Xavier Caruso

Amaury Durand

Reed-Solomon-Gabidulin 2018 Codes

Reed-Solomon-Gabidulin Codes

teaching and research institutions in France or abroad, or from public or private research centers.

Introduction

Reed-Solomon codes form a well-known class of error detection and correction codes which have very interesting properties (optimal minimal distance, efficient decoding algorithms). They were introduced in 1960 by Reed and Solomon and are nowadays widely used in everyday life. About twenty years later, Delsarte [START_REF] Delsarte | Bilinear Forms over a Finite Field with Applications to Coding Theory[END_REF], Gabidulin [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF] and Roth [START_REF] Roth | Maximum-Rank Array Codes and their Application to Crisscross Error Correction[END_REF]-independently-imagined an analogue of Reed-Solomon codes in the context of the rank distance, which is finer than the standard Hamming distance and well suited for some applications (e.g. network coding). These codes are nowadays called Gabidulin codes. Their construction is based on the concept of linearized polynomials over the finite fields. More recently several authors generalized and optimized Gabidulin codes. In 2013, in her thesis [START_REF] Wachter-Zeh | Decoding of block and convolutional codes in rank metric[END_REF] and subsequent papers, Wachter-Zeh proposed an efficient implementation of operations with linearized polynomials, together with an equivalent of Gao's decoding algorithm.

In 2009, Boucher, Geiselmann and Ulmer [START_REF] Boucher | Skew Cyclic Codes[END_REF] introduced analogues of BCH codes in the Gabidulin's context of linearized polynomials (cf also [START_REF] Boucher | Coding with skew polynomial rings[END_REF]). It worths mentionning that they use Ore polynomials (introduced by Ore in 1933 in [START_REF] Ore | Theory of non-commutative polynomials[END_REF]) in place of linearized polynomials. Although the two approaches are equivalent in the case of finite fields, it turns out that Ore polynomials are more general objects which continue to make sense in a large variety of settings. Taking advantage of this new point of view, Robert proposed in his thesis [START_REF] Robert | Codes de Gabidulin en caractéristique nulle : application au codage espace-temps[END_REF] an extension of Gabidulin's code to the caracteristic zero, in which basically finite fields are replaced by number fields.

Another advantage of Boucher, Geiselmann and Ulmer's approach is that it allows longer codes: while the length of a Gabidulin code is necessarily bounded from above by the degree of the finite field we are working with, this bound can be generally overpassed in Boucher, Geiselmann and Ulmer's construction. On the other hand, no efficient decoding algorithm is known.

Contribution of the article. In the present paper, we introduce and study a new generalization of Gabidulin codes, which combines all the benefits of previous constructions. Precisely, we shall show that:

(1) as for Gabidulin codes, our codes are MDS (Maximal Distance Separable), (2) as in Boucher, Geiselmann and Ulmer's work, long codes are permitted, (3) as in Wachter-Zeh's work, there exists an efficient decoding algorithm.

Besides, the setting we consider includes the case of finite fields (as in Gabidulin's initial definition) and number fields (as in Robert's generalization) but it is even more general. For example, our construction allows the base field to be the field of rational fractions in the variable t over a finite field equipped with its canonical derivation d dt . Moreover it turns out that, for a special choice of parameters, our codes extend classical Reed-Solomon codes. For this reason, we have decided to call them Reed-Solomon-Gabidulin (RSG1 for short) codes.

Organization of the article. This paper is divided in two sections. The first one is devoted to introduce and develop the necessary background on Ore polynomials and related notions. We will study particularly the notion of evaluation morphisms which is the main ingredient we will need for defining GRS codes. In the second section, we introduce GRS codes and state their main properties (cf (1), (2), (3) above). For the sake of brievity, proofs are omitted though intermediate steps are often isolated.

Ore polynomials

Throughout this article, we use the following notation: K is a field, θ : K → K be a ring homomorphism and ∂ : K → K be a θ-derivation, i.e. an additive mapping such that ∂(ab

) = θ(a)∂(b) + ∂(a)b for all a, b ∈ K.
We shall denote by F the subfield of K consisting of elements a such that θ(a) = a and ∂(a) = 0. We will always assume that the extension K/F is finite and will denote by r its degree. Our assumption implies in particular that θ has finite order and thus is bijective. Definition 1.1 (Ore polynomial ring). The ring of Ore polynomials K[X; θ, ∂] is the ring whose elements are polynomials in X over A endowed with the usual addition and with the multiplication defined by the rule:

X × a = θ(a)X + ∂(a), ∀a ∈ A.
Example 1.2. Throughout this article, we will illustrate our constructions with the two following examples:

(1) (This setting is the one in which Gabidulin codes were first defined by

Gabidulin in [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF], with a slightly different vocabulary.) Let p be a prime number, q be a power of p and r be a positive integer. We let F q r denote a finite field with cardinality q m . We endow it with the Frobenius Frob q :

x → x q . The first Ore ring we will be interested in is F q r [X; Frob q , 0]. In this setting, the subfield F of K = F q r we have introduced is F q . The degree of the extension K/F is then r.

(1') More generally, one can pick an arbitrary field K, endow it with a finite order automorphism θ and consider the Ore ring K[X, θ, 0]. Beyond the case of finite fields, natural examples are cyclotomic extensions of Q or Kummer extensions. This case was addressed in Robert's thesis [START_REF] Robert | Codes de Gabidulin en caractéristique nulle : application au codage espace-temps[END_REF].

(2) Let κ be a field of characteristic p. We consider the field K = κ(t) and endow it with the natural derivation d dt . We can then form the Ore ring κ

(t)[X, id, d dt].
Here the subfield F of K is κ(t p) and the degree of the extension K/F is then p.

The notion of degree extends verbatim to Ore polynomials: if P = a i X i is an Ore polynomial, its degree is the largest integer i for which a i = 0. Besides, one can prove the existence of a right Euclidean division for Ore polynomials: if A, B ∈ K[X; θ, ∂] with B = 0, there exist unique Q, R ∈ K[X; θ, ∂] with A = QB + R and deg R < deg B. This has the usual consequences: the noncommutative ring K[X; θ, ∂] is left-principal, right gcds and left lcms are well defined and can be computed by Euclidean algorithm. Similarly, left Euclidean divisions, left gcds and right lcms do exist (since our general assumptions imply that θ is bijective).

Notation:

In what follows, we will denote by A % B the remainder in the right division of A by B.

The centre.

Recall that the centre of a noncommutative ring A is by definition the subset of A consisting of elements x such that xy = yx for all y ∈ A. We observe in particular that the centre of A is a commutative subring of A. In the case of Ore polynomials, the centre can actually be computed precisely. In what follows, we will not need a complete description but only the general structure of the centre as given by the next proposition.

Proposition 1.3. There exists a central Ore polynomial Z(X) ∈ K[X; θ, ∂] of degree r such that the centre of K[X; θ, ∂] is F [Z(X)],
i.e. the subset of Ore polynomials that can be written as a polynomial in Z(X) with coefficient in F .

We observe that the equality:

a 0 + a 1 Z(X) + • • • + a d Z(X) d = b 0 + b 1 Z(X) + • • • + a e Z(X) e
implies readily that d = e (compare the degrees) and a i = b i for all i. As a consequence the centre F [Z(X)] is an actual (commutative) ring of univariate polynomials with coefficients in F .

On the other hand, we draw the attention of the reader to the fact that the properties of Proposition 1.3 do not determine Z(X) uniquely but only up to an additive constant in F .

Example 1.4. We continue Example 1.2. In the settings (1) and (1'), it is easily seen that the centre of

K[X; θ, 0] is F [X r]. In the setting (2), the centre of κ(t)[X; id, d dt] (where κ is a field of characteristic p) is κ(t p)[X p].
Pseudo-linear morphisms.

Another important notion is that of pseudo-linear morphisms. It is defined as follows:

Definition 1.5 (Pseudo-linear morphism). Let M and N be two vector spaces over K. A pseudo-linear morphism u :

M → N is a map verifying u(ax) = θ(a)u(x) + ∂(a)
x for all a ∈ K and x ∈ M .

We observe that any pseudo-linear morphism is a fortiori F -linear (where F is defined at the beginning of this section).

Pseudo-linear morphisms are relevant in the context of Ore polynomials because the Ore multiplication reflects the composition rule of pseudo-linear morphisms. More precisely, given a pseudo-linear endomorphism u : M → M and an Ore polynomial P = i a i X i ∈ K[X; θ, ∂], one defines P (u) = i a i u i . One then easily checks that P (u) • Q(u) = (P Q)(u) where the multiplication on the right hand size is the Ore multiplication. In other words, denoting by End F (M) the ring of F -linear maps from M to itself, the "evaluation" mapping ev u : K[X; θ, ∂] → End F (M), P (X) → P (u) is a ring homomorphism for any pseudo-linear endomorphism u.

The case where M is K itself deserves particular attention. Indeed, we first observe that evaluation is then closely related to Euclidean division thanks to the formula:

ev u (P)(a) = a • P % X -u(a) a (1)
which is correct for any pseudo-linear endomorphism u of K, any P ∈ K[X; θ, ∂] and any a ∈ K. Second, we have a complete classification of pseudo-linear endomorphisms of K. In what follows, we will often use the notation ev c in place of ev ∂+cθ .

Main properties of the ev c 's. We denote by K good the subset of K consisting of elements c for which ∂ + cθ is not of the form a•id with a ∈ F . Except in the very particular case where θ = id and ∂ = 0 (where K good is obviously empty), one can prove that there is at most one bad value of c, i.e. the difference between K and K good consists at most of one element.

Proposition 1.7. For all c ∈ K good , the ring homomorphism ev c is surjective and its kernel is a principal ideal generated by Z(X) -N (c) for some element N (c) ∈ F .

Remark 1.8. The function N defined by Proposition 1.7 above is not canonical since it depends on the choice of the constant coefficient of Z(X). Two different choices lead to functions N and N ′ such that N ′ = N + a for some constant a ∈ F .

Definition 1.9. Let c 1 , c 2 ∈ K good . We say that c 1 and c 2 are equivalent if ker ev c1 = ker ev c2 or, equivalently, N (c 1) = N (c 2).

Using Noether-Skolem Theorem, one can prove the following characterization: The subset K good is then K\{0}. Moreover if we have chosen Z(X) = X r (see Example 1.4), it is not difficult to prove that the map N is the norm of K over F . In this context, the characterization of Lemma 1.10 is a classical consequence of Hilbert 90 theorem which says that an element has norm 1 if and only if it can be written θ(a) a for some a = 0. When K = F q m and θ = Frob q , we have N (c) = c 1+q+q2 +•••+q m-1 . In this case, the image of N is F ⋆ q and there is exactly q-1 equivalence classes for the equivalence relation introduced in Definition 1.9.

In the setting (2), we have K good = K. Moreover, with the normalization Z(X) = X p , one can prove 2 that N (f) = d p-1 f dt p-1 + f p for any f ∈ k(t). Here, Lemma 1.10 asserts that N (f) = N (g) if and only if the difference f -g is a logarithmic derivative. It is easily seen that a polynomial cannot be a logarithmic derivative. Consequently the elements of κ[t] are pairwise nonequivalent, implying in particular that there are infinitely many equivalence classes for this relation.

Reed-Solomon-Gabidulin codes

We keep the notations of the previous section. In particular, we recall that K good is the subset of K consisting of elements c for which ∂ + cθ is not of the form a•id with a ∈ F .

Setting.

Throughout this section, we fix a positive integer s. We consider a family c = (c 1 , . . . , c s) of s elements of K good which are pairwise non-equivalent in the sense of Definition 1.9. Moreover, for each i ∈ {1, . . . , s}, we pick a positive integer n i together with a family g i = (g i,1 , . . . , g i,ni) of F -linearly independant elements of K. The latter condition obviously implies that n i ≤ [K : F] for all i. We set n = n 1 + . . . + n s . To all these data, we associate the K-linear mapping:

γ c,g : K[X; θ, ∂] -→ K n1 × K n2 × • • • × K ns P (X) → ev c1 (P)(g 1,1
), ev c1 (P)(g 1,2), . . . , ev c1 (P)(g 1,n1), ev c2 (P)(g 2,1), ev c2 (P)(g 2,2), . . . , ev c2 (P)(g 2,n2), . . . , ev cs (P)(g s,1), ev cs (P)(g s,2), . . . , ev cs (P)(g s,ns)

Thanks to Eq. (1), the mapping γ c,g can be rewritten in terms of Euclidean divisions. More precisely, for 1 ≤ i ≤ s and 1 ≤ j ≤ n i , letting:

a i,j = (∂ + c i θ)(g i,j) g i,j (2)
we have ev ci (g i,j) = g i,j • P % (X -a i,j).

For any positive k, we let γ k,c,g denote the restriction of γ c,g to the subspace K[X; θ, ∂] <k consisting of Ore polynomials of degree less than k.

Example 2.1. Consider the setting (1) of Example 1.2. Let g be a multiplicative generator of F ⋆ q r . Its norm over F q is a multiplicative generator of F ⋆ q . By what we did in Example 1.11, the elements c i = g i for 0 ≤ i < s are pairwise nonequivalent as soon as s ≤ q -1. (Here, for simplicity, we have shifted our indices so that they start from 0 instead of 1.) Moreover (1, g, . . . , g r-1) is a basis of F q r over F q . One can then take n i = r for all i and g i,j = g j for 0 ≤ j < r. With these parameters, we easily compute a i,j = c i •Frob q (g i,j)•g -1 i,j = g i+(q-1)j . Example 2.2. Consider the setting (2) of Example 1.2. By Example 1.11 again, we can take any family (c 1 , . . . , c s) of pairwise distinct polynomials. Moreover a basis of κ(t p) over κ(t) is obviously (1, t, . . . , t p-1). Therefore, we can take n i = p and g i,j = t j for 0 ≤ j < p. A direct computation leads to a i,j = j t + c i . Taking κ = F 3 , k = 5, c = (0, 1) and g = ((1, t, t 2), (1, t, t 2)), we find that the matrix of γ k,c,g is:

1 t t 2 1 t t 2 0 1 2t 1 t+1 t 2 +2t . (3)
The kernel of γ k,c,g is the principal ideal generated by the Ore polynomial:

L = llcm((X -a i,j) 1≤i≤m, 1≤j≤ni). (4
)
The next lemma shows that the assumption we made on the c i 's and g i,j 's are directly related to the degree of L.

Lemma 2.3. With the above notations and assumptions, the Ore polynomial L has degree n.

In particular, the map γ n,c,g is bijective.

Example 2.4. Continuing Example 2.1, the Ore polynomial L defined in (4) is L = s i=1 (X r -N (c i)) where we recall that N : F q r → F q is the norm map. (Observe that the factors X r -N (c i) all lie in the centre of F q r [X; Frob q , 0] so that the product we have written in not ambiguous.) In particular, when s = q -1, we get L(X) = X r(q-1) -1. Example 2.5. Continuing Example 2.2 and assuming further that the c i 's lie in κ, we find that the polynomial L defined in (4) is L = s i=1 (X p -c p i). In particular, if κ is a finite field of cardinality q and the c i 's enumerate the elements of κ (so that s = q), we have L(X) = X pq -X p .

Definition and first properties.

We are now ready to define Gabidulin codes in the extended framework discussed in the introduction of this section. Definition 2.6. With the previous notations, the Reed-Solomon-Gabidulin (RSG for short) code RSG k,c,g associated to c and g is the image of γ k,c,g . Remark 2.7. From the definition, it follows that the matrix of γ k,c,g (in the canonical basis) is a generator matrix of RSG k,c,g . The matrix (3) then provide an example of a generator matrix of a RSG code.

It is well known that the relevant distance for Gabidulin codes is not the Hamming distance but the rank distance. In the context of Gabidulin codes introduced above, we shall need another distance which is a mixture between Hamming and rank distance. It is defined as follows.

Definition 2.8. Let x = (x i,j) 1≤i≤m, 1≤j≤ni ∈ K n1 × K n2 × • • • × K ns . The rank-Hamming weight of x is:

w rH (x) = s i=1
dim F x i,1 , x i,2 , . . . , x i,ni F . Given x, y ∈ K n1 × K n2 × • • • × K ns , the rank-Hamming distance between x and y is d rH (x, y) = w rH (x -y).

Remark 2.9. The weight w rH is finer that the usual Hamming weight in the sense that, for all x ∈ K n1 × • • • × K ns , we have w rH (x) ≤ w H (x) if w H denotes the Hamming weight.

The RSG codes we have defined extend the classical notion of Gabidulin codes introduced in [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF]. More precisely, the latter correspond to the case where s = 1, ∂ = 0 and K is a finite field. Relaxing the assumption on K, we obtain the generalized Gabidulin codes defined by Robert in his thesis [START_REF] Robert | Codes de Gabidulin en caractéristique nulle : application au codage espace-temps[END_REF]. In particular, in this case, the rank-Hamming distance is the usual rank distance.

On the other hand, when θ = id and ∂ = 0 (that is F = K), the notion of RSG code is nothing but the standard notion of Reed-Solomon code and the rank-Hamming distance reduces to the usual Hamming distance.

Proposition 1 . 6 .

 16 The pseudo-linear endomorphisms of K are exactly the maps of the form ∂ + cθ with c ∈ K.

Lemma 1 . 10 ..Example 1 . 11 .

 110111 The elements c 1 and c 2 are equivalent if and only if there exists a ∈ K, a = 0 such that c 1 a = c 2 θ(a) + ∂(a). In particular, the equivalence class of c ∈ K is exactly the image of x → (∂+cθ)(x)x Let us first focus on the settings (1) and (1') of Example 1.2.

Proposition 2 . 10 .

 210 The code RSG k,c,g has length n, dimension k and minimal distance d = n -k + 1.

Example 2 .

 2 [START_REF] Puchinger | Sub-quadratic decoding of Gabidulin codes[END_REF]. The RSG code corresponding to the generator matrix (3) has length 6, dimension 2 and minimal distance 6 -2 + 1 = 5. It then corrects any error of rank-Hamming weight at most 2.

Be careful at not making the confusion with GRS codes, which stands for Generalized Reed-Solomon codes.

Through the proof is not obvious.

Decoding Reed-Solomon-Gabidulin codes.

RSG codes can be decoded by a noncommutative extension of Gao's algorithm [START_REF] Gao | A New Algorithm for Decoding Reed-Solomon Codes[END_REF]. This fact was already observed in the works of Wachter-Zeh and al. [START_REF] Wachter-Zeh | Decoding of block and convolutional codes in rank metric[END_REF] in the special case of usual Gabidulin codes. After what we have done previously, the extension to RSG codes is not difficult.

Gao's algorithm consists in several steps that we will present below. We suppose that we are given parameters k, c and g as above together with a codeword c = γ k,c,g (P) for an Ore polynomial P of degree less than k. Let w denote the ceiling of n-k 2 and let e ∈ K n1 × • • • × K ns be a vector of rank-Hamming weight at most w. We set m = c + e.

Example 2.12 (Thread example). We shall illustrate each step of Gao's algorithm by the following thread example. As in Example 3, we take K = F 3 (t) (equipped with θ = id and ∂ = d dt), k = 2, c = (0, 1) and g = ((1, t, t 2), (1, t, t 2)). The generator matrix of the corresponding RSG code is the matrix (3). We will work with the following codeword:

and the following error e = (1, t 3 , 2t 3), (t+1, 0, t 4 +t 3) which has rank-Hamming weight 2. The corresponding received message is:

Step 0: Annihilator. We compute the Ore polynomial L defined in (4). If a fast multiplication algorithm of Ore polynomials is available (which is notably the case when ∂ = 0 [START_REF] Puchinger | Sub-quadratic decoding of Gabidulin codes[END_REF][START_REF] Caruso | Fast multiplication for skew polynomials[END_REF]), this computation can be done efficiently by a divide-and-conquer algorithm [START_REF] Caruso | Fast multiplication for skew polynomials[END_REF].

We underline that this computation is independant of the received message m and then has to be done just once when the RSG code is set up.

Example 2.13. In our thread example, we have L(X) = X 6 -X 3 as shown by Example 2.5.

Step 1: Interpolation. We compute a Ore polynomial P of degree less than n such that γ c,g (P) = m. This can be done for example by inverting the K-linear map γ n,c,g , which is known to be a bijection by Lemma 2.3. Alternatively, P can be computed by solving a (noncommutative) Chinese remainder problem. This latter approach is faster when an efficient multiplication algorithm of Ore polynomials is available.

Example 2.14. In our thread example, we find:

Remark 2.15. In general, it is possible that denominators appear and that the degrees in t get bigger than the maximal degree in t in c and m. However, this growing always stays under control.

Step 2: Partial rgcd. We compute a relation of the form U P + V L = R for Ore polynomials U , V and R with deg U ≤ w and deg R < w + k. This relation can be computed by applying the extended Euclidean algorithm with the input (P , L) and stopping it the first time the remainder R has degree less than w + k. Remark 2.16. Using the theory of resultants and subresultants [START_REF] Li | A subresultant theory for Ore polynomials and applications[END_REF], one can carry out this computation by controlling the degrees in t of all intermediate polynomials.

Example 2.17. In our thread example, after one step in Euclidean algorithm, we obtain:

+2t+2)X so that we can take:

The next proposition is the key result on which Gao's algorithm is based.

Proposition 2.18. With the above notations, we have the relation R = U P where P is the Ore polynomial we used to construct the codeword c.

Step 3: Left Euclidean division. We compute the quotient Q in the left Euclidean division of R by U . By Proposition 2.18, c = γ k,c,g (Q) and we have decoded the message m.

Example 2.19. In our thread example, the left Euclidean division of R by U reads R = U • (1 + t 2 X); we have then reconstructed the Ore polynomial P we started with.