. Let 𝑑 = (𝑗,𝑚), 𝑗 = 𝑑𝑗′, 𝑚 = 𝑑𝑚′ with (𝑗′,𝑚′) = 1, we have for all
𝑘, ℓ ∈ N,

𝑓

(︂
2𝑗𝜋

𝑚
(𝑘 + ℓ𝑚′)

)︂
= 𝑓

(︂
2𝑗′𝑘𝜋

𝑚′ + 2𝑗′ℓ𝜋

)︂
= 𝑓

(︂
2𝑗′𝑘𝜋

𝑚′

)︂
,

since 𝑓 is (𝜋/2)-periodic. Then, it comes

𝛾𝑗
𝑚 =

1

𝑚

𝑚−1∑︁
𝑘=0

𝑓

(︂
2𝑗𝑘𝜋

𝑚

)︂
=

1

𝑚

𝑑−1∑︁
ℓ=0

𝑚′−1∑︁
𝑘=0

𝑓

(︂
2𝑗(𝑘 + ℓ𝑚′)𝜋

𝑚

)︂
=

𝑑

𝑚

𝑚′−1∑︁
𝑘=0

𝑓

(︂
2𝑗′𝑘𝜋

𝑚′

)︂
= 𝛾𝑗′

𝑚′ .

The second equality is a consequence of Lemma 1.

Lemma 3. The sequence
(︀
𝛾1
4𝑚

)︀
𝑚∈N is increasing and tends to 4/𝜋 as 𝑚 tends

to +∞.

Proof. We have for all 𝑘, ℓ ∈ N,

𝑓

(︂
2𝜋

4𝑚
(𝑘 + ℓ𝑚)

)︂
= 𝑓

(︂
𝑗𝑘𝜋

2𝑚
+

ℓ𝜋

2

)︂
= 𝑓

(︂
𝑗𝑘𝜋

2𝑚

)︂
,

since 𝑓 is (𝜋/2)-periodic. Therefore, for all 𝑚 ∈ N ∖ {0}, we have

𝛾1
4𝑚 =

1

4𝑚

4𝑚−1∑︁
𝑘=0

𝑓

(︂
2𝑘𝜋

4𝑚

)︂
=

1

4𝑚

3∑︁
ℓ=0

𝑚−1∑︁
𝑘=0

𝑓

(︂
(𝑘 + ℓ𝑚)𝜋

2𝑚

)︂
=

1

𝑚

𝑚−1∑︁
𝑘=0

𝑓

(︂
𝑘𝜋

2𝑚

)︂
.

Hence,
(︀
𝜋
2 𝛾

1
4𝑚

)︀
𝑚∈N is a sequence of Riemann sums which tends to

∫︀ 𝜋/2

0
𝑓(𝑥) d𝑥 =

2 as 𝑛 tends to ∞. Moreover, since 𝑓 is concave over [0, 𝜋/2], this sequence of
Riemann sums is increasing [1, Thm 3A].

Corollary 1. For all 𝑛 ∈ N, we have

1

2𝑛
𝐾2𝑛 6

4

𝜋
and lim

𝑛→∞

1

2𝑛
𝐾2𝑛 =

4

𝜋
.

Proof. We can assume 𝑛 > 1 since we know that 𝐾1 = 1. It follows from
Lemma 2 that there exists 𝑛0 > 1 such that max𝑗=1,...,2𝑛 𝛾𝑗

2𝑛 = 𝛾1
2𝑛0 . Thus,

𝐾2𝑛/2𝑛 = max(𝛾0
2𝑛 , 𝛾

1
2𝑛0) = max(1, 𝛾1

2𝑛0) = 𝛾1
2𝑛0 thanks to Equation (13). From

Lemma 3 and 𝛾1
2 = 1, we get 𝐾2𝑛/2𝑛 = 𝛾1

2𝑛0 6 4/𝜋. Moreover, by definition
of 𝐾2𝑛 , we have 𝛾1

2𝑛 6 𝐾2𝑛/2𝑛. The last two inequalities and Lemma 3 imply
lim𝑛 ↦→∞ 𝐾2𝑛/2𝑛 = 4/𝜋.

All this gives the following result.

Theorem 6. Let 𝑍 = (𝑍0, 𝑍1, . . . , 𝑍𝑁−1) be the order-𝑁 = 2𝑛 Discrete Fourier
Transform of 𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑁−1). If the real and imaginary parts of the terms
𝑧𝑖 are of absolute value less than or equal to 𝑏, then the real and imaginary parts
of the terms 𝑍𝑖 are of absolute value less than or equal to

4

𝜋
·𝑁 · 𝑏, (14)

and the constant 4/𝜋 in (14) is optimal.

14

An important consequence, that will be useful in the sequel of this paper
is that since the first 𝑘 steps of an order-𝑁 FFT can be viewed as 𝑁/2𝑘 in-
dependent FFTs of order 2𝑘, the intermediate values computed at Step 𝑘 have
absolute values of the real and imaginary parts less than 2𝑘+2𝑏/𝜋.

4 Bound on the relative error of the FFT for the
2-norm

Let us now use the error bounds on the multiplication by a root of unity, given
in Section 2, to bound the relative error of the FFT for the 2-norm. For that
purpose, we will first consider Step 𝑘 of the FFT algorithm.

4.1 Step 𝑘 of the FFT
This section uses a reasoning presented by Percival [16]. We present it with
more detail, and extract more information from it by not uniformly bounding
the relative errors of the complex multiplications by roots of unity. At Step 𝑘
(𝑘 = 1, . . . , 𝑛) of the 𝑁 = 2𝑛-point FFT, the 2𝑘-th roots of 1 are used. Define
∆max

𝑘 as the largest value of ∆𝜔, where 𝜔 is a 2𝑘-th root of 1. Notice that when
𝑘 = 1 or 2, the 2𝑘-th root of 1 are exactly represented, and multiplication by
them is errorless. From this and (12), the complex products performed at Step
𝑘 have a relative error bounded by

𝑔𝑘 :=

{︂
0 if 𝑘 = 1, 2,
∆max

𝑘 + 𝜌× · (1 + ∆max
𝑘) otherwise.

For instance, for 𝑘 > 3,

𝑔𝑘 6

√
2

2
𝑢 + 𝜌× ·

(︃
1 +

√
2

2
𝑢

)︃
. (15)

Equation (15) can be interesting for obtaining a bound on the final error of
the FFT as a closed form, however, one will get tighter bounds by individually
computing the terms 𝑔𝑘. Now, Step 𝑘 of the FFT of order 𝑛 can be viewed as
𝑛/2 parallel combinations of the form(︂

𝑥0

𝑥1

)︂
→
(︂

𝑥0 + 𝜔𝑥1

𝑥0 − 𝜔𝑥1

)︂
,

Let us denote ̂︂𝜔𝑥1 = computed value of 𝜔𝑥1 (with relative error bounded by
𝑔𝑘).

We have

|̂︂𝜔𝑥1 − 𝜔𝑥1| 6 |𝑥1| · 𝑔𝑘,
|RN(𝑥0 − ̂︂𝜔𝑥1) − (𝑥0 − ̂︂𝜔𝑥1)| 6 𝑢 · |𝑥0 − ̂︂𝜔𝑥1|,
|RN(𝑥0 + ̂︂𝜔𝑥1) − (𝑥0 + ̂︂𝜔𝑥1)| 6 𝑢 · |𝑥0 + ̂︂𝜔𝑥1|.

15

From which we deduce

|RN(𝑥0 + ̂︂𝜔𝑥1) − (𝑥0 + 𝜔𝑥1)| 6 |RN(𝑥0 + ̂︂𝜔𝑥1) − (𝑥0 + ̂︂𝜔𝑥1)| + |̂︂𝜔𝑥1 − 𝜔𝑥1|
6 𝑢 · |𝑥0 + ̂︂𝜔𝑥1| + |𝑥1| · 𝑔𝑘
6 𝑢 · (|𝑥0 + 𝜔𝑥1| + |̂︂𝜔𝑥1 − 𝜔𝑥1|) + |𝑥1| · 𝑔𝑘,

which implies

|RN(𝑥0 + ̂︂𝜔𝑥1) − (𝑥0 + 𝜔𝑥1)| 6 |𝑥0 + 𝜔𝑥1| · 𝑢 + |𝑥1| · (𝑔𝑘 + 𝑢𝑔𝑘). (16)

Similarly, we have

|RN(𝑥0 − ̂︂𝜔𝑥1) − (𝑥0 − 𝜔𝑥1)| 6 |𝑥0 − 𝜔𝑥1| · 𝑢 + |𝑥1| · (𝑔𝑘 + 𝑢𝑔𝑘). (17)

Now, let us notice that

|𝑥0 − 𝜔𝑥1|2 + |𝑥0 + 𝜔𝑥1|2 = 2𝑥0𝑥0 + 2(𝜔𝑥1)(𝜔𝑥1) = 2(|𝑥0|2 + |𝑥1|2), (18)

a consequence of which is

|𝑥0|2, |𝑥1|2 6
1

2

(︀
|𝑥0 − 𝜔𝑥1|2 + |𝑥0 + 𝜔𝑥1|2

)︀
. (19)

By combining (16), (17), and (19), we obtain

|RN(𝑥0 + ̂︂𝜔𝑥1) − (𝑥0 + 𝜔𝑥1)|2 + |RN(𝑥0 − ̂︂𝜔𝑥1) − (𝑥0 − 𝜔𝑥1)|2

6 |𝑥0 + 𝜔𝑥1|2 · 𝑢2 +
1

2

(︀
|𝑥0 − 𝜔𝑥1|2 + |𝑥0 + 𝜔𝑥1|2

)︀
· (𝑔𝑘 + 𝑢𝑔𝑘)2

+ |𝑥0 − 𝜔𝑥1|2 · 𝑢2 +
1

2

(︀
|𝑥0 − 𝜔𝑥1|2 + |𝑥0 + 𝜔𝑥1|2

)︀
· (𝑔𝑘 + 𝑢𝑔𝑘)2

+ 2𝑢|𝑥1|(𝑔𝑘 + 𝑢𝑔𝑘) (|𝑥0 + 𝜔𝑥1| + |𝑥0 − 𝜔𝑥1|) .

We will now use the following lemma.

Lemma 4. For all 𝑢, 𝑣 ∈ C, we have

(|𝑢 + 𝑣| + |𝑢− 𝑣|) max(|𝑢|, |𝑣|) 6 (|𝑢 + 𝑣|2 + |𝑢− 𝑣|2).

Proof. If 𝑢𝑣 = 0, it is obvious. Hence, we assume 𝑢𝑣 ̸= 0.
We first notice that it is now equivalent to prove that for all 𝑧 ∈ C ∖ {0},

|1 + 𝑧| + |1 − 𝑧| 6 |1 + 𝑧|2 + |1 − 𝑧|2

i.e.,
|1 + 𝑧| + |1 − 𝑧| 6 2(1 + |𝑧|2),

from the parallelogram law. Now we consider that |𝑧| is fixed and we try to
maximize |1+𝑧|+|1−𝑧|. Let 𝐴,𝐵,𝐶, 𝐼 be points of respective affixes 0, 1+𝑧, 1−𝑧

16

and 1 and 𝛼, 𝛼1, 𝛼2, 𝛽, 𝛾 denote the respective angles 𝐵𝐴𝐶,𝐵𝐴𝐼,𝐶𝐴𝐼,𝐴𝐵𝐶

and 𝐴𝐶𝐵. We have

|1 + 𝑧| = |𝑧| cos𝛽 + cos𝛼1,

|1 − 𝑧| = |𝑧| cos 𝛾 + cos𝛼2.

Then, it follows

|1 + 𝑧| + |1 − 𝑧| = |𝑧|(cos𝛽 + cos 𝛾) + cos𝛼1 + cos𝛼2,

= 2|𝑧| cos

(︂
𝛽 + 𝛾

2

)︂
cos

(︂
𝛽 − 𝛾

2

)︂
+ 2 cos

(︁𝛼
2

)︁
cos

(︂
𝛼1 − 𝛼2

2

)︂
= 2|𝑧| sin

(︁𝛼
2

)︁
cos

(︂
𝛽 − 𝛾

2

)︂
+ 2 cos

(︁𝛼
2

)︁
cos

(︂
𝛼1 − 𝛼2

2

)︂
,

which is maximal if and only if 𝛼1 = 𝛼2 and 𝛽 = 𝛾, i.e., 𝑧 = 𝑖𝑥, 𝑥 ∈ R. In this
case, 2(1 + |𝑧|2) − |1 + 𝑧| − |1 − 𝑧| = 2(1 + 𝑥2 −

√
1 + 𝑥2) > 0.

All this gives

Lemma 5 (Adapted from [16]).

|RN(𝑥0 + ̂︂𝜔𝑥1) − (𝑥0 + 𝜔𝑥1)|2+|RN(𝑥0 − ̂︂𝜔𝑥1) − (𝑥0 − 𝜔𝑥1)|2 6
(︀
|𝑥0 + 𝜔𝑥1|2 + |𝑥0 − 𝜔𝑥1|2

)︀
Ω2

𝑘,

where
Ω𝑘 := 𝑢 + 𝑔𝑘(1 + 𝑢).

4.2 Application to the error of the FFT
In the following, 𝑋 is the 𝑁 = 2𝑛-point (exact) Fourier transform of 𝑥, and 𝑡𝑘
is the transformation performed at Step 𝑘 of the FFT algorithm. We denote
𝑥(0) = 𝑥, 𝑥(1) = 𝑡1(𝑥(0)), 𝑥(2) = 𝑡2(𝑥(1)), . . . , 𝑥(𝑛) = 𝑡𝑛(𝑥(𝑛−1)) = 𝑋 the
intermediate exact values of the FFT algorithm, and ̂︂𝑥(1), ̂︂𝑥(2), . . . , ̂︂𝑥(𝑛) = ̂︀𝑋
the corresponding computed values. We have ̂︂𝑥(0) = 𝑥(0).

From (18) we easily find that for any 𝑦 and 𝑘, ||𝑡𝑘(𝑦)||2 =
√

2 · ||𝑦||2.
From Lemma 5, we have

||̂︂𝑥(𝑘) − 𝑡𝑘(𝑥(𝑘−1))||2 6 Ω𝑘 · ||𝑡𝑘(𝑥(𝑘−1))||2. (20)

Let us show by induction on 𝑘 the following property

||̂︂𝑥(𝑘) − 𝑥(𝑘)||2 6 ||𝑥(𝑘)||2 ·

[︃
𝑘∏︁

𝑖=1

(1 + Ω𝑖) − 1

]︃
. (21)

17

For 𝑘 = 1, it is an almost immediate consequence of (20) and the fact that
𝑡1(̂︂𝑥(0)) = 𝑡1(𝑥(0)) = 𝑥(1). Now, let us assume (21) is true for some 𝑘. We have

||𝑥(𝑘+1) − 𝑥(𝑘+1)||2 6 ||𝑥(𝑘+1) − 𝑡𝑘+1(̂︂𝑥(𝑘))||2 + ||𝑡𝑘+1(̂︂𝑥(𝑘)) − 𝑥(𝑘+1)||2
6 ||𝑡𝑘+1(̂︂𝑥(𝑘))||2 · Ω𝑘+1 + ||𝑡𝑘+1(̂︂𝑥(𝑘) − 𝑥(𝑘))||2
6

√
2 · ||̂︂𝑥(𝑘)||2 · Ω𝑘+1 +

√
2 · ||̂︂𝑥(𝑘) − 𝑥(𝑘)||2

6
√

2 · Ω𝑘+1 · ||𝑥(𝑘)||2 ·
∏︀𝑘

𝑖=1(1 + Ω𝑖) +
√

2 · ||𝑥(𝑘)||2 ·
[︁∏︀𝑘

𝑖=1(1 + Ω𝑖) − 1
]︁

6 ||𝑥(𝑘+1)||2 ·
[︁∏︀𝑘+1

𝑖=1 (1 + Ω𝑖) − 1
]︁
.

Q.E.D.
This gives

Theorem 7. ⃒⃒⃒⃒⃒⃒
�̂� −𝑋

⃒⃒⃒⃒⃒⃒
2
6 ||𝑋||2 ·

(︃
𝑛∏︁

𝑖=1

(1 + Ω𝑖) − 1

)︃
,

with
Ω𝑘 = 𝑢 + 𝑔𝑘(1 + 𝑢),

𝑔𝑘 =

{︂
0 if 𝑘 = 1, 2,
∆max

𝑘 + 𝜌× · (1 + ∆max
𝑘) otherwise,

∆max
𝑘 = max{𝜔 2𝑘-th root of 1} ∆𝜔,

∆𝜔 = |�̂� − 𝜔|,

𝜌× =

{︂
𝑢
√

5 if (10) is used,
2𝑢 if (11) is used.

That result can be directly used to obtain error bounds, with a preliminary
calculation of the terms 𝑔𝑘. As said above, one can get a simpler yet looser
bound by noticing that 𝑔1 = 𝑔2 = 0 and bounding all other terms 𝑔𝑘 by

𝑔 =

√
2

2
𝑢 + 𝜌× ·

(︃
1 +

√
2

2
𝑢

)︃
.

This gives the following result, which is essentially the same as Percival’s re-
sult [16] (our bound is slightly better because we use 𝑔1 = 𝑔2 = 0, and when an
FMA instruction is available, we know that 𝜌× = 2𝑢).

Theorem 8 (Close to Percival’s bound [16]).⃒⃒⃒⃒⃒⃒
�̂� −𝑋

⃒⃒⃒⃒⃒⃒
2
6 ||𝑋||2 ·

[︀
(1 + 𝑢)𝑛(1 + 𝑔)𝑛−2 − 1

]︀
.

Of course, this also gives a bound on ||�̂� −𝑋||∞. Tables 3 and 4 compare
the various obtained bounds in the case of a 256-point and a 65536-point FFT,
respectively.

18

Table 3: Comparison of the bounds on ||�̂� −𝑋||2/||𝑋||2 given by Theorems 1,
2, 3 (with 𝜇 = 𝑢

√
2/2, the smallest value that always holds), 4 (with the same

value of 𝜇), 7 and 8 for a 28-point FFT.
𝑝 = 24 𝑝 = 53 𝑝 = 113

Theorem 1 67.84 · 𝑢 67.84 · 𝑢 67.84 · 𝑢
Theorem 2 46.31 · 𝑢+𝒪(𝑢2) 46.31 · 𝑢+𝒪(𝑢2) 46.31 · 𝑢+𝒪(𝑢2)

Theorem 3
with 𝜇 = 𝑢

√
2/2

(does not assume FMA)
50.92 · 𝑢 50.92 · 𝑢 50.92 · 𝑢

Theorem 4
with 𝜇 = 𝑢

√
2/2

(does not assume FMA)
31.55 · 𝑢 31.55 · 𝑢 31.55 · 𝑢

Theorem 8
with 𝜌× = 2𝑢
(FMA)

24.25 · 𝑢 24.25 · 𝑢 24.25 · 𝑢

Theorem 8
with 𝜌× =

√
5𝑢

(no FMA)
25.66 · 𝑢 25.66 · 𝑢 25.66 · 𝑢

Theorem 7
with calculation of the 𝑔𝑘s
with 𝜌× = 2𝑢
(FMA)

22.78 · 𝑢 23.71 · 𝑢 24.16 · 𝑢

Theorem 7
with calculation of the 𝑔𝑘s
with 𝜌× =

√
5𝑢

(no FMA)

24.19 · 𝑢 25.11 · 𝑢 25.57 · 𝑢

5 Calculation of an error bound for the infinity
norm

In the following, we wish to find a bound for ||𝑋 − �̂�||⊥∞, given that ||𝑥||⊥∞ 6 1.
Note that if the constraint on 𝑥 becomes ||𝑥||⊥∞ 6 2𝑚, it will suffice to multiply
the bound on ||𝑋 − �̂�||⊥∞ by 2𝑚. Obtaining such bounds is important for
implementing Schönhage and Strassen’s algorithm for multiplying big integers of
large polynomials [21, 13]. One can get such bounds by using Theorem 7 and (7).
One might also want to use Henrici’s Theorem (Theorem 5): assuming an FMA
is used (so that complex multiplication has relative error 2𝑢), Theorem 5 gives
a bound

||�̂� −𝑋||⊥∞ 6 2𝑛+1(2𝑛 + 1) ·
√

2 · 𝑢 · ||𝑥||⊥∞ + 𝒪(𝑢2).

Note, however, the “𝒪(𝑢2)” that does not allow to get sure bounds.
Table 5 compares bounds on ||�̂�−𝑋||2/||𝑋||2 and ||𝑋−�̂�||⊥∞/||𝑥||⊥∞ deduced

from Theorem 7 (assuming an FMA instruction is available, and 𝑝 = 53–i.e.,
double-precision arithmetic) and (7) with bounds deduced from Henrici’s theo-
rem.

19

Table 4: Comparison of the bounds on ||�̂� −𝑋||2/||𝑋||2 given by Theorems 1,
2, 3 (with 𝜇 = 𝑢

√
2/2, the smallest value that always holds), 4 (with the same

value of 𝜇), 7 and 8 for a 216-point FFT.
𝑝 = 24 𝑝 = 53 𝑝 = 113

Theorem 1 135.68 · 𝑢 135.68 · 𝑢 135.68 · 𝑢
Theorem 2 97.62 · 𝑢+𝒪(𝑢2) 97.62 · 𝑢+𝒪(𝑢2) 97.62 · 𝑢+𝒪(𝑢2)

Theorem 3
with 𝜇 = 𝑢

√
2/2

(does not assume FMA)
101.83 · 𝑢 101.83 · 𝑢 101.83 · 𝑢

Theorem 4
with 𝜇 = 𝑢

√
2/2

(does not assume FMA)
63.10 · 𝑢 63.10 · 𝑢 63.10 · 𝑢

Theorem 8
with 𝜌× = 2𝑢
(FMA)

53.90 · 𝑢 53.90 · 𝑢 53.90 · 𝑢

Theorem 8
with 𝜌× =

√
5𝑢

(no FMA)
57.21 · 𝑢 57.21 · 𝑢 57.21 · 𝑢

Theorem 7
with calculation of the 𝑔𝑘s
with 𝜌× = 2𝑢
(FMA)

52.14 · 𝑢 53.03 · 𝑢 53.69 · 𝑢

Theorem 7
with calculation of the 𝑔𝑘s
with 𝜌× =

√
5𝑢

(no FMA)

55.45 · 𝑢 56.33 · 𝑢 57.00 · 𝑢

Before going further, let us give a “bad” case for that norm, i.e., a case for
which we obtain a large error.

5.1 A bad case for the infinity norm
It is interesting to build “bad” cases: they help us to know if it is worth trying
to improve the error bounds.

We build a bad case as follows. We are interested in having an error as large
as possible on the first term of the Fourier transform. Let us quickly explain how
this can be done. We assume that 𝑥0 ≈ 𝑥1 ≈ 𝑥2 ≈ · · · ≈ 𝑥𝑁−1 ≈ 1. Denoting
𝑢𝑖 = 𝑥reverse(𝑘,𝑖), we are interested in the calculation of the 1st component of the
Fourier Transform. The exact result is 𝑥0 + 𝑥1 + · · ·+ 𝑥𝑁−1, and the computed
result is

RN

{︃
· · ·RN

{︂
RN
[︁
RN(𝑢0+𝑢1)+RN(𝑢2+𝑢3)

]︁
+RN

[︁
RN(𝑢4+𝑢5)+RN(𝑢6+𝑢7)

]︁}︂
+· · ·

}︃
(22)

(see the first line in Figure 2). After Step 𝑘 of the FFT algorithm, the in-
termediate terms in the sum (22) will be floating-point numbers around 2𝑘,

20

which means that they will be of the form 2𝑘 + 𝑗𝑢2𝑘+1 (where 𝑗 ∈ N) for
the terms above 2𝑘, and 2𝑘 − 𝑗𝑢2𝑘 for the terms below 2𝑘. We will assume
0 6 𝑗 6 2𝑛+1 ≪ 1/𝑢. Let us explain how we can build a term of the form
2𝑘 + 𝑗𝑢2𝑘+1 from the floating-point addition of two terms around 2𝑘−1, trying
to maximize the rounding error. Since we want all rounding errors to be in
the same direction (in order to maximize the global error, which will be the
sum of all individual rounding errors), we will make sure that all roundings are
downwards. We assume that RN is round to nearest ties to even: if 𝑡 is halfway
between two consecutive FP numbers, then RN(𝑡) is the one of these two num-
bers whose significand is even, i.e., its rightmost significand bit is a zero (this is
the default in the IEEE 754 standard).

Notice that since the distance between two floating-point numbers in the
neighborhood of 2𝑘 + 𝑗𝑢2𝑘+1 is 𝑢 · 2𝑘+1, the maximum rounding error that can
result from that floating-point addition is 𝑢 · 2𝑘. Therefore

∙ if 𝑗 is even, one easily checks that error 𝑢 · 2𝑘 is attained when adding
the two FP numbers 2𝑘−1 + 𝑗𝑢2𝑘+1 and 2𝑘−1 + 𝑢2𝑘. The exact sum is
2𝑘 +

(︀
𝑗 + 1

2

)︀
𝑢2𝑘+1, the rounded result (thanks to the round ties-to-even

rule) is the expected 2𝑘 + 𝑗𝑢2𝑘+1, so that the rounding error is 𝑢 · 2𝑘;

∙ if 𝑗 is odd, error 𝑢 · 2𝑘 cannot be attained: if the exact sum was 2𝑘 +
𝑗𝑢2𝑘+1 ± 𝑢 · 2𝑘, then (due to the ties-to-even rule) that exact sum would
not be rounded to 2𝑘 + 𝑗𝑢2𝑘+1, whose significand is odd. To make sure
that the exact sum is not halfway between two FP numbers, it must not be
a multiple of 𝑢2𝑘, which implies that one of the operands must be below
2𝑘−1. Hence the choice to add 2𝑘−1 +𝑢 ·

(︀
𝑗 + 1

2

)︀
·2𝑘+1 and 2𝑘−1−𝑢 ·2𝑘−1.

The exact sum is 2𝑘 + 𝑗𝑢2𝑘+1 + 𝑢2𝑘−1, resulting in a rounded sum equal
to the expected 2𝑘 + 𝑗𝑢2𝑘+1 and a rounding error 𝑢 · 2𝑘−1.

The reasoning would be similar for building a term of the form 2𝑘 − 𝑗𝑢2𝑘. We
can formalize these ideas as follows. Let us call 𝑇2𝑘,𝜎 an array of 2𝑘 input
values (in “mirror order”, i.e., one must choose 𝑥0 = 𝑇2𝑘,𝜎[reverse(𝑘, 0)], 𝑥1 =
𝑇2𝑘,𝜎[reverse(𝑘, 1)], 𝑥2 = 𝑇2𝑘,𝜎[reverse(𝑘, 2)], . . . as first elements) for which
the computed sum that appear in the 1st component of the 2𝑘-term FFT is equal
to 2𝑘 + 𝜎. The number 𝜎 will be of the form 𝑗 · 2𝑘+1𝑢 for 𝜎 > 0, and −𝑗 · 2𝑘𝑢
for 𝜎 < 0, where 𝑗 is a small positive integer. We are going to build 𝑇2𝑛,0 so
that the error when computing the FFT of that array is as large as possible.
We denote 𝑇//𝑇 ′ as the concatenation of the arrays 𝑇 and 𝑇 ′, we will choose
(for 𝑗 > 0):

𝑇2𝑘,𝑗·2𝑘+1𝑢 =

{︂
𝑇2𝑘−1,(𝑗+ 1

2)·2𝑘+1𝑢//𝑇2𝑘−1,−2𝑘−1𝑢 if 𝑗 is odd,

𝑇2𝑘−1,𝑗·2𝑘+1𝑢//𝑇2𝑘−1,2𝑘𝑢 if 𝑗 is even,
(23)

𝑇2𝑘,−𝑗·2𝑘𝑢 =

{︂
𝑇2𝑘−1,0//𝑇2𝑘−1,−𝑗·2𝑘𝑢 if 𝑗 is odd,
𝑇2𝑘−1,0//𝑇2𝑘−1,(−2𝑗+1)·2𝑘−1𝑢 if 𝑗 is even,

(24)

with, of course {︂
𝑇1,2𝑗𝑢 = 1 + 2𝑗𝑢,
𝑇1,−𝑗𝑢 = 1 − 𝑗𝑢.

21

The error on the 1st term of the Fourier Transform will be 𝐶𝑛,0 · 𝑢, where
the terms 𝐶𝑘,𝑚 (equal to the error that occurs when performing a 2𝑘-point FFT
with the input values defined by 𝑇2𝑘,𝑚𝑢) are defined by the following recurrence

𝐶𝑘,𝑚 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 𝑘 = 0,
𝐶𝑘−1,𝑚+2𝑘 + 𝐶𝑘−1,−2𝑘−1 + 2𝑘−1 if 𝑚/2𝑘+1 is odd and 𝑚 > 0,
𝐶𝑘−1,𝑚 + 𝐶𝑘−1,2𝑘 + 2𝑘 if 𝑚/2𝑘+1 is even and 𝑚 > 0,
𝐶𝑘−1,0 + 𝐶𝑘−1,𝑚 if 𝑚/2𝑘 is odd and 𝑚 < 0,
𝐶𝑘−1,0 + 𝐶𝑘−1,𝑚+2𝑘−1 + 2𝑘−1 if 𝑚/2𝑘 is even and 𝑚 < 0.

(25)
Figure 3 illustrates the use of the rules (23) and (24) for building a bad

case for 𝑁 = 8. Interestingly enough, from the recurrence (25), the GFUN
package [19] makes it possible to find an exact closed formula for 𝐶𝑛,0. This is
based on first computing several terms 𝐶𝑛,0, say 𝑛 6 24, and then using GFUN
to guess a linear differential equation with polynomial coefficients, satisfied by
the generating function

∑︀
𝑛>0 𝐶𝑛,0𝑥

𝑛. This is obviously not always possible,
but such an equation exists when (𝐶𝑛,0)𝑛>0 is a 𝑃 -recursive sequence i.e., it
satisfies a linear recurrence with polynomial coefficients in 𝑛. It turns out that
in our case the guessed generating function is a rational fraction,

− −2𝑥4 + 2𝑥3 + 𝑥2 − 2𝑥

4𝑥5 − 4𝑥4 + 𝑥3 + 4𝑥2 − 4𝑥 + 1
,

allowing to find not only a recurrence for 𝐶𝑛,0, but also its closed form, given
below. We obtain,

Theorem 9. The terms 𝐶𝑛,0 defined by (25) satisfy

1

27
· 2𝑛 · (15𝑛 + 14) − 5

9
· 𝑐𝑜𝑠

(︁𝑛𝜋
3

)︁
+

1

9
·
√

3 · 𝑠𝑖𝑛
(︁𝑛𝜋

3

)︁
+

(−1)𝑛

27
.

Hence, on the “bad cases” built using the recurrences (23) and (24), the FFT
algorithm has an error asymptotically equivalent to (5/9) · 𝑛 · 2𝑛. One easily
checks that with these bad cases, ||𝑥||⊥∞ = 1 + (2𝑁 − 2) · 𝑢, so that

||𝑋 − �̂�||⊥∞
||𝑥||⊥∞

∼ 5

9
· 𝑛 · 2𝑛 · 𝑢

1 + (2𝑛+1 − 2) · 𝑢
.

Table 5 compares bounds on ||�̂�−𝑋||2/||𝑋||2 and ||𝑋−�̂�||⊥∞/||𝑥||⊥∞ deduced
from Theorem 7 (assuming an FMA instruction is available, and 𝑝 = 53–i.e.,
double-precision arithmetic) and (7) with bounds deduced from Henrici’s theo-
rem and the “bad case” we have just built.

5.2 Iterative calculation of an error bound
We assume that the input vector to the FFT algorithm satisfies ||𝑥||⊥∞ 6 1. Let
us again consider an elementary calculation of the FFT, performed at Step 𝑘:{︂

𝑦1 = 𝑥1 + 𝜔𝑥2,
𝑦2 = 𝑥1 − 𝜔𝑥2,

22

8

4

4+8u

2

2+4u

2+12u

2-2u

1

1+2u

1+6u

1-u
1+14u

1-u

1

1-2u(j < 0, j odd)

(j ≥ 0, j even)

(j ≥ 0, j even)

(j ≥ 0, j even)

(j ≥ 0, j odd)

(j ≥ 0, j odd)

(j ≥ 0, j odd)

Figure 3: Building a bad case for 𝑁 = 8, according to (23) and (24). The
obtained input values are in mirror order: this corresponds to 𝑥0 = 1, 𝑥1 =
1 + 14𝑢, 𝑥2 = 1 + 6𝑢, 𝑥3 = 1, 𝑥4 = 1 + 2𝑢, 𝑥5 = 1 − 𝑢, 𝑥6 = 1 − 𝑢, and
𝑥7 = 1 − 2𝑢. The absolute error on 𝑋0, when applying the FFT algorithm on
these input values, is 18𝑢.

where 𝑥1, 𝑥2, 𝑦1 and 𝑦2 are “exact” values (i.e., they are obtained from exact
calculations, without roundings). We will now iteratively compute error bounds
for all the intermediate calculations of the FFT. Denoting 𝑥𝑅

1 , 𝑥𝑅
2 , 𝑦𝑅1 , 𝑦𝑅2 and

𝜔𝑅 the real parts of 𝑥1, 𝑥2, 𝑦1, 𝑦2 and 𝜔, and 𝑥𝐼
1, 𝑥𝐼

2, 𝑦𝐼1 , 𝑦𝐼2 and 𝜔𝐼 their
imaginary parts, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑦𝑅1 = 𝑥𝑅
1 + 𝜔𝑅𝑥𝑅

2 − 𝜔𝐼𝑥𝐼
2,

𝑦𝐼1 = 𝑥𝐼
1 + 𝜔𝐼𝑥𝑅

2 + 𝜔𝑅𝑥𝐼
2,

𝑦𝑅2 = 𝑥𝑅
1 − 𝜔𝑅𝑥𝑅

2 + 𝜔𝐼𝑥𝐼
2,

𝑦𝐼2 = 𝑥𝐼
1 − 𝜔𝐼𝑥𝑅

2 − 𝜔𝑅𝑥𝐼
2.

Now, denote ̂︁𝑥𝑅
1 , ̂︁𝑥𝑅

2 , ̂︁𝑦𝑅1 , ̂︁𝑦𝑅2 , ̂︁𝑥𝐼
1,
̂︁𝑥𝐼
2,
̂︀𝑦𝐼1 , and ̂︀𝑦𝐼2 as the calculated values of 𝑥𝑅

1 ,
𝑥𝑅
2 , 𝑦𝑅1 , 𝑦𝑅2 , 𝑥𝐼

1, 𝑥𝐼
2, 𝑦𝐼1 , and 𝑦𝐼2 ; and denote ̂︁𝜔𝑅 = RN(𝜔𝑅) and ̂︁𝜔𝐼 = RN(𝜔𝐼).

We assume that an FMA instruction is available, and that ̂︁𝑦𝑅1 , ̂︁𝑦𝑅2 , ̂︀𝑦𝐼1 , and ̂︀𝑦𝐼2
are computed as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

̂︁𝑦𝑅1 = RN
[︁̂︁𝑥𝑅

1 + RN
(︁̂︁𝜔𝑅̂︁𝑥𝑅

2 − RN
(︁̂︁𝜔𝐼̂︁𝑥𝐼

2

)︁)︁]︁
,̂︀𝑦𝐼1 = RN

[︁̂︁𝑥𝐼
1 + RN

(︁̂︁𝜔𝐼̂︁𝑥𝑅
2 + RN

(︁̂︁𝜔𝑅̂︁𝑥𝐼
2

)︁)︁]︁
,̂︁𝑦𝑅2 = RN

[︁̂︁𝑥𝑅
1 − RN

(︁̂︁𝜔𝑅̂︁𝑥𝑅
2 − RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁)︁]︁
,̂︀𝑦𝐼2 = RN

[︁̂︁𝑥𝐼
1 − RN

(︁̂︁𝜔𝐼̂︁𝑥𝑅
2 + RN

(︁̂︁𝜔𝑅̂︁𝑥𝐼
2

)︁)︁]︁
.

(26)

The terms 𝜔𝑅, 𝜔𝐼 , ̂︁𝜔𝑅 and ̂︁𝜔𝐼 are input-independent, so we assume that the
errors

∆𝑅
𝜔 =

⃒⃒⃒̂︁𝜔𝑅 − 𝜔𝑅
⃒⃒⃒

and ∆𝐼
𝜔 =

⃒⃒⃒̂︁𝜔𝐼 − 𝜔𝐼
⃒⃒⃒

23

Table 5: Bounds on ||�̂� − 𝑋||2/||𝑋||2 and ||𝑋 − �̂�||⊥∞/||𝑥||⊥∞ deduced from
Theorem 7 (assuming an FMA instruction is available, and 𝑝 = 53–i.e., double-
precision arithmetic) and (7), compared with the bound on ||𝑋 − �̂�||⊥∞/||𝑥||⊥∞
given by Theorem 5 and the “bad case” presented in this section.

𝑁

Bound on
||𝑋 − �̂�||2/||𝑥||2
deduced from
Theorem 7
(with FMA)

Bound on
||𝑋 − �̂�||⊥∞/||𝑥||⊥∞

deduced from
Theorem 7

and (7)

Bound on
||𝑋 − �̂�||⊥∞/||𝑥||⊥∞

deduced from
Theorem 5)

Known bad case for
||𝑋 − �̂�||⊥∞/||𝑥||⊥∞
(see Section 5.1)

25 12.85 · 𝑢 582 · 𝑢 996 · 𝑢+𝒪(𝑢2) 105 · 𝑢
28 23.71 · 𝑢 8584 · 𝑢 12310 · 𝑢+𝒪(𝑢2) 1271 · 𝑢
210 30.99 · 𝑢 44879 · 𝑢 60823 · 𝑢+𝒪(𝑢2) 6220 · 𝑢
212 38.28 · 𝑢 221720 · 𝑢 289631 · 𝑢+𝒪(𝑢2) 29430 · 𝑢
214 45.63 · 𝑢 1.058× 106 · 𝑢 1.344× 106 · 𝑢+𝒪(𝑢2) 135927 · 𝑢
216 53.03 · 𝑢 4.915× 106 · 𝑢 6.118× 106 · 𝑢+𝒪(𝑢2) 616524 · 𝑢
218 60.43 · 𝑢 2.240× 107 · 𝑢 2.744× 107 · 𝑢+𝒪(𝑢2) 2.757× 106 · 𝑢
220 67.83 · 𝑢 1.006× 108 · 𝑢 1.216× 108 · 𝑢+𝒪(𝑢2) 1.219× 107 · 𝑢

are computed in advance. The terms |𝑥𝑅
1 |, |𝑥𝐼

1|, |𝑥𝑅
2 |, and |𝑥𝐼

2| are results of
a 2𝑘−1-point FFT, hence they are bounded by 2𝑘+1

𝜋 as shown in Section 3.2.
However, to take advantage from a significantly smaller bound for small values
of 𝑘, we will bound |𝑥𝑅

1 |, |𝑥𝐼
1|, |𝑥𝑅

2 |, and |𝑥𝐼
2| by 𝛽𝑘, defined as

𝛽𝑘 =

⎧⎨⎩
2𝑘−1 if 𝑘 6 3,

4 + 4
√

2 if 𝑘 = 4,
2𝑘+1/𝜋 otherwise.

Since 𝑥2 results from a 2𝑘−1-point FFT, it satisfies√︁(︀
𝑥𝑅
2

)︀2
+
(︀
𝑥𝐼
2

)︀2
6 2𝑘−1/2,

from which we easily deduce⃒⃒
𝑥𝑅
2 𝜔

𝑅 − 𝑥𝐼
2𝜔

𝐼
⃒⃒

6 2𝑘−1/2,⃒⃒
𝑥𝑅
2 𝜔

𝐼 + 𝑥𝐼
2𝜔

𝑅
⃒⃒

6 2𝑘−1/2.
(27)

Also, to take into account the fact that multiplications by ±1 and ±𝑖 are
errorless (these multiplications are frequent in the first steps of the FFT algo-
rithm), define, for a (real) floating-point number 𝑡:

1𝑡 =

{︂
1 if 𝑡 = ±1,
0 otherwise,

so that when multiplying some floating-point number 𝑣 by 𝑡, the error committed
is bounded by

1

2
(1 − 1𝑡) · ulp*(𝑣𝑡).

24

Define also
0𝑡 =

{︂
1 if 𝑡 = 0,
0 otherwise.

Let 𝛿𝑅1 (resp. 𝛿𝐼1 , 𝛿𝑅2 , 𝛿𝐼2) be a bound on |𝑥𝑅
1 − ̂︁𝑥𝑅

1 | (resp., |𝑥𝐼
1 −̂︁𝑥𝐼

1|, |𝑥𝑅
2 − ̂︁𝑥𝑅

2 |,
|𝑥𝐼

2−̂︁𝑥𝐼
2|). From these values we wish to compute 𝜂𝑅1 (resp., 𝜂𝐼1 , 𝜂𝑅2 , 𝜂𝐼2), bounds

on |𝑦𝑅1 −̂︁𝑦𝑅1 | (resp., |𝑦𝐼1 − ̂︀𝑦𝐼1 |, |𝑦𝑅2 −̂︁𝑦𝑅2 |, |𝑦𝐼2 − ̂︀𝑦𝐼2 |). Let us detail the calculation
of 𝜂𝑅1 . Expressions for 𝜂𝐼1 , 𝜂𝑅2 and 𝜂𝐼2 will be deduced using a straightforward
symmetry.

Lemma 6. The number
∆𝑅

𝜔 |𝑥𝑅
2 | + ∆𝐼

𝜔|𝑥𝐼
2|

is less than or equal to

1.

∆𝑅
𝜔 · 2𝑘+1

𝜋
+ ∆𝐼

𝜔 · 2𝑘 ·
√︂

1

2
− 4

𝜋2

if (∆𝑅
𝜔 /∆𝐼

𝜔)2 6 𝜋2/8 − 1;

2.
2𝑘−1/2 ·

√︁
(∆𝑅

𝜔)2 + (∆𝐼
𝜔)2

if 𝜋2/8 − 1 < (∆𝑅
𝜔 /∆𝐼

𝜔)2 < 1/(𝜋2/8 − 1), and

3.

∆𝐼
𝜔 · 2𝑘+1

𝜋
+ ∆𝑅

𝜔 · 2𝑘 ·
√︂

1

2
− 4

𝜋2

otherwise.

Proof. The point (|𝑥𝑅
2 |, |𝑥𝐼

2|) lies in the set

𝒜 =

{︂
0 6 𝑥 6

2𝑘+1

𝜋
, 0 6 𝑦 6

2𝑘+1

𝜋
, 𝑥2 + 𝑦2 6 22𝑘−1

}︂
.

Let 𝒞 = {(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 = 22𝑘−1} and (𝑎, 𝑏) ∈ 𝒞, one equation of the
tangent line to 𝒞 at (𝑎, 𝑏) is

𝜕(𝑥2 + 𝑦2)

𝜕𝑥
(𝑎, 𝑏)(𝑥− 𝑎) +

𝜕(𝑥2 + 𝑦2)

𝜕𝑦
(𝑎, 𝑏)(𝑦 − 𝑏) = 0, i.e., 𝑎𝑥 + 𝑏𝑦 = 𝑎2 + 𝑏2.

If we denote 𝒟 = {(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 6 22𝑘−1}, for any (𝑎, 𝑏) ∈ 𝒞, we have

𝒜 ⊂ 𝒟 ⊂ {(𝑥, 𝑦) ∈ R2 : 𝑎𝑥 + 𝑏𝑦 6 𝑎2 + 𝑏2}. (28)

First, we assume (∆𝑅
𝜔 /∆𝐼

𝜔)2 6 𝜋2/8 − 1. Let (𝑎0, 𝑏0) =
(︁

2𝑘
√︁

1
2 − 4

𝜋2 ,
2𝑘+1

𝜋

)︁
=(︂

2𝑘+1

𝜋

√︁
𝜋2

8 − 1, 2𝑘+1

𝜋

)︂
.

For any (𝑥, 𝑦) ∈ 𝒜, we have

25

∙ either 0 6 𝑥 6 𝑥0, then

∆𝑅
𝜔𝑥 + ∆𝐼

𝜔𝑦 6 ∆𝑅
𝜔𝑥0 + ∆𝐼

𝜔𝑦0,

∙ or, we have, from (28), 0 > 𝑎0(𝑥 − 𝑎0) + 𝑏0(𝑦 − 𝑏0). Now, recall that
𝑎0/𝑏0 =

√︀
𝜋2/8 − 1 > ∆𝑅

𝜔 /∆𝐼
𝜔 and 𝑥 > 𝑥0. Therefore, it comes

0 >
𝑎0
𝑏0

(𝑥− 𝑎0) + (𝑦 − 𝑏0) >
∆𝜔𝑅

∆𝜔𝐼

(𝑥− 𝑎0) + (𝑦 − 𝑏0),

i.e.,
∆𝑅

𝜔𝑥 + ∆𝐼
𝜔𝑦 6 ∆𝑅

𝜔𝑥0 + ∆𝐼
𝜔𝑦0.

The case (∆𝑅
𝜔 /∆𝐼

𝜔)2 > 1/(𝜋2/8 − 1) follows from symmetry.
Now, if we assume 𝜋2/8 − 1 < (∆𝑅

𝜔 /∆𝐼
𝜔)2 < 1/(𝜋2/8 − 1), we use Cauchy-

Schwarz inequality that yields, for any (𝑥, 𝑦) ∈ 𝒜,

∆𝑅
𝜔𝑥+∆𝐼

𝜔𝑦 6
√︀
𝑥2 + 𝑦2

√︁
(∆𝑅

𝜔)2 + (∆𝐼
𝜔)2 6 2𝑘−1/2

√︁
(∆𝑅

𝜔)2 + (∆𝐼
𝜔)2 since (𝑥, 𝑦) ∈ 𝒟.

In the following, we denote 𝑃 (∆𝑅
𝜔 ,∆

𝐼
𝜔) the bound on ∆𝐼

𝜔|𝑥𝐼
2|+∆𝑅

𝜔 |𝑥𝑅
2 | given

by Lemma 6. Define
𝐴𝑅

1 :=
⃒⃒⃒
RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁
− 𝜔𝐼𝑥𝐼

2

⃒⃒⃒
.

Notice that since ̂︁𝑥𝐼
2 is a floating-point number within 𝛿𝐼2 from 𝑥𝐼

2, and since
|𝑥𝐼

2| 6 𝛽𝑘, we have |̂︁𝑥𝐼
2| 6 RZ(𝛽𝑘 + 𝛿𝐼2). We obtain,

𝐴𝑅
1 6

⃒⃒⃒
RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁
−̂︁𝜔𝐼̂︁𝑥𝐼

2

⃒⃒⃒
+
⃒⃒⃒̂︁𝜔𝐼̂︁𝑥𝐼

2 − 𝜔𝐼𝑥𝐼
2

⃒⃒⃒
6 1

2 (1 − 1̂︁𝜔𝐼)ulp*
(︁̂︁𝜔𝐼̂︁𝑥𝐼

2

)︁
+
⃒⃒⃒̂︁𝜔𝐼̂︁𝑥𝐼

2 −̂︁𝜔𝐼𝑥𝐼
2

⃒⃒⃒
+
⃒⃒⃒̂︁𝜔𝐼𝑥𝐼

2 − 𝜔𝐼𝑥𝐼
2

⃒⃒⃒
6 1

2 (1 − 1̂︁𝜔𝐼)ulp*
(︁̂︁𝜔𝐼RZ(𝛽𝑘 + 𝛿𝐼2)

)︁
+ |̂︁𝜔𝐼 | · 𝛿𝐼2 + ∆𝐼

𝜔 · |𝑥𝐼
2|.

(29)

Define

𝐵𝑅
1 := ̂︁𝜔𝑅̂︁𝑥𝑅

2 − RN
(︁̂︁𝜔𝐼̂︁𝑥𝐼

2

)︁
,

and

𝐶𝑅
1 :=

⃒⃒
RN

(︀
𝐵𝑅

1

)︀
−
(︀
𝜔𝑅𝑥𝑅

2 − 𝜔𝐼𝑥𝐼
2

)︀⃒⃒
.

Note that when ̂︁𝜔𝑅 = 0, 𝐵𝑅
1 is a floating-point number, hence no error is

committed when rounding it. This implies that in all cases the error due to
rounding 𝐵𝑅

1 is bounded by

1

2

(︁
1 − 0̂︁𝜔𝑅

)︁
ulp*(𝐵𝑅

1).

26

We have,

𝐶𝑅
1 6

⃒⃒⃒
RN

(︁̂︁𝜔𝑅̂︁𝑥𝑅
2 − RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁)︁
−
(︁̂︁𝜔𝑅̂︁𝑥𝑅

2 − RN
(︁̂︁𝜔𝐼̂︁𝑥𝐼

2

)︁)︁⃒⃒⃒
+
⃒⃒⃒(︁̂︁𝜔𝑅̂︁𝑥𝑅

2 − RN
(︁̂︁𝜔𝐼̂︁𝑥𝐼

2

)︁)︁
−
(︀
𝜔𝑅𝑥𝑅

2 − 𝜔𝐼𝑥𝐼
2

)︀⃒⃒⃒
6 1

2

(︁
1 − 0̂︁𝜔𝑅

)︁
ulp*(𝐵𝑅

1) +
⃒⃒⃒̂︁𝜔𝑅̂︁𝑥𝑅

2 − 𝜔𝑅𝑥𝑅
2

⃒⃒⃒
+
⃒⃒⃒
RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁
− 𝜔𝐼𝑥𝐼

2

⃒⃒⃒
.

(30)

Let us first consider the term
⃒⃒⃒̂︁𝜔𝑅̂︁𝑥𝑅

2 − 𝜔𝑅𝑥𝑅
2

⃒⃒⃒
in (30). We havê⃒⃒⃒︁𝜔𝑅̂︁𝑥𝑅

2 − 𝜔𝑅𝑥𝑅
2

⃒⃒⃒
6

⃒⃒⃒̂︁𝜔𝑅̂︁𝑥𝑅
2 − ̂︁𝜔𝑅𝑥𝑅

2

⃒⃒⃒
+
⃒⃒⃒̂︁𝜔𝑅𝑥𝑅

2 − 𝜔𝑅𝑥𝑅
2

⃒⃒⃒
6 |̂︁𝜔𝑅| · 𝛿𝑅2 + ∆𝑅

𝜔 · |𝑥𝑅
2 |.

Therefore, the sum

𝐷𝑅
1 :=

⃒⃒⃒̂︁𝜔𝑅̂︁𝑥𝑅
2 − 𝜔𝑅𝑥𝑅

2

⃒⃒⃒
+
⃒⃒⃒
RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁
− 𝜔𝐼𝑥𝐼

2

⃒⃒⃒
,

that appears in (30) is bounded by 𝐴𝑅
1 + |̂︁𝜔𝑅| · 𝛿𝑅2 + ∆𝑅

𝜔 · |𝑥𝑅
2 |, which implies

from (29) and Lemma 6

𝐷𝑅
1 6

1

2
(1 − 1̂︁𝜔𝐼)ulp*

(︁̂︁𝜔𝐼RZ(𝛽𝑘 + 𝛿𝐼2)
)︁

+ |̂︁𝜔𝐼 | · 𝛿𝐼2 + |̂︁𝜔𝑅| · 𝛿𝑅2 + 𝑃 (∆𝑅
𝜔 ,∆

𝐼
𝜔).

Finally, in (30), we need to bound the term |𝐵𝑅
1 |, in order to obtain a bound

on 1
2ulp* of that value. We havê⃒⃒⃒︁𝜔𝑅̂︁𝑥𝑅

2 − RN
(︁̂︁𝜔𝐼̂︁𝑥𝐼

2

)︁⃒⃒⃒
6
⃒⃒⃒̂︁𝜔𝑅

⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝑅2) + RN

(︁⃒⃒⃒̂︁𝜔𝐼
⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝐼2)

)︁
,

and we also have, using (27),⃒⃒⃒̂︁𝜔𝑅̂︁𝑥𝑅
2 − RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁⃒⃒⃒
6
⃒⃒
𝜔𝑅𝑥𝑅

2 − 𝜔𝐼𝑥𝐼
2

⃒⃒
+ 𝐷𝑅

1 6 2𝑘−1/2 + 𝐷𝑅
1 .

All this gives

|𝐵𝑅
1 | 6 min

{︂
2𝑘−1/2 + 𝐷𝑅

1 ;
⃒⃒⃒̂︁𝜔𝑅

⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝑅2) + RN

(︁⃒⃒⃒̂︁𝜔𝐼
⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝐼2)

)︁}︂
.

Now, we have all the elements for obtaining a bound on 𝐶𝑅
1 .

𝐶𝑅
1 6

1

2

(︁
1 − 0̂︁𝜔𝑅

)︁
ulp* (︀𝐵𝑅

1

)︀
+ 𝐷𝑅

1 .

Finally, define

𝑍𝑅
1 := ̂︁𝑥𝑅

1 + RN
(︁̂︁𝜔𝑅̂︁𝑥𝑅

2 − RN
(︁̂︁𝜔𝐼̂︁𝑥𝐼

2

)︁)︁
,

27

so that ̂︁𝑦𝑅1 = RN(𝑍𝑅
1). Since ̂︁𝑥𝑅

1 is a floating-point number less than or equal
to 𝛽𝑘 + 𝛿𝑅1 , it is less than or equal to RZ(𝛽𝑘 + 𝛿𝑅1). We therefore have

𝑍𝑅
1 6 RZ(𝛽𝑘 + 𝛿𝑅1) + |RN(𝐵𝑅

1)|.

We can now bound the error on 𝑦𝑅1 :

⃒⃒⃒̂︁𝑦𝑅1 − 𝑦𝑅1

⃒⃒⃒
=

⃒⃒
RN(𝑍𝑅

1) −
(︀
𝑥𝑅
1 + 𝜔𝑅𝑥𝑅

2 − 𝜔𝐼𝑥𝐼
2

)︀⃒⃒
6

⃒⃒
RN(𝑍𝑅

1) − 𝑍𝑅
1

⃒⃒
+
⃒⃒
𝑍𝑅
1 −

(︀
𝑥𝑅
1 + 𝜔𝑅𝑥𝑅

2 − 𝜔𝐼𝑥𝐼
2

)︀⃒⃒
6 1

2ulp*(𝑍𝑅
1) +

⃒⃒⃒̂︁𝑥𝑅
1 − 𝑥𝑅

1

⃒⃒⃒
+
⃒⃒⃒
RN

(︁̂︁𝜔𝑅̂︁𝑥𝑅
2 − RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁)︁
−
(︀
𝜔𝑅𝑥𝑅

2 − 𝜔𝐼𝑥𝐼
2

)︀⃒⃒⃒
6 1

2ulp* (︀RZ(𝛽𝑘 + 𝛿𝑅1) + RN(𝐵𝑅
1)
)︀

+ 𝛿𝑅1 + 𝐶𝑅
1 .

Hence, if we call 𝐵𝑅
1 , 𝐶𝑅

1 , 𝐷𝑅
1 the bounds we have obtained on |𝐵𝑅

1 |, 𝐶𝑅
1

and 𝐷𝑅
1 , we will choose

𝜂𝑅1 = 𝜂𝑅2 =
1

2
ulp*

(︁
RZ(𝛽𝑘 + 𝛿𝑅1) + RN(𝐵𝑅

1)
)︁

+ 𝛿𝑅1 + 𝐶𝑅
1 .

The same bound straightforwardly applies to
⃒⃒⃒̂︁𝑦𝑅2 − 𝑦𝑅2

⃒⃒⃒
. To deduce a bound on⃒⃒⃒ ̂︀𝑦𝐼1 − 𝑦𝐼1

⃒⃒⃒
and

⃒⃒⃒ ̂︀𝑦𝐼2 − 𝑦𝐼2

⃒⃒⃒
it suffices to notice that in (26), one gets line 3 from

line 1 and line 4 from line 2 by replacing ̂︁𝑥𝑅
1 by ̂︁𝑥𝐼

1, exchanging ̂︁𝜔𝑅 and ̂︁𝜔𝐼 , and
letting ̂︁𝑥𝑅

2 and ̂︁𝑥𝐼
2 unchanged. Hence, in the final error formulas, one will have

to replace 𝛿𝑅1 by 𝛿𝐼1 , exchange ̂︁𝜔𝑅 and ̂︁𝜔𝐼 , exchange ∆𝑅
𝜔 and ∆𝐼

𝜔, and let 𝛿𝑅2 and
𝛿𝐼2 unchanged. We obtain,

Lemma 7. We havê⃒⃒⃒︁𝑦𝑅1 − 𝑦𝑅1

⃒⃒⃒
6 𝜂𝑅1 ,

⃒⃒⃒̂︁𝑦𝑅2 − 𝑦𝑅2

⃒⃒⃒
6 𝜂𝑅2 ,⃒⃒⃒ ̂︀𝑦𝐼1 − 𝑦𝐼1

⃒⃒⃒
6 𝜂𝐼1 ,

⃒⃒⃒ ̂︀𝑦𝐼2 − 𝑦𝐼2

⃒⃒⃒
6 𝜂𝐼2 ,

where

𝜂𝑅1 = 𝜂𝑅2 =
1

2
ulp*

(︁
RZ(𝛽𝑘 + 𝛿𝑅1) + RN(𝐵𝑅

1)
)︁

+ 𝛿𝑅1 + 𝐶𝑅
1 , (31)

with

𝐵𝑅
1 = min

{︂
2𝑘−1/2 + 𝐷𝑅

1 ;
⃒⃒⃒̂︁𝜔𝑅

⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝑅2) + RN

(︁⃒⃒⃒̂︁𝜔𝐼
⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝐼2)

)︁}︂
.

and
𝐶𝑅

1 =
1

2

(︁
1 − 0̂︁𝜔𝑅

)︁
ulp*

(︁
𝐵𝑅

1

)︁
+ 𝐷𝑅

1 ;

28

and

𝐷𝑅
1 =

1

2
(1 − 1̂︁𝜔𝐼)ulp*

(︁̂︁𝜔𝐼 · RZ(𝛽𝑘 + 𝛿𝐼2)
)︁

+ |̂︁𝜔𝐼 | · 𝛿𝐼2 + |̂︁𝜔𝑅| · 𝛿𝑅2 + 𝑃 (∆𝑅
𝜔 ,∆

𝐼
𝜔).

and
𝜂𝐼1 = 𝜂𝐼2 =

1

2
ulp*

(︁
RZ(𝛽𝑘 + 𝛿𝐼1) + RN(𝐵𝐼

1)
)︁

+ 𝛿𝐼1 + 𝐶𝐼
1 , (32)

with

𝐵𝐼
1 = min

{︂
2𝑘−1/2 + 𝐷𝐼

1 ;
⃒⃒⃒̂︁𝜔𝐼
⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝑅2) + RN

(︁⃒⃒⃒̂︁𝜔𝑅
⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝐼2)

)︁}︂
.

and
𝐶𝐼

1 =
1

2

(︁
1 − 0̂︁𝜔𝐼

)︁
ulp*

(︁
𝐵𝐼

1

)︁
+ 𝐷𝐼

1 ;

and

𝐷𝐼
1 =

1

2
(1 − 1̂︁𝜔𝑅)ulp*

(︁̂︁𝜔𝑅 · RZ(𝛽𝑘 + 𝛿𝐼2)
)︁

+ |̂︁𝜔𝑅| · 𝛿𝐼2 + |̂︁𝜔𝐼 | · 𝛿𝑅2 + 𝑃 (∆𝑅
𝜔 ,∆

𝐼
𝜔).

We can now use Lemma 7 to “propagate” the error bounds. The structure
of the propagation algorithm is exactly the structure of the FFT algorithm. In
the pseudcode of Figure 1 we can just replace the two lines
y[j1] = x[j1] + omega[k,j] · x[j2]
y[j2] = x[j1] − omega[k,j] · x[j2]

by the calculation of error bounds on the real and imaginary parts of y[j1]
and y[j2] from the error bounds on the real and imaginary parts of x[j1] and x[j2]
using Eqs (31) and (32). However, instead or starting from Step 𝑘 = 1 with
initial error bounds equal to zero (the input values are assumed exact), one will
obtain tighter error bounds by starting from 𝑘 = 3, with initial error bounds
equal to the straightforward value 4𝑢.

The obtained bounds are given in Table 6.

Discussion and conclusion
If we consider errors bounds in terms of the 2-norm, in all considered cases, The-
orem 7 gives a smaller bound than the previously published ones (the difference
is clear in single precision, and by a tight margin in double precision). When
the infinite norm is at stake, using again Theorem 7 and (7) has its interest: in
all considered cases (see Table 5), it gives better bounds than Henrici’s theorem
(Theorem 5), without the annoyance of the 𝒪(𝑢2) terms. The iterative method
developed in Section 5.2 gives a better bound than Theorem 7 and (7) only for
reasonably small input size (roughly speaking for 𝑁 < 212, see Tables 5 and 6).

When one tries to run the FFT algorithm with input values chosen randomly,
one obtains errors that are much smaller than the error bounds presented in this
paper and the FFT literature. This may make one believe that the bounds are
rather loose and need to be significantly improved. The family of examples built

29

Table 6: Bounds on ||𝑋 − �̂�||⊥∞, provided by the iterative method. We as-
sume double-precision arithmetic (𝑝 = 53), and we also assume that an FMA
instruction is available. These bounds are for ||𝑥||⊥∞ 6 1. To obtain bounds for
||𝑥||⊥∞ 6 2𝑚, it suffices to multiply all the values by 2𝑚.
𝑁 Bound on ||𝑋 − �̂�||⊥∞
25 294.21 · 𝑢
28 5757.7 · 𝑢
210 36677 · 𝑢
212 222685 · 𝑢
214 1.321 × 106 · 𝑢
216 7.682 × 106 · 𝑢
218 4.413 × 107 · 𝑢
220 2.519 × 108 · 𝑢

in Section 5.1 shows that this is not the case. The obtained errors (for which
we have no proof, and, by the way, no strong reason to believe, that they are
worst case errors) are of the same order of magnitude (approximately 8 times
smaller) as the bounds given by Theorem 7 and (7), as shown in Table 5.

Finally, the upper bound ||𝑥||⊥∞ · 𝑁 · 4/𝜋 on the values that can appear in
intermediate calculations, given in Section 3 (it was built to be used in Sec-
tion 5.2), can also be of interest for the designers of hardware implementations
of the FFT, since they need to size the internal representations of numbers to
the smallest size that makes it possible to prevent overflows.

Acknowledgement
We thank Bruno Salvy for his help in establishing Theorem 9.
This work is partly supported by the Fastrelax grant of the french Agence Na-
tionale de la Recherche.

References
[1] Grahame Bennett and Graham Jameson. Monotonic averages of convex

functions. J. Math. Anal. Appl., 252(1):410–430, 2000.

[2] R. P. Brent, C. Percival, and P. Zimmermann. Error bounds on complex
floating-point multiplication. Mathematics of Computation, 76:1469–1481,
2007.

[3] D. Calvetti. A stochastic roundoff error analysis for the fast Fourier trans-
form. Mathematics of Computation, 56(194):755–774, 1991.

30

[4] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation
of complex Fourier series. Mathematics of Computation, 19(90):297–301,
1965.

[5] P. Duhamel and M. Vetterli. Fast Fourier transforms: a tutorial review
and a state of the art. Signal processing, 19:259–299, 1990.

[6] W.M. Gentleman and G. Sande. Fast Fourier transforms–for fun and profit.
In Proc. Fall Joint Computer Conference, pages 563–578, 1966.

[7] M.T. Heidemann, D.H. Johnson, and C.S. Burrus. Gauss and the history
of the fast Fourier transform. IEEE ASSP Magazine, pages 14–21, October
1984.

[8] P. Henrici. Applied and Computational Complex Analysis, Vol. 3. Wiley,
New York, 1986.

[9] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, PA, 2nd edition, 2002.

[10] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, August 2008. Available at http://ieeexplore.
ieee.org/servlet/opac?punumber=4610933.

[11] Claude-Pierre Jeannerod, Peter Kornerup, Nicolas Louvet, and Jean-Michel
Muller. Error bounds on complex floating-point multiplication with an
FMA. Mathematics of Computation, 86(304):881–898, 2017.

[12] Claude-Pierre Jeannerod, Nicolas Louvet, and Jean-Michel Muller. Fur-
ther analysis of Kahan’s algorithm for the accurate computation of 2 × 2
determinants. Mathematics of Computation, 82(284):2245–2264, October
2013.

[13] D. E. Knuth. The Art of Computer Programming, volume 2. Addison-
Wesley, Reading, MA, 3rd edition, 1998.

[14] C. Van Loan. Computational Frameworks for the Fast Fourier Transform.
Frontiers in Applied Mathematics. SIAM, 1992.

[15] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing.
Prentice-Hall Signal Processing Series. Prentice Hall, 2010.

[16] C. Percival. Rapid multiplication modulo the sum and difference of highly
composite numbers. Mathematics of Computation, 72:387–395, 2002.

[17] G. Plonka and M. Tasche. Fast and numerically stable algorithms for dis-
crete cosine transforms. Linear Algebra and its Applications, 394:309–345,
2005.

[18] G.U. Ramos. Roundoff error analysis of the fast Fourier transform. Math-
ematics of Computation, 25(116):757–768, 1971.

31

[19] B. Salvy and P. Zimmermann. Gfun: A maple package for the manipulation
of generating and holonomic functions in one variable. ACM Trans. Math.
Softw., 20(2):163–177, June 1994.

[20] J.C. Schatzman. Accuracy of the discrete Fourier transform and the fast
Fourier transform. SIAM Journal on Scientific Computing, 17(5):1150–
1166, 1996.

[21] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen.
Computing, 7:281–292, 1971. In German.

32

