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A BLOCK MOMENT METHOD TO HANDLE SPECTRAL1

CONDENSATION PHENOMENON IN PARABOLIC CONTROL2

PROBLEMS3

ASSIA BENABDALLAH∗, FRANCK BOYER† , AND MORGAN MORANCEY∗4

Abstract. This article is devoted to the characterization of the minimal null control time for5
abstract linear controlled problem. More precisely we aim at giving a precise answer to the following6
question: what is the minimal time needed to drive the solution of the system starting from any7
initial condition in a given subspace to zero ? Our setting will encompass a wide variety of systems8
of coupled one dimensional linear parabolic equations with a scalar control.9

Following classical ideas we reduce this controllability issue to the resolution of a moment problem10
on the control and provide a new block resolution technique for this moment problem. The obtained11
estimates are sharp and hold uniformly for a certain class of operators. This uniformity will allow12
various applications for parameter dependant control problems and permitted us to deal naturally13
with the case of algebraically multiple eigenvalues in the underlying generator.14

Our approach shed light on a new phenomenon: the condensation of eigenvalues (which can cause15
a non zero minimal null control time in general) can be somehow compensated by the condensation16
of eigenvectors. We provide various examples (some are abstract systems, others are actual PDE17
systems) to highlight those new situations we are able to manage by the block resolution of the18
moment problem we propose.19

Key words. Control theory; parabolic partial differential equations; minimal null control time;20
block moment method21
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1. Introduction.23

1.1. Problem under study and state of the art.24

This paper is concerned with the following abstract linear controlled system25

(1)

{
y′(t) +Ay(t) = Bu(t),

y(0) = y0.
26

We are more precisely interested in the minimal time issue for null-controllability,27

which can be roughly expressed as follows: what is the smallest time T0 ≥ 0 such28

that, for any T > T0, for any initial condition y0, there exists a control u such that29

the associated solution of (1) satisfies y(T ) = 0 ? Under quite general assumptions,30

we shall give formulas (that are reasonably explicit and usable) for such a minimal31

control time. The precise notion of solution as well as the wellposedness result for32

such system will be detailed below (see Propositions 1.1 and 1.2).33

We will consider assumptions on the operator A that will relate (1) to parabolic34

evolution equations. Thus, due to regularizing properties, one cannot expect to reach35

any target in the state space and should rather try to reach any trajectory. By36

linearity, this is equivalent to the aforementioned null-controllability property (see for37

instance [16, Secs. 2.3 and 2.5]).38

Pioneering works for null-controllability of a scalar one dimensional heat equa-39

tions are due to H.O. Fattorini and D.L. Russell [23, 24]. For instance, they proved40
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†Institut de Mathématiques de Toulouse & Institut Universitaire de France, UMR 5219, Univer-
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null-controllability of the one dimensional heat equation using a nonhomogeneous41

boundary condition as a control. For this purpose, they give a direct strategy re-42

ducing the null-controllability property to a moment problem that the control should43

satisfy (see Sec. 1.4 for a presentation of the moment problem). The moment method44

they propose consists in solving this problem using a biorthogonal family in L2(0, T )45

to the family of exponentials associated to the eigenvalues of A∗. Let us mention that46

this idea of reducing a (optimal) control problem to a moment problem is already47

present in the works [21] by J.V. Egorov and [26] by L.I. Gal’chuk.48

Later on, A.V. Fursikov, O.Yu. Imanuvilov [25] and G. Lebeau, L. Robbiano [34]49

used Carleman estimates to solve the boundary and internal null-controllability prob-50

lem of the heat equation in any space dimension. These two papers have gener-51

ated plenty of null-controllability results for various parabolic problems. The com-52

mon qualitative behavior of these results is that for scalar parabolic equations null-53

controllability holds in arbitrary time (i.e. T0 = 0) and without any restriction on the54

control domain.55

Among all of these results let use mention the peculiar work [17] by S. Dolecki.56

He considered a one dimensional heat equation, with a scalar control located at one57

point inside the space interval, and proved that choosing suitably the location of this58

control point one can achieve any value in [0,+∞] for the minimal null-control time59

T0. Until the years 2000’s this work seemed to be considered too peculiar and the60

possible presence of a positive minimal null-control time (a very natural property61

in the hyperbolic case) was expected to be generically not possible in a parabolic62

setting. However, this point of view has been reconsidered recently in various works63

as for instance: [3] for abstract control problems, [5] for the abstract problem (1) with64

applications to systems of one dimensional coupled parabolic equations, and [10] for65

a degenerate parabolic two dimensional equation of Grushin type.66

Since then, the minimal null-control time property was investigated on various67

examples, still in the setting of coupled one dimensional parabolic systems [6, 18,68

36, 42] or in the setting of degenerate parabolic scalar equations [9, 11, 12, 13, 19].69

For coupled parabolic systems a geometric control condition may also be needed for70

approximate controllability to hold [15, 38], proving once again that hyperbolic-like71

behavior can be observed in the parabolic setting. We will however not consider this72

last feature in this work.73

Concerning the study of the abstract control problem (1), some characterization74

are provided in the series of works [27, 28, 29, 30, 31] using the formalism of Carleson75

measures. However the precise question of an abstract characterization of the minimal76

null-control time has not been much considered. A formula has been given for the77

minimal null-control time of system (1), in [5], in a setting encompassing coupled78

one dimensional parabolic equations with a scalar control. Its value depends on the79

condensation index of the eigenvalues of A∗ (see Sec. 7.5 for a precise definition)80

and the observation of the associated eigenvectors. In this work the authors assume81

that the eigenvectors form a Riesz basis of the state space. Let us also mention the82

work [7] where the null-control time is studied through a resolvent-like inequality83

(introduced in [20]) that is a quantification of the well-known Fattorini-Hautus test84

for approximate controllability (see [22, 38]). It is an abstract characterization that85

might not be easily computable on actual examples but provides a common setting86

for all the previous examples exhibiting a positive null-control time. The last two87

mentioned results also rely on the moment method. Note that, even if the Carleman88

approach is very powerful, it does not seem to be applicable to all the systems of89

interest: in many situations (including the ones discussed in Section 5.2) the moment90
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method is still the only successful technique up to now.91

To highlight the limitations of the existing litterature on such problems and the92

improvements we propose, let us consider the following control problem93 
∂ty +

(
−∂xx 1

0 −∂xx + c(x)

)
y =

(
0
0

)
, (t, x) ∈ (0, T )× (0, 1),

y(t, 0) =

(
0
u(t)

)
, y(t, 1) =

(
0
0

)
, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, 1),

94

where c ∈ L2(0, 1;R) is a given potential. We insist on the fact that our goal is95

not to study this particular example but to develop a general characterization. The96

application to this particular example is detailed in Sec. 5.2. The study of the minimal97

null-control time for this system for an arbitrary potential c is not covered by the98

litterature for several reasons.99

• First, depending on c, the underlying operator can have geometrically double100

eigenvalues. This induces (a finite number of) non-observable modes and thus101

prevents even approximate controllability. We thus propose to extend the102

study of the minimal null-control time to a given subspace of initial conditions.103

This allows to still analyze the controllability properties in this case.104

• Even if the potential c is such that the eigenvalues are geometrically simple105

it can happen that some of them are algebraically double. In this case, to106

the best of our knowledge, the only existing result is [4] which ensures null-107

controllability in arbitrary time if the eigenvalues are well separated (i.e.108

satisfy the classical gap condition recalled in (27)).109

• Finally, if the potential c is such that the eigenvalues are geometrically and110

algebraically simple, to the best of our knowledge, the only existing result111

can be found in [5]. Under an extra assumption (on the observability of112

eigenfunctions), it provides null-controllability at any time T satisfying113

T > T ∗ = lim sup
λ∈σ(A∗)

− ln dist
(
λ, σ(A∗)\{λ}

)
λ

.114

However, their arguments to disprove null-controllability at time T < T ∗115

should not apply in this example for every such potential c as the family of116

eigenvectors forms a complete family but might not be a Riesz basis. There-117

fore, the above formula for T ∗ may dramatically overestimate the actual null-118

control time for the system. We will see in Section 5.2.1 that it may happen119

that T ∗ = +∞ whereas the system is actually null-controllable at any time120

T > 0.121

We will use quite general assumptions in our analysis answering all these concerns.122

Doing so, we will prove that the difference between the Riesz basis assumption and123

the complete family assumption for the eigenvectors is not only technical and a new124

phenomenon can appear: the condensation of eigenvalues can be compensated by the125

condensation of eigenvectors.126

We continue this introduction by stating more precisely the problem under con-127

sideration and the obtained results.128

1.2. Functional setting.129
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Let X be a separable Hilbert space, whose inner product and norm are denoted130

by (•, •) and ‖•‖ respectively. We shall systematically identify X to its dual through131

the Riesz theorem. Let (A, D(A)) be an unbounded operator in X such that −A132

generates a C0−semigroup in X and (A∗, D(A∗)) its adjoint in X. Up to a suitable133

translation, we can assume that 0 is in the resolvent set of A. We denote by X1 (resp.134

X∗1 ) the Hilbert space D(A) (resp. D(A∗)) equipped with the norm ‖x‖1 := ‖Ax‖135

(resp. ‖x‖1∗ := ‖A∗x‖). We define X−1 as the completion of X with respect to the136

norm137

‖y‖−1 := sup
z∈X∗1

(y, z)

‖z‖1∗
.138

Notice that X−1 is isometrical to the topological dual of X∗1 using X as a pivot space139

(see for instance [45, Proposition 2.10.2]); the corresponding duality bracket will be140

denoted by 〈•, •〉−1,1∗ .141

Let U be an Hilbert space (that we will identify to its dual) and B : U → X−1 be142

a linear continuous control operator. We denote by B∗ : X∗1 → U its adjoint in the143

duality described above.144

proposition 1.1. Under the above assumptions, for any T > 0, any y0 ∈ X−1,145

and any u ∈ L2(0, T ;U), there exists a unique y ∈ C0([0, T ];X−1) solution to (1) in146

the sense that it satisfies for any t ∈ [0, T ] and any zt ∈ X∗1 ,147

(2) 〈y(t), zt〉−1,1∗ −
〈
y0, e

−tA∗zt

〉
−1,1∗

=

∫ t

0

(
u(s),B∗e−(t−s)A∗zt

)
U

ds.148

Moreover there exists CT > 0 such that149

sup
t∈[0,T ]

‖y(t)‖−1 ≤ CT
(
‖y0‖−1 + ‖u‖L2(0,T ;U)

)
.150

The proof of this result is recalled in Appendix 7.1. Let us mention that this notion of151

solution is very weak. In most works concerning controllability properties for abstract152

systems like (1), an extra admissibility assumption is made on the control operator B153

to ensure more regularity for the solutions. Note however that this is not mandatory154

to prove wellposedness of the system in the weak sense above. We will discuss below155

the regularity properties of the control problem.156

Let (X∗� , ‖.‖�∗) be an Hilbert space such that X∗1 ⊂ X∗� ⊂ X with dense and157

continuous embeddings. We assume that X∗� is stable by the semigroup generated by158

−A∗ (see Remark 1.1). We also define X−� as the subspace of X−1 defined by159

X−� :=

{
y ∈ X−1 ; ‖y‖−� := sup

z∈X∗1

〈y, z〉−1,1∗

‖z‖�∗
< +∞

}
,160

which is also isometrical to the dual of X∗� with X as a pivot space. The corresponding161

duality bracket will be denoted by 〈•, •〉−�,�. Thus, we end up with the following five162

functional spaces163

X∗1 ⊂ X∗� ⊂ X ⊂ X−� ⊂ X−1.164

We say that the control operator B is an admissible control operator for (1) with165

respect to the space X−� if166

(3)

∫ T

0

∥∥∥B∗e−(T−t)A∗z
∥∥∥2

U
dt ≤ C ‖z‖2�∗ , ∀z ∈ X∗1 .167
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This implies that, by density, we can give a meaning to the map168 (
t 7→ B∗e−(T−t)A∗z

)
∈ L2(0, T ;U),169

for any z ∈ X∗� .170

In this setting, following the lines of [16, Theorem 2.37] we obtain the following171

regularity result for the solutions.172

proposition 1.2. Assume that (3) holds. Then, for any T > 0, any y0 ∈ X−�,173

and any u ∈ L2(0, T ;U), there exists a unique y ∈ C0([0, T ];X−�) solution to (1) in174

the sense that it satisfies for any t ∈ [0, T ] and any zt ∈ X∗� ,175

〈y(t), zt〉−�,� −
〈
y0, e

−tA∗zt

〉
−�,�

=

∫ t

0

(
u(s),B∗e−(t−s)A∗zt

)
U

ds.176

Moreover there exists CT > 0 such that177

sup
t∈[0,T ]

‖y(t)‖−� ≤ CT
(
‖y0‖−� + ‖u‖L2(0,T ;U)

)
.178

Remark 1.1. Note that a similar regularity result holds if we don’t assume that
X∗� is stable by the semigroup generated by −A∗ except that we need to restrict our-
selves to initial data y0 ∈ X. In that case the solution satisfies for any t ∈ [0, T ] and
any zt ∈ X∗� ,

〈y(t), zt〉−�,� −
(
y0, e

−tA∗zt

)
=

∫ t

0

(
u(s),B∗e−(t−s)A∗zt

)
U

ds,

179
sup
t∈[0,T ]

‖y(t)‖−� ≤ CT
(
‖y0‖+ ‖u‖L2(0,T ;U)

)
.180

Remark 1.2. The case where X∗� = X∗1 means that we do not have any additional181

regularity property for B. Conversely, the case X∗� = X means that we have the best182

regularity we can hope for system (1) (this is the usual definition of an admissible183

control operator as in [16, 45]).184

To give more accurate results, we aim at analyzing the minimal null-control time185

problem for each specified set of initial data. This is the object of the following186

definition.187

Definition 1.1. Let Y0 be a closed subspace of X−�.188

We say that system (1) is null-controllable at time T from Y0 if for any y0 ∈ Y0189

there exists u ∈ L2(0, T ;U) such that the associated solution of (1) satisfies y(T ) = 0.190

As a specific choice of Y0 one can think of Y0 = X−�, in which case we recover the191

classical notion of null-controllability. On the opposite side, if Y0 is a one dimensional192

subspace Y0 = Span{y0}, then the notion above amounts to consider only the null-193

controllability of the system for that particular initial condition y0.194

From now on, we will assume that the space Y0 is given, and we denote by PY0 the195

orthogonal projection onto Y0 with respect to ‖•‖−� and by P ∗Y0
∈ L(X∗� ) its adjoint196

in the duality X−�, X
∗
� . Notice that these definitions yield197

(4)
∥∥P ∗Y0

z
∥∥
�∗ ≤ ‖z‖�∗ , ∀z ∈ X∗� .198

5
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Notations. We give here some notations that will be used throughout this article.199

• For any integers a, b, c ∈ N, we shall define the following subsets of N:

Ja, bK := [a, b] ∩ N,

Ja, bK 6=c := Ja, bK \ {c}.
• For any complex number µ ∈ C we define eµ : (0,+∞) → C to be the200

exponential function201

(5) eµ : s 7→ e−µs.202

• We shall denote by Cγ1,...,γl > 0 a constant possibly varying from one line to203

another but depending only on the parameters γ1, . . . , γl.204

• For any multi-index α ∈ Nn, we denote its length by |α| =
∑n
j=1 αj and its205

maximum by |α|∞ = maxj∈J1,nK αj .206

For α, µ ∈ Nn, we say that µ ≤ α if and only if µj ≤ αj for any j ∈ J1, nK.207

• For any finite subset A ⊂ C, we will make use of the polynomial PA defined208

by209

(6) PA(x) :=
∏
µ∈A

(x− µ).210

It satisfies in particular, for any λ ∈ A,211

P ′A(λ) =
∏
µ∈A
µ 6=λ

(λ− µ).212

1.3. Presentation of the main results.213

1.3.1. Spectral assumptions. In addition to the hypothesis described in the214

introduction and that are necessary for the well-posedness and regularity of our con-215

trolled problem, we shall make now the following structural assumptions.216

• First of all, we shall only consider scalar controls in this paper, that is U = R.217

We will study in a forthcoming paper the extension of our analysis to the case218

of non scalar controls.219

• We assume that the spectrum of A∗ is only made of a countable number of220

geometrically simple eigenvalues (this is mandatory since we only consider221

scalar controls) denoted by Λ. We shall also assume for simplicity that the222

eigenvalues are all real (see however the discussion in Section in Sec. 6.1).223

Replacing A by A + γ for γ > 0 large enough if necessary, we can always224

assume for instance that Λ ⊂ [1,+∞).225

• For any eigenvalue λ ∈ Λ, we denote by αλ ≥ 1 its algebraic multiplicity and226

we assume that there exists an integer η ≥ 1 such that αλ ≤ η for any λ ∈ Λ.227

• The main structural assumptions on the eigenvalues Λ we shall make in this228

paper are the following:229

– Asymptotic behavior:230

(7)
∑
λ∈Λ

1

λ
< +∞.231

– Weak gap condition with parameters p ∈ N and ρ > 0:232

(8) #

(
Λ ∩ [µ, µ+ ρ]

)
≤ p, ∀µ ∈ [0,+∞).233

6
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In the case p = 1, the weak gap condition above simply reduces to234

|λ− λ′| > ρ, ∀λ, λ′ ∈ Λ, λ 6= λ′,235

which is the usual gap condition used for instance in [23]. If the spectrum Λ236

is increasingly indexed as Λ = (λm)m≥1 the weak gap condition (8) reads237

λm+p − λm > ρ, ∀m ≥ 1.238

As we will use a different labelling of the spectrum in this paper we shall not239

use these notations anymore in what follows.240

• We denote by (φ0
λ)λ∈Λ an associated family of eigenvectors of A∗. These241

eigenvectors are chosen to be normalized in X∗� .242

As we are interested in null-controllability properties of system (1), we will243

first assume that244

(9) B∗φ0
λ 6= 0, for any λ ∈ Λ.245

This is a necessary condition for the approximate controllability of system (1),246

and is therefore mandatory if we expect null-controllability to hold. In our247

setting, the assumption (9) is also a sufficient condition for approximate con-248

trollability (see [22, 38]).249

When the considered set of initial data Y0 is not the whole space X−�, the250

approximate controllability condition (9) can be too strong and we can relax251

it. We will discuss this point in section 6.2.252

• For each λ ∈ Λ, we denote by (φlλ)l∈J1,αλ−1K a Jordan chain associated with253

φ0
λ, that is a family satisfying254

A∗φlλ = λφlλ + φl−1
λ , ∀l ∈ J1, αλ − 1K.255

By (9), we may uniquely determine such Jordan chain if we impose in addition256

that the generalized eigenvectors satisfy257

(10) B∗φlλ = 0, ∀l ∈ J1, αλ − 1K.258

This particular choice of the Jordan chain is not mandatory but will sim-259

plify the forthcoming computations. In the case were the eigenvalues are260

algebraically simple (η = 1) we drop the superscipt 0 for the eigenvectors.261

• We introduce the notation

Φ := {φlλ, λ ∈ Λ, l ∈ J0, αλ − 1K},

for the family of all the (generalized) eigenvectors of A∗. We assume that Φ262

is complete in X∗� i.e. for any y ∈ X−�, we have263

(11)
(
〈y, φ〉−�,� = 0, ∀φ ∈ Φ

)
=⇒ y = 0.264

We emphasize the fact that we will not make any additional assumptions on the265

family Φ. This is a very important difference with related results in the literature266

in which, most of the time, it is assumed that Φ forms a Riesz basis of X∗� . This is267

discussed in Sections 1.3.4 and 3.268

7
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1.3.2. Groupings of eigenvalues. To introduce our formula for the minimal269

null-control time it is convenient to define adapted groupings for the spectrum Λ. We270

highlight that this notion does not exactly coincide with the condensation groupings271

introduced by Bernstein [14], even though it is closely related.272

Definition 1.2. Let p ∈ N∗ and r, ρ > 0. A sequence of sets (Gk)k≥1 ⊂ P(Λ)273

is said to be a grouping for Λ with parameters p, r, ρ, and we will write (Gk)k≥1 ∈274

G(Λ, p, r, ρ), if it is a covering of Λ275

Λ =
⋃
k≥1

Gk,276

with the additional properties that for every k ≥ 1,277

gk := #Gk ≤ p,278

279

sup(Gk) < inf(Gk+1),280
281

(12) dist(Gk, Gk+1) ≥ r,282

and283

(13) diamGk < ρ.284

We prove in Appendix (Proposition 7.1) that such a grouping always exists for285

any Λ satisyfing the weak gap condition (8).286

Once we are given such a grouping, we shall always adopt the following labelling287

of the elements of Λ288

Gk = {λk,1, . . . , λk,gk}289

with λk,1 < · · · < λk,gk , and the (generalized) eigenvectors will be relabelled accord-290

ingly291

φlk,j := φlλk,j , ∀k ≥ 1, ∀j ∈ J1, gkK, ∀l ∈ J0, αk,j − 1K,292

where in the same fashion αk,j := αλk,j . For any k ≥ 1, we gather the multiplicities293

associated with the elements of Gk in the multi-index αk = (αλk,1 , . . . , αλk,gk ) ∈ Ngk294

1.3.3. Minimal control time definition. From now on, we assume given a295

grouping (Gk)k in G(Λ, p, r, ρ). Thanks to the assumption (9), we can define the296

following family of elements in X∗�297

(14) ψlk,j :=
P ∗Y0

(φlk,j)

B∗φ0
k,j

, ∀k ≥ 1,∀j ∈ J1, gkK,∀l ∈ J0, αk,j − 1K.298

Let299

(15) T0(Y0) := lim sup
k→∞

ln

(
max
µ≤αk

∥∥∥ψ[λ
(µ1)
k,1 , . . . , λ

(µgk )

k,gk
]
∥∥∥
�∗

)
λk,1

300

where the notation ψ[. . . ] stands for the generalized divided differences (see Section301

7.3.2, in particular Proposition 7.7). From Proposition 7.11, notice that the quantity302

ψ[λ
(µ1)
k,1 , . . . , λ

(µgk )

k,gk
] appearing in the previous definition is a linear combination of the303

elements304 {
ψlk,j ; j ∈ J1, gkK, l ∈ J0, αk,j − 1K

}
305

8
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whose coefficients can be explicitely computed on actual control problems (see Sec. 5)306

and that only depends on the group Gk and on the multiplicity multi-index µ.307

In the simpler case where the eigenvalues are assumed to be algebraically simple308

(i.e. η = 1) we can immediately give a more explicit formula for T0(Y0). Indeed, in this309

case one recovers the standard divided differences (whose definition and properties are310

recalled in Sec. 7.3.1) and thus311

(16) T0(Y0) = lim sup
k→∞

ln

 max
m,l∈J1,gkK

m≤l

‖ψ[λk,m, . . . , λk,l]‖�∗


λk,1

.312

Then, using Corollary 7.1 and (13) it comes that the computation of all those divided313

differences is not needed and the formula reduces to314

T0(Y0) = lim sup
k→∞

ln

(
max

l∈J1,gkK
‖ψ[λk,1, . . . , λk,l]‖�∗

)
λk,1

(17)315

= lim sup
k→∞

ln

 max
l∈J1,gkK

∥∥∥∥∥ l∑
j=1

ψk,j∏
i∈J1,lK6=j

(λk,j−λk,i)

∥∥∥∥∥
�∗


λk,1

(18)316
317

where the last equality comes from the use of Newton formula (see Proposition 7.3).318

Remark 1.3. The definition above corresponds to a given grouping of the spec-319

trum, however the minimal null-control result stated in Theorem 1.1 will show that its320

value does not depend on this particular choice of a grouping. As a consequence, for321

specific examples, one can compute the minimal null control time T0(Y0) using any322

convenient such grouping in a class G(Λ, p, r, ρ).323

For the sake of simplicity, for any y0 ∈ X−� we denote by T0(y0) the quantity324

T0(Span(y0)). Of course, we have the following proposition relating T0(Y0) and T0(y0)325

for y0 ∈ Y0.326

proposition 1.3. For any closed subspace Y0 ⊂ X−�,327

sup
y0∈Y0

T0(y0) = T0(Y0).328

This assertion is proved in Subsec. 7.4.329

Remark 1.4. Let us discuss the sign of T0(Y0).330

• In the case Y0 = X−� (the operator P ∗Y0
thus reduces to the identity), the331

minimal time T0(Y0) is always non-negative. Indeed, from the case µ =332

(1, 0, . . . , 0) in the definition (15) of T0 we have that333

T0(X−�) ≥ lim sup
k→∞

ln
‖φ0

k,1‖�∗
|B∗φ0

k,1|
λk,1

.334

From the admissibility condition (3) applied to z = φ0
k,1, we deduce the fol-335

lowing upper bound
∣∣∣B∗φ0

k,1

∣∣∣ ≤ CT√λk,1 ∥∥∥φ0
k,1

∥∥∥
�∗

. Thus,336

lim sup
k→∞

ln
‖φ0

k,1‖�∗
|B∗φ0

k,1|
λk,1

≥ 0,337
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which proves that T0(X−�) ∈ [0,+∞].338

• In the general case where Y0 is a strict closed subspace of X−�, it may happen339

that T0(Y0) < 0.340

For instance, if we choose y0 ∈ X1 to be an eigenvector of A for an eigenvalue
λ ∈ Λ, then we have T0(y0) = −∞. Indeed, we first observe that〈

y0, φ
0
λ′
〉
−�,� =

(
y0, φ

0
λ′
)

= 0, ∀λ′ ∈ Λ, λ′ 6= λ,

which implies, with Y0 = Span(y0) that P ∗Y0
φ0
λ′ = 0 for any λ′ 6= λ. We341

deduce that the logarithms in the definition of T0(y0) are all equal to −∞ for342

k large enough.343

1.3.4. Null-controllability result. The main result of this paper reads as fol-344

lows (see also the extension discussed in Sec. 6.1).345

theorem 1.1. Assume that the operators A and B satisfy the assumptions given346

in Sec. 1.3.1. Let T > 0 and T0(Y0) be defined by (15). Then,347

i. If T0(Y0) < +∞ and T > T0(Y0), the system (1) is null-controllable from Y0348

at time T .349

ii. If T0(Y0) > 0 and T < T0(Y0), the system (1) is not null-controllable from Y0350

at time T .351

In the case where T > T0(Y0) we actually prove in Corollary 2.2 a more accurate result352

giving a uniform (with respect to Λ in a certain class) estimate of the controllability353

cost. Those uniform estimates are important in various contexts when one wants to354

achieve bounds on the control for parameter-dependent problems (see for instance [1,355

2] for an application in numerical analysis of null-controllability problems, or [35] for356

an application in oscillating coefficient problems). Moreover, this uniformity property357

will be crucial in Section 4 to infer the results on multiple eigenvalues from the ones358

on simple eigenvalues.359

Let us briefly mention that our strategy of proof relies on an adapted block reso-360

lution of the associated moment problem (see Theorems 2.1 and 4.1). In the case of361

spectral condensation this new method of resolution ensures sharper results than the362

one given by standard biorthogonal families. However, as a by-product, in the case363

of algebraically simple eigenvalues we recover the known optimal estimates for such364

biorthogonal families (see Corollary 2.1). In the case of algebraically multiple eigenval-365

ues we provide new estimates for such biorthogonal families (see Corollary 4.1). Before366

describing with more details this strategy of proof let us make some comments.367

• There are settings in which formulas for the minimal null-control time are368

already known in the literature for instance when the eigenvalues are alge-369

braically simple and:370

– when the condensation index of Λ (see Appendix 7.5 for a precise defi-371

nition) is equal to 0 (see [7, Remark 1.15]);372

– or when the family (φλ)λ∈Λ of eigenvectors forms a Riesz basis of X∗�373

(see [5]).374

Obviously, in those settings we recover the known expressions. This is dis-375

cussed in Sec. 3.1 and Sec. 3.2.376

• However, we also prove that the Riesz basis assumption considered in [5] is not377

only technical. More precisely, we show in Proposition 3.2, that if the Riesz378

basis assumption does not hold, then the actual minimal control time is less379

or equal than the value T ∗ given by the formula in this reference (see (62)).380
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Moreover, we present in Sec. 5.1, a few examples that are built such that the381

value of T ∗ is any chosen element of [0,+∞] whereas the minimal null-control382

time T0(X−�) is in fact 0.383

This highlights a new phenomenon: when (φλ)λ∈Λ does not form a Riesz384

basis, it may happen that the eigenvectors condensate (or more precisely the385

eigenvectors normalized with respect to the observation i.e. φλ
B∗φλ ) and this386

condensation can compensate for the condensation of eigenvalues.387

• The weak gap condition (8) is particularly well adapted to the applications we388

have in mind, namely coupled one dimensional parabolic equations in which389

case the spectrum is given by a finite union of sequences satisfying a classical390

gap condition (see for instance Lemma 2.1).391

The restriction to the one dimensional case in those applications comes from392

the assumption (7). Although this assumption can be seen as a restriction393

due to the use of moment method, as we are considering scalar controls (U =394

R) it is also a necessary null-controllability condition (see for instance [37,395

Appendix A]).396

• As we precised the space of initial conditions in this study of minimal null-397

control time, it directly comes that finite linear combination of eigenvectors398

are null-controllable in arbitrary small time: the existence of positive mini-399

mal null-control time is definitely a high-frequency phenomenon as already400

observed in Remark 1.4.401

1.3.5. Structure of the article.402

We end this introduction by describing the global strategy used to prove Theo-403

rem 1.1 and giving some further bibliographical comments. Section 2 is dedicated to404

the proof of Theorem 1.1 in the case of algebraically simple eigenvalues. We provide405

in Sec. 3 a comparison of our results with available results of the literature. In Sec. 4406

we prove that the uniform estimates obtained in Sec. 2 allow to prove Theorem 1.1 in407

the general case of algebraically multiple eigenvalues. To highlight the new cases and408

phenomenon covered by our analysis we present different examples in Sec. 5. Then409

we propose some extensions in Sec. 6. To ease the reading we gather various technical410

results in Sec. 7.411

1.4. Strategy of proof.412

The proof of the positive controllability result (that is point i. of Theorem 1.1)413

relies on a block resolution of the moment problem. Let us give more details about414

this strategy.415

Let y0 ∈ Y0 and u ∈ L2(0, T ;R) given. Using Proposition 1.2, it comes that416

〈y(T ), φ〉−�,� −
〈
y0, e

−TA∗φ
〉
−�,�

=

∫ T

0

u(t)B∗e−(T−t)A∗φdt, ∀φ ∈ Φ.417

As the family Φ of (generalized) eigenvectors is assumed to form a complete family in418

X∗� (see (11)) it comes that y(T ) = 0 if and only if the control u solves the following419

countable set of equations420

(19) −
〈
y0, e

−TA∗φlλ

〉
−�,�

=

∫ T

0

u(t)B∗e−(T−t)A∗φlλdt, ∀λ ∈ Λ, ∀l ∈ J0, αλ − 1K.421

Using the formalism of generalized divided differences, we can give a convenient ex-422
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pression of the action of the semi-group on the generalized eigenvectors as follows423

(20)

e−tA
∗
φlλ = e−λt

l∑
p=0

(−t)p

p!
φl−pλ

=

l∑
p=0

e
(p)
t (λ)

p!
φl−pλ

=

l∑
p=0

et[λ
(p+1)]φ[λ(l−p+1)]

= (etφ)[λ(l+1)],

424

this last equality coming from Definition 7.3. Then, y(T ) = 0 if and only if for any425

λ ∈ Λ and any l ∈ J0, αλ − 1K,426 ∫ T

0

u(T − t)B∗
(
(etφ)[λ(l+1)]

)
dt = −

〈
y0, (eTφ)[λ(l+1)]

〉
−�,�

.427

By (10), and since y0 ∈ Y0, this reduces to find u ∈ L2(0, T ;U) such that for any428

λ ∈ Λ and any l ∈ J0, αλ − 1K,429

(B∗φ0
λ)

∫ T

0

u(T − t) (−t)l

l!
e−λtdt = −

〈
y0, P

∗
Y0

(eTφ)[λ(l+1)]
〉
−�,�

,430

that is, using (9) and (14),431

(21)

∫ T

0

u(T − t) (−t)l

l!
e−λtdt = −

〈
y0, (eTψ)[λ(l+1)]

〉
−�,�

, ∀λ ∈ Λ,∀l ∈ J0, αλ− 1K,432

To solve this so-called moment problem the classical strategy introduced in [23]433

consists in designing a biorthogonal family in L2(0, T ) to434 {
t 7→ tle−λt ; λ ∈ Λ, l ∈ J0, αλ − 1K

}
435

with associated estimates. Then, thanks to these estimates, a suitable control is de-436

fined. Usually in this procedure each biorthogonal element is estimated separately.437

Thus, this method is somehow inoperent to analyse the possible condensation of eigen-438

vectors (which is related to possible cancellations in linear combinations of right-hand439

sides of (21)). We will thus propose to solve this moment problem using the grouping440

introduced in Section 1.3.2, in order to cope with such possible compensations. We441

then look for a solution u in the form442

(22) u(t) = −
∑
k≥1

qk(T − t)443

where each qk will solve the moment problem corresponding to the group Gk. More444

precisely, such a control will formally solve (21) if445

(23)



∫ T

0

qk(t)
(−t)l′

l′!
e−λk′,j′ tdt = 0, ∀k′ 6= k, ∀j′ ∈ J1, gk′K, ∀l′ ∈ J0, αk′,j′ − 1K,∫ T

0

qk(t)
(−t)l

l!
e−λk,jtdt =

〈
y0, (eTψ)[λ

(l+1)
k,j ]

〉
−�,�

,

∀k ≥ 1, ∀j ∈ J1, gkK, ∀l ∈ J0, αk,j − 1K.

446
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Then the proof of point i. of Theorem 1.1 reduces to the resolution of such a447

block moment problem with suitable estimates (see Theorem 4.1). First, we solve448

in Theorem 2.1 the block moment problem in the case where the eigenvalues are449

algebraically simple i.e.450

(24)


∫ T

0

qk(t)e−λk′,j′ tdt = 0, ∀k′ 6= k, ∀j′ ∈ J1, gk′K,∫ T

0

qk(t)e−λk,jtdt = e−λk,jT 〈y0, ψk,j〉−�,� , ∀k ≥ 1,∀j ∈ J1, gkK.
451

This construction uses a Laplace transform isomorphism together with a suitable452

restriction argument (Proposition 2.4). The obtained estimates on qk will allow to453

prove convergence of the series (22) when T > T0(Y0). Those estimates are uniform454

with respect to Λ in a certain class (see Definition 2.1) which will allow in Sec. 4 to455

infer the resolution of (23) in the general case.456

Remark 1.5. Contrarily to the classical strategy, notice that the sequence (qk)k457

is not a biorthogonal family to458 {
t 7→ tle−λt ; λ ∈ Λ, l ∈ J0, αλ − 1K

}
.459

The function qk is only orthogonal to those functions corresponding to groups other460

than Gk. Inside the group Gk its definition is adapted to solve the moment prob-461

lem (21). Through the right-hand side (adapted to each initial condition) we will462

possibly take into account the unsufficient observation of eigenvectors, the conden-463

sation of eigenvalues but also the condensation of eigenvectors. This construction464

can thus be seen as a block moment method. As we consider at the same time the465

eigenvalues associated to a same group this will lead to sharper estimates than the one466

coming from the design of a biorthogonal family (i.e. when considering each eigenvalue467

individually).468

However, as already mentioned, our strategy still allows to prove the existence and469

sharp estimates on biorthogonal families (see Corollary 2.1 and Corollary 4.1). Let470

us mention that, to the best of our knowledge, the estimate we obtain in Corollary 4.1471

for a biorthogonal family in presence of algebraic multiplicity of eigenvalues without472

the standard gap condition was not known. Even though these biorthogonal families473

are not always suitable to deal with controllability properties in presence of spectral474

condensation (this is why we designed this block resolution of the moment problem)475

they can be useful for other problems.476

Let us mention that, in the context of control problems with a spectrum satisfying the477

weak-gap condition, divided differences were already used for instance in [8]. Among478

other things, in this work, the authors give a necesary and sufficient condition for the479

family of (generalized) divided differences480

{t 7→ et[iλk,1], . . . , t 7→ et[iλk,1, . . . , iλk,gk ] , k ≥ 1}481

to form a Riesz basis of L2(0, T ;C). Although it can seem to be related, our analysis482

is quite different. In our work, the divided differences are only used as a technical483

tool and the spectral assumptions in the two works are unrelated.484

Classicaly, the proof of point ii. of Theorem 1.1, relies on the design of a sequence485

of counterexamples disproving the associated observability inequality. As dealing486

with null-controllability from a proper subspace of initial conditions is not classical487
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let us recall the following lemma that characterizes this controllability through an488

observability inequality.489

Lemma 1.1 (see for instance [1, Lemma 2.1]). Let M > 0.490

The following two propositions are equivalent.491

1. For any y0 ∈ Y0 there exists a u ∈ L2(0, T ;U) such that y(T ) = 0 and492

‖u‖L2(0,T ;U) ≤M ‖y0‖−� .493

2. For any zT ∈ X∗� , the following partial observability holds:494

(25)
∥∥∥P ∗Y0

(
e−TA

∗
zT

)∥∥∥2

�∗
≤M2

∫ T

0

∥∥∥B∗e−(T−t)A∗zT

∥∥∥2

U
dt.495

In this case, the best constant M satisfying those properties is called the cost of con-496

trollability from Y0 at time T and is denoted M(Y0, T ).497

2. The case of simple eigenvalues.498

2.1. Null-controllability in large time.499

The goal of this section is to prove point i. of Theorem 1.1 in the case of alge-500

braically simple eigenvalues. Thus, in all this section we assume that η = 1.501

As explained in Subsec. 1.4, we will now focus on the construction of a solution502

to (24). Of course as we want to design a control u ∈ L2(0, T ;U) the estimate of503

‖qk‖L2(0,T ;R) will play a crucial role to prove that the series (22) makes sense. Actually504

we will prove sharp estimates that are uniformly valid for Λ in a certain class. These505

uniform estimates can be used for various applications and will be crucial to deal with506

algebraic multiplicity of eigenvalues in Sec. 4. We start by precising the class of Λ we507

will consider. .508

Definition 2.1. Let p ∈ N∗, ρ > 0 and N : (0,+∞)→ R. We say that a count-509

able family Λ belongs to the class Lw(p, ρ,N ) if Λ satisfies the weak-gap condition (8)510

with parameters p and ρ and if for any ε > 0 we have511

(26)
∑
λ∈Λ

λ≥N (ε)

1

λ
< ε.512

This definition is directly inspired by the pioneering work [24]. More precisely,513

the class of sequences used in [24] is similar to Lw(1, ρ,N ), but it is however slightly514

different since in (26) the summation condition is given on the value of λ itself whereas515

in the above reference the condition is on the index of the eigenvalue in Λ (which is516

supposed to be sorted increasingly). Despite this small difference (whose aim is to517

simplify some computations) the results we shall take from [24] that use this definition518

are also valid with this alternative definition and thus we set L(ρ,N ) := Lw(1, ρ,N ).519

Remark 2.1 (The usual gap condition). With our definition, a sequence Λ be-520

longs to L(ρ,N ) if it satisfies the classical gap condition521

(27) |λ′ − λ| > ρ, ∀λ, λ′ ∈ Λ, λ 6= λ′,522

and the asymptotic behavior estimate (26).523
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As we will see in the examples (Section 5), the typical situation where sequences524

satisfying the weak gap condition appear is when one glues a finite number of se-525

quences, each of them satisfying a standard gap condition as in Remark 2.1. This is526

formalized in the following lemma.527

Lemma 2.1. Let p, p̃ ∈ N∗, ρ, ρ̃ > 0 and N , Ñ : (0,+∞) → R given. Then, for
any Λ ∈ Lw(p, ρ,N ) and Λ̃ ∈ Lw(p̃, ρ̃, Ñ ), we have

Λ ∪ Λ̃ ∈ Lw(p̄, ρ̄, N̄ ),

with p̄ = p+ p̃, ρ̄ = min(ρ, ρ̃) and N̄ (ε) = max(N (ε/2), Ñ (ε/2)).528

Proof. Let us first prove the weak gap condition. For any µ ≥ 0, we have529

[µ, µ+ ρ̄] ∩ (Λ ∪ Λ̃) = ([µ, µ+ ρ̄] ∩ Λ) ∪
(

[µ, µ+ ρ̄] ∩ Λ̃
)

530

⊂ ([µ, µ+ ρ] ∩ Λ) ∪
(

[µ, µ+ ρ̃] ∩ Λ̃
)
,531

532

and taking the cardinal, we get

#[µ, µ+ ρ̄] ∩ (Λ ∪ Λ̃) ≤ p+ p̃ = p̄.

For the asymptotic behavior of the sequences, we have533 ∑
λ∈Λ∪Λ̃
λ>N̄ (ε)

1

λ
≤

∑
λ∈Λ

λ>N̄ (ε)

1

λ
+

∑
λ∈Λ̃

λ>N̄ (ε)

1

λ
≤

∑
λ∈Λ

λ>N (ε/2)

1

λ
+

∑
λ∈Λ̃

λ>Ñ (ε/2)

1

λ
≤ ε

2
+
ε

2
= ε.534

The claim is proved.535

The following straightforward facts will also be useful.536

Remark 2.2. Let Λ ∈ Lw(p, ρ,N ).537

• Any Λ̃ ⊂ Λ also satisfy Λ̃ ∈ Lw(p, ρ,N ).538

• For any h > 0, Λ + h ∈ Lw(p, ρ,N ).539

Using this class we prove the following theorem.540

theorem 2.1. Let T ∈ (0,+∞]. Let p ∈ N∗, r, ρ > 0 and N : (0,+∞) → R.541

Assume that Λ ∈ Lw(p, ρ,N ) and let (Gk)k ∈ G(Λ, p, r, ρ) be an associated grouping.542

For any ε > 0, there exists a constant Cε,T,p,r,ρ,N > 0 such that for any k ≥ 1,543

for any ωk,1, . . . , ωk,gk ∈ C, there exists qk ∈ L2(0, T ;C) satisfying544

(28)


∫ T

0

qk(t)e−λk′,j′ tdt = 0, ∀k′ 6= k, ∀j′ ∈ J1, gk′K,∫ T

0

qk(t)e−λk,jtdt = ωk,j , ∀j ∈ J1, gkK,
545

and546

(29) ‖qk‖L2(0,T ;C) ≤ Cε,T,p,r,ρ,N eελk,1 max
i∈J1,gkK

∣∣∣ω[λk,1, . . . , λk,i]
∣∣∣.547

Moreover, up to the factor eελk,1 , this last estimate is sharp: any solution qk ∈548

L2(0, T ;C) of (28) satisfies549

(30) ‖qk‖L2(0,T ;C) ≥ C̃p max
i∈J1,gkK

∣∣∣ω[λk,1, . . . , λk,i]
∣∣∣,550

for some C̃p > 0.551
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The proof of Theorem 2.1 is conducted all along Sections 2.1.1 and 2.1.2.552

Before going on with the proof, let us notice that the resolution of the block553

moment problem (28) for a specific choice of ωk,j allows to prove, as a by-product,554

the existence and uniform estimates of a biorthogonal family to the exponentials555

(eλ)λ∈Λ where eλ is defined by (5).556

Corollary 2.1. Let T ∈ (0,+∞]. Let p ∈ N∗, r, ρ > 0 and N : (0,+∞) → R.557

Assume that Λ ∈ Lw(p, ρ,N ) and let (Gk)k ∈ G(Λ, p, r, ρ) be an associated grouping.558

For any k ≥ 1, for any j ∈ J1, gkK, there exists qk,j ∈ L2(0, T ;R) satisfying559

(31)

∫ T

0

qk,j(t)e
−λk′,j′ tdt = δk,k′δj,j′ , ∀k, k′ ≥ 1,∀j ∈ J1, gkK,∀j′ ∈ J1, gk′K,560

where δ denotes the Kronecker symbol. Moreover, for any ε > 0, there exists a561

constant Cε,T,p,r,ρ,N > 0 such that for any k ≥ 1 and for any j ∈ J1, gkK,562

‖qk,j‖L2(0,T ;R) ≤ Cε,T,p,r,ρ,N
eελk,1∣∣P ′Gk(λk,j)

∣∣ ,563

where PGk is defined in (6).564

Moreover, up to the factor eελk,1 , this estimate is optimal since any function qk,j
satisfying (31), satisfies the lower bound

‖qk,j‖L2(0,T ;R) ≥ C̃p
1∣∣P ′Gk(λk,j)

∣∣
for some C̃p > 0.565

Proof. Let k ≥ 1 and j ∈ J1, gkK. Let qk,j ∈ L2(0, T ;C) be the solution of the566

block moment problem (28) given by Theorem 2.1 associated with the right-hand side567

ωk,j′ = δj,j′ for any j′ ∈ J1, gkK. Since those values of ω are real we can change qk,j in568

its real part without changing its properties. Then, the equalities (31) follow directly.569

Moreover we have570

‖qk,j‖L2(0,T ;R) ≤ Cε,T,p,r,ρ,N eελk,1 max
i∈J1,gkK

∣∣∣ω[λk,1, . . . , λk,i]
∣∣∣.571

From the Newton formula (see Proposition 7.3) it comes that for any i ∈ J1, gkK,572

ω[λk,1, . . . , λk,i] =


0, if i < j,

1∏
m∈J1,iK6=j

(λk,j − λk,m)
, if i ≥ j.573

To conclude the proof of Corollary 2.1 we prove that there exists Cp,ρ > 0 such that574

for any k ≥ 1, j ∈ J1, gkK and any i ∈ Jj, gkK,575

(32)
∏

m∈J1,iK6=j

|λk,j − λk,m| ≥ Cp,ρ|P ′Gk(λk,j)|.576

Indeed, we have577 ∏
m∈J1,iK6=j

|λk,j − λk,m|

|P ′Gk(λk,j)|
=

∏
m∈J1,iK6=j

|λk,j − λk,m|∏
m∈J1,gkK6=j

|λk,j − λk,m|
=

1∏
m∈Ji+1,gkK

|λk,j − λk,m|
.578

16

This manuscript is for review purposes only.



By (13), we get579

|λk,j − λk,m| ≤ ρ, ∀m ∈ Ji+ 1, gkK.580

Thus,581

(33)

∏
m∈J1,iK 6=j

|λk,j − λk,m|

|P ′Gk(λk,j)|
≥
(

1

ρ

)gk−i
.582

As the right-hand side only takes a finite number of values, inequality (33) proves (32)583

and ends the proof of Corollary 2.1.584

The lower bound directly follows from (30) and the inequality585

max
i∈J1,gkK

∣∣∣ω[λk,1, . . . , λk,i]
∣∣∣ ≥ ∣∣∣ω[λk,1, . . . , λk,gk ]

∣∣∣ =
1∣∣P ′Gk(λk,j)

∣∣ .
586

2.1.1. Resolution of block moment problems in infinite time.587

In this section, we start by proving Theorem 2.1 in the case of simple eigenvalues588

and with T = +∞. More precisely, we prove the following proposition.589

proposition 2.1. Let p ∈ N∗, r, ρ > 0 and N : (0,+∞) → R. Assume that590

Λ ∈ Lw(p, ρ,N ) and let (Gk)k ∈ G(Λ, p, r, ρ) be an associated grouping.591

For any ε > 0, there exists a constant Cε,p,r,ρ,N > 0 such that for any k ≥ 1, for592

any ωk,1, . . . , ωk,gk ∈ C, there exists q̃k ∈ L2(0,+∞;C) satisfying593

(34)


∫ +∞

0

q̃k(t)e−λk′,j′ tdt = 0, ∀k′ 6= k, ∀j′ ∈ J1, gk′K,∫ +∞

0

q̃k(t)e−λk,jtdt = ωk,j , ∀j ∈ J1, gkK,
594

and595

‖q̃k‖L2(0,+∞;C) ≤ Cε,p,r,ρ,N eελk,1 max
i∈J1,gkK

∣∣∣ω[λk,1, . . . , λk,i]
∣∣∣.596

The proof relies on the construction of an holomorphic function satisfying suitable597

properties and estimates. The resolution of the block moment problem (34) then598

comes from the isomorphism induced by the Laplace transform.599

Proof. Let us start by recalling classical properties of the Laplace transform (see600

for instance [43, pp. 19-20] and the references therein). Let H2(C+) the space of601

holomorphic functions F on C+ = {z ∈ C ; <(z) > 0} such that602

sup
σ>0
‖F (σ + i•)‖L2(R;C) < +∞,603

endowed with the norm604

‖F‖2H2(C+) := sup
σ>0
‖F (σ + i•)‖2L2(R;C) =

∫
R
|F (iτ)|2dτ.605

Then the Laplace transform606

L : f ∈ L2(0,+∞;C) 7→
(
F : λ ∈ C+ 7→

∫
R
e−λtf(t)dt

)
∈ H2(C+)607

17

This manuscript is for review purposes only.



is an isomorphism.608

We shall construct for each k, a function Jk ∈ H2(C+) satisfying609

Jk(λ) = 0, ∀λ ∈ Λ\Gk,(35)610

Jk(λk,j) = ωk,j , ∀j ∈ J1, gkK,(36)611612

and such that for any ε > 0, there exists Cε,p,r,ρ,N > 0 such that613 ∫
R
|Jk(iτ)|2dτ ≤ Cε,p,r,ρ,N eελk,1 max

i∈J1,gkK

∣∣∣ω[λk,1, . . . , λk,i]
∣∣∣, ∀k ≥ 1.614

Taking advantage of the isomorphism property of the Laplace transform we will then615

set q̃k := L−1(Jk), to conclude the proof.616

Construction of Jk.617

We define Jk as618

Jk : z ∈ C+ 7→ Pk(z)

(1 + z)p
Wk(z)619

where Pk is a polynomial of degree less than p which is precised below and Wk is the620

following Blaschke-type product621

Wk(z) =

p∏
j=1

 ∏
λ∈Λj\Gk

λ− z
λ+ z

 ,622

where623

(37) Λj := {λl,min(j,gl), l ≥ 1}.624

The sequence Λj contains the j-th element of each group Gl, except if this group625

contains less than j elements, in which case, we replace it by the largest element of626

Gl that is λl,gl . In particular, we observe that Λj is a subsequence of Λ.627

From (7), we deduce that
∑
λ∈Λj

1
λ < +∞, so that for any j, the associated628

infinite product uniformly converges on any compact of C+. As a consequence, Wk629

is well-defined and holomorphic in C+ (see for instance [41, Chapter 15]). It follows630

that Jk is also holomorphic on C+.631

We shall need the following property, whose proof is technical and postponed to632

Section 2.1.4.633

proposition 2.2. There exists a constant Cε,p,r,ρ,N > 0 such that for any k ≥ 1,634

any l ∈ J0, pK, and any θ ∈ Conv(Gk),635

(38)

∣∣∣∣∣
(

1

Wk

)(l)

(θ)

∣∣∣∣∣ ≤ Cε,p,r,ρ,N eελk,1 .636

From the definition of Wk it comes that (35) is satisfied. Next, it comes that (36)637

is equivalent to638

Pk(λk,j) =
(1 + λk,j)

p

Wk(λk,j)
ωk,j , ∀j ∈ J1, gkK.639

Let640

f : s ∈ R 7→ (1 + s)p, and fk : s ∈ R 7→ f(s)

Wk(s)
.641
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To satisfy (36), we define Pk as the Lagrange interpolating polynomial at points λk,j642

with values (fkω)[λk,j ] := fk(λk,j)ωk,j that is, in Newton form,643

Pk(z) :=

gk∑
j=1

(fkω)[λk,1, . . . , λk,j ]

j−1∏
i=1

(z − λk,i).644

Thus, to conclude it remains to estimate

∫
R
|Jk(iτ)|2dτ .645

Estimate of Jk.646

Notice that since the eigenvalues in Λ are real, for any k ≥ 1 and any τ ∈ R, we647

have |Wk(iτ)| = 1. This implies648

(39) |Jk(iτ)| ≤ gk
(|τ |+ λk,gk)p−1

(1 + τ2)p/2
max

j∈J1,gkK

∣∣∣(fkω)[λk,1, . . . , λk,j ]
∣∣∣649

and thus Jk ∈ H2(C+).650

Using Leibniz formula (see Proposition 7.6),651

(40)
∣∣∣(fkω)[λk,1, . . . , λk,j ]

∣∣∣ ≤ j∑
i=1

∣∣∣fk[λk,i, . . . , λk,j ]
∣∣∣ ∣∣∣ω[λk,1, . . . , λk,i]

∣∣∣.652

Using again Leibniz formula (see Proposition 7.6),653

(41) fk[λk,i, . . . , λk,j ] =

j∑
m=i

f [λk,i, . . . , λk,m]

(
1

Wk

)
[λk,m, . . . , λk,j ].654

The two factors in each term of this sum are estimated using Lagrange theorem (see655

Proposition 7.4):656

• First, we have657

f [λk,i, . . . , λk,m] =
f (m−i)(θk)

(m− i)!
658

with θk ∈ [λk,i, λk,m]. It comes that there exists Cp > 0 such that659

(42)
∣∣∣f [λk,1, . . . , λk,m]

∣∣∣ ≤ Cp(1 + λk,m)p ≤ Cp(1 + λk,gk)p.660

• Second, we have661 (
1

Wk

)
[λk,m, . . . , λk,j ] =

1

(j −m+ 1)!

(
1

Wk

)(j−m+1)

(θ̃k)662

with θ̃k ∈ [λk,m, λk,j ].663

By using (38), it follows that664

(43)

∣∣∣∣( 1

Wk

)
[λk,m, . . . , λk,j ]

∣∣∣∣ ≤ Cε,p,ρ,N eελk,gk .665

Recall that (13) implies λk,gk − λk,1 < ρ. Then, using (42) and (43) into the identity666

(41) proves that there exists Cε,p,r,ρ,N > 0 such that for any i, j ∈ J1, gkK, i ≤ j, we667

have668 ∣∣∣fk[λk,i, . . . , λk,j ]
∣∣∣ ≤ Cε,p,r,ρ,N eελk,1 .669
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Plugging it in (40) we obtain670

max
j∈J1,gkK

|(fkω)[λk,1, . . . , λk,j ]| ≤ Cε,p,r,ρ,N eελk,1 max
i∈J1,gkK

∣∣∣ω[λk,1, . . . , λk,i]
∣∣∣.671

Finally, getting back to estimate (39), and using the isomorphism property of L672

ends the proof of Proposition 2.1.673

2.1.2. From infinite time horizon to finite time horizon.674

In this section we first prove that the estimates on the solution on (0,+∞) of the675

block moment problem (34) for simple eigenvalues given in Proposition 2.1 implies676

the resolution on (0, T ) of the similar block moment problem (28). More precisely we677

prove the following.678

proposition 2.3. Let p ∈ N∗, ρ > 0 and N : (0,+∞) → R. Assume that679

Λ ∈ Lw(p, ρ,N ). For any T > 0, there exists a constant CT,p,ρ,N > 0 such that for680

any q̃ ∈ L2(0,+∞;C) there exists q ∈ L2(0, T ;C) satisfying681 ∫ T

0

q(t)e−λtdt =

∫ +∞

0

q̃(t)e−λtdt, ∀λ ∈ Λ,682

and683

‖q‖L2(0,T ;C) ≤ CT,p,ρ,N ‖q̃‖L2(0,+∞;C).684

For any T ∈ (0,+∞], we set685

A(Λ, T ) := Span {eλ ; λ ∈ Λ}
L2(0,T ;C)

,686

where eλ is defined in (5). The proof of Proposition 2.3 mainly relies on the following687

proposition that gives an estimate on the inverse of the restriction operator.688

proposition 2.4. Let p ∈ N∗, ρ > 0 and N : (0,+∞) → R. Assume that689

Λ ∈ Lw(p, ρ,N ). Let T > 0 be fixed. Then, the restriction operator690

(44) RΛ,T : q ∈ A(Λ,+∞) 7→ q|(0,T ) ∈ A(Λ, T )691

is an isomorphism. Moreover there exists a constant CT,p,ρ,N > 0 such that692

(45) ‖R−1
Λ,T ‖ ≤ CT,p,ρ,N .693

In the case p = 1, this result is due to Fattorini and Russell [24, Theorem 1.3]. Our694

proof follows closely the strategy developed in this reference and takes advantage of695

the uniform estimates we established in the previous sections.696

Proof. The fact that RΛ,T is an isomorphism is proved in [43] under the sole697

assumption (7). The only thing to prove is thus the bound (45).698

The proof is done by contradiction. Assume that the estimate does not hold for699

given T , p, ρ, and N , then there exists a sequence (Λm)m≥1 belonging to the same700

class Lw(p, ρ,N ), such that701

(46) ‖R−1
Λm,T ‖ −−−−→m→∞

+∞.702
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For each m, by Proposition 7.1, we consider a grouping (Gmk )k ∈ G(Λm, p, ρ/p,N ),703

and from (46) we know that there exists coefficients amk,j such that the finite linear704

combination705

Pm : t 7→
Km∑
k=1

gmk∑
j=1

amk,je
−λmk,jt,706

satisfies707

‖Pm‖L2(0,∞;C) = 1, and ‖Pm‖L2(0,T ;C) −−−−→
m→∞

0.708

Let 0 < ε < T
2 be fixed and let C+

2ε = {z ∈ C ; <(z) > 2ε}. We prove that the709

sequence z 7→ Pm(z) is uniformly bounded on any compact of C+
2ε.710

Let m ≥ 1 and z ∈ C+
2ε. Then for any k ∈ {1, . . . ,Km} the application of Propo-711

sition 2.1 to the sequence Λm yields the existence of q̃m,zk ∈ L2(0,+∞;C) satisfying712

(47)


∫ +∞

0

q̃m,zk (t)e−λ
m
k′,j′ tdt = 0, ∀k′ 6= k, ∀j′ ∈ J1, gmk′ K,∫ +∞

0

q̃m,zk (t)e−λ
m
k,jtdt = e−λ

m
k,jz, ∀j ∈ J1, gmk K,

713

and714

‖q̃m,zk ‖L2(0,+∞;C) ≤ Cε,p,ρ,N eελ
m
k,1

(
max

j∈J1,gmk K

∣∣∣ez[λmk,1, . . . , λmk,j ]∣∣∣) ,715

where ez is defined in (5).716

The previous right-hand side is estimated using Lagrange theorem (see Propo-717

sition 7.4). As the function ez is complex-valued we apply it on both its real and718

imaginary parts. This yields719 (
max

j∈J1,gmk K

∣∣∣ez[λmk,1, . . . , λmk,j ]∣∣∣) ≤ Cp,ρ|z|pe−<(z)λmk,1 .720

Thus,721

‖q̃m,zk ‖L2(0,+∞;C) ≤ Cε,p,ρ,N |z|pe−(<(z)−ε)λmk,1 .722

Then, using (47) it comes that, for m sufficiently large,723

〈Pm, q̃m,zk 〉L2(0,∞;C) =

Km∑
k′=1

gm
k′∑

j=1

amk′,j

∫ +∞

0

e−λ
m
k′,jtq̃m,zk (t)dt =

gmk∑
j=1

amk,je
−λmk,jz.724

From Cauchy-Schwarz inequality we deduce that725 ∣∣∣∣∣∣
gmk∑
j=1

amk,je
−λmk,jz

∣∣∣∣∣∣ ≤ ‖Pm‖L2(0,+∞;C)‖q̃m,zk ‖L2(0,+∞;C) ≤ Cε,p,ρ,N |z|pe−(<(z)−ε)λmk,1 .726

Summing these inequalities we obtain that for any z ∈ C+
2ε,727

|Pm(z)| ≤
Km∑
k=1

∣∣∣∣∣∣
gmk∑
j=1

amk,je
−λmk,jz

∣∣∣∣∣∣ ≤ Cε,p,ρ,N |z|p
∑
k≥1

e−(<(z)−ε)λmk,1 ,728
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From the properties of the groupings (see Definition 1.2), it comes that λmk,1 ≥
ρ
p (k−1).729

Thus, for any z ∈ C+
2ε,730

(48) |Pm(z)| ≤ Cε,p,ρ,N |z|pe−
ρ
p (<(z)−ε)

∑
k≥1

e−ε
ρ
p (k−2) ≤ Cε,p,ρ,N |z|pe−

ρ
p<(z).731

This gives that (Pm)m is a sequence of holomorphic functions uniformly bounded732

on any compact of C+
2ε. From Montel’s theorem it comes that we can extract a733

subsequence converging uniformly on any compact of C+
2ε to an holomorphic function734

P .735

Now recall that ‖Pm‖L2(0,T ;C) goes to 0 as m goes to infinity. This implies that736

P (t) = 0 for any t ∈ (2ε, T ). The function P being holomorphic it comes that it737

vanishes on C+
2ε. Using (48) and the Lebesgue dominated-convergence theorem yields738

‖Pm‖L2(0,+∞;C) −−−−→
m→∞

0.739

This is in contradiction with ‖Pm‖L2(0,+∞;C) = 1 and ends the proof of Proposi-740

tion 2.4.741

We now have all the ingredients to prove Proposition 2.3.742

Proof (of Proposition 2.3). This proof follows closely the one of [4, Section 4]743

and [5, Lemma 4.2]. From [4, Corollary 4.3], as Λ satisfies (7), it comes that A(Λ,+∞)744

is a proper subspace of L2(0,+∞;C). Let ΠΛ the associated orthogonal projection.745

Let q̃ ∈ L2(0,+∞,C). Then, by construction, we have746

(49)

∫ +∞

0

ΠΛq̃(t)e
−λtdt =

∫ +∞

0

q̃(t)e−λtdt, ∀λ ∈ Λ.747

From Proposition 2.4, the restriction operator RΛ,T defined by (44) is an isomorphism.748

Thus, setting q := (R−1
Λ,T )∗ΠΛq̃ ends the proof of Proposition 2.3. Indeed, there exists749

CT,p,ρ,N > 0 such that750

‖q‖L2(0,T ;C) ≤ CT,p,ρ,N ‖q̃‖L2(0,+∞;C),751

and, using (49), for every λ ∈ Λ,752 ∫ T

0

q(t)e−λtdt = 〈(R−1
Λ,T )∗ΠΛq̃, eλ〉L2(0,T ) = 〈ΠΛq̃, R

−1
Λ,TRΛ,T eλ〉L2(0,+∞)753

=

∫ +∞

0

q̃(t)e−λtdt.754
755

We can now conclude the proof of Theorem 2.1 for simple eigenvalues.756

Proof (of Theorem 2.1). The resolution of the block moment problem (28) as well757

as the estimate (29) follow directly from Propositions 2.1 and 2.3.758

The only thing left to prove is the lower bound (30). Let qk ∈ L2(0, T ;C) be any759

solution of (28). Using the linearity of divided differences, equalities (28) imply that760

for any i ∈ J1, gkK761

(50) ω[λk,1, . . . , λk,i] =

∫ T

0

qk(t)et[λk,1, . . . , λk,i]dt762
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where et is defined by (5). From the Lagrange theorem (see Proposition 7.4) and the763

fact that e
(i−1)
t is decreasing on (0,+∞), it comes that for any t ∈ (0, T ), we have764

|et[λk,1, . . . , λk,i]| ≤ tpe−λk,1t ≤ tpe−t,765

since we assumed that Λ ⊂ [1,+∞). Thus applying the Cauchy-Schwarz inequality766

to (50) gives767

|ω[λk,1, . . . , λk,i]| ≤ ‖qk‖L2(0,T ;C)

(∫ T

0

t2pe−tdt

) 1
2

≤ (2p)!‖qk‖L2(0,T ;C)768

which proves (30) and ends the proof of Theorem 2.1.769

2.1.3. Construction of the control.770

We now have all the ingredients to prove the positive controllability result.771

Proof (of point i. of Theorem 1.1 for simple eigenvalues).772

Assume that T0(Y0) < +∞ and let us consider an initial data y0 ∈ Y0. Without773

loss of generality we assume that ‖y0‖−� = 1.774

Let T ∈ (T0(Y0),+∞) and ε > 0 be such that T > T0(Y0) + 2ε. From Proposi-775

tion 1.3, it comes that T > T0(y0) + 2ε.776

For any k ≥ 1 and j ∈ J1, gkK we set777

ωk,j := e−λk,jT 〈y0, ψk,j〉−�,� .778

Let (qk)k≥1 be the solution of the block moment problem (28) given in Theorem 2.1.779

There exists a constant Cε,T,p,r,ρ,N > 0 such that780

‖qk‖L2(0,T ;R) ≤ Cε,T,p,r,ρ,N eελk,1 max
i∈J1,gkK

∣∣∣ω[λk,1, . . . , λk,i]
∣∣∣, ∀k ≥ 1.781

Let ξk,j := 〈y0, ψk,j〉−�,�. Notice that ωk,j = eT (λk,j)ξk,j , where eT is defined in (5).782

From Leibniz formula (see Proposition 7.6),783

(51) ω[λk,1, . . . , λk,i] =

i∑
m=1

eT [λk,m, . . . , λk,i] ξ[λk,1, . . . , λk,m].784

In this expression, ξ[. . . ] stands for the divided differences associated with the values785

(λk,1, ξk,1), . . . , (λk,gk , ξk,gk). From Lagrange theorem (see Proposition 7.4) it comes786

that787

eT [λk,m, . . . , λk,i] =
e

(i−m)
T (θk)

(i−m)!
=

(−T )i−m

(i−m)!
e−θkT788

with θk ∈ [λk,m, λk,i]. Using the definition (17) of T0(y0), it comes that,789

(52)
∣∣∣ξ[λk,1, . . . , λk,m]

∣∣∣ =
∣∣∣ 〈y0, ψ[λk,1, . . . , λk,m]〉−�,�

∣∣∣ ≤ Ceλk,1(T0(y0)+ε).790

Thus, there exists CT,p > 0 such that791 ∣∣∣ω[λk,1, . . . , λk,i]
∣∣∣ ≤ CT,peλk,1(T0(y0)+ε−T ).792

Then, as T > T0(y0) + 2ε, the series (22) is convergent in L2(0, T ;R) and defines793

a control u that solves the moment problem (24), which implies that the associated794

solution of (1) satisfies y(T ) = 0.795
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With the same strategy we can prove a more accurate result. Namely we get the796

following uniform bound for the control cost.797

Corollary 2.2. Let p ∈ N∗, r, ρ > 0 and N : (0,+∞) → R. Assume that798

Λ ∈ Lw(p, ρ,N ) and let (Gk)k ∈ G(Λ, p, r, ρ) be an associated grouping. Assume that799

η = 1 and T0(Y0) < +∞. For any T > T0(Y0), let C∗ > 0 be such that800

(53) max
l∈J1,gkK

‖ψ[λk,1, . . . , λk,l]‖�∗ ≤ C
∗eλk,1

T0(Y0)+T
2 , ∀k ≥ 1.801

Then, there exists a constant CT0(Y0),T,p,r,ρ,N > 0 such that for any y0 ∈ Y0, there802

exists a control u ∈ L2(0, T ;R) such that the associated solution y of (1) satisfies803

y(T ) = 0 and804

‖u‖L2(0,T ;R) ≤ CT0(Y0),T,p,r,ρ,N C∗ ‖y0‖−� .805

Proof. We follow the same strategy as in the proof of point i. of Theorem 1.1806

with ε = T−T0(Y0)
4 but we do not use (52). Instead notice that using (53) we have807 ∣∣∣ξ[λk,1, . . . , λk,m]

∣∣∣ =
∣∣∣ 〈y0, ψ[λk,1, . . . , λk,m]〉−�,�

∣∣∣ ≤ C∗eλk,1 T0(Y0)+T
2 ‖y0‖−� .808

From (51) it comes that809 ∣∣∣ω[λk,1, . . . , λk,m]
∣∣∣ ≤ CT,p,r,ρ,N e−λk,1TC∗eλk,1 T0(Y0)+T

2 ‖y0‖−� .810

Thus, writing that ‖u‖ ≤
∑
k≥1 ‖qk‖, we get811

‖u‖L2(0,T ;R) ≤ CT,p,r,ρ,NC∗ ‖y0‖−�
∑
k≥1

eλk,1
T0(Y0)−T

2 .812

From Definition 1.2 it comes that λk,1 ≥ r(k − 1) which ends the proof of Corol-813

lary 2.2.814

2.1.4. Estimates on Blaschke products.815

This aim of this section is to prove the technical estimate stated in Proposition 2.2.816

This relies on an extension of the following result by Fattorini and Russell.817

Lemma 2.2 (see [24, Theorem 1.1]). Let γ > 0 and J : R+ → R. Let L(γ,J ) be818

the class introduced in Remark 2.1. For any Σ ∈ L(γ,J ) and σ ∈ Σ we define819

WΣ
σ : z ∈ C+ 7→

∏
σ′∈Σ
σ′ 6=σ

σ′ − z
σ′ + z

.820

Then, for any ε > 0, there exists Cε,γ,J > 0 such that821 ∣∣WΣ
σ (σ)

∣∣ ≥ Cε,γ,J e−εσ.822

Remark 2.3. To be complelety accurate let us precise that [24, Theorem 1.1] does823

not exactly state such estimate since this theorem only deals with the estimate of a824

biorthogonal family. However, the estimate given in this theorem together with the825

[24, equality (2.1)] given during its proof directly yield Lemma 2.2.826

The generalisation we propose is the following.827
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Lemma 2.3. Let γ > 0 and J : R+ → R. For any ε > 0, there exists Cε,γ,J > 0828

such that, for any sequence Σ ∈ L(γ,J ), for any σ ∈ Σ, we have829 ∣∣WΣ
σ (z)

∣∣ ≥ Cε,γ,J e−εσ, ∀z ∈ C+, s.t. |z − σ| ≤ γ

2
830

Proof. For any σ′ > 0, since (σ′ −<(z))2 ≤ (σ′ + <(z))2, it comes that831 ∣∣∣∣σ′ − zσ′ + z

∣∣∣∣2 =
(σ′ −<(z))2 + =(z)2

(σ′ + <(z))2 + =(z)2
≥ (σ′ −<(z))2

(σ′ + <(z))2
,832

and thus,833

(54) |WΣ
σ (z)| ≥ |WΣ

σ (<(z))|.834

We introduce the family Σ̃ obtained from Σ by replacing σ by <(z), that is

Σ̃ := (Σ \ {σ}) ∪ {<(z)}.

Since only one value has been modified, Σ̃ also satisfies∑
σ̃∈Σ̃

1

σ̃
< +∞.

As,835

(55) |<(z)− σ| ≤ |z − σ| ≤ γ

2
,836

it comes that Σ̃ satisfies the gap condition (27) with ρ replaced by γ
2 . Notice that837

{<(z)} ∈ L
(
1, ε 7→ 1

ε

)
. Thus using Remark 2.2 and the arguments of the proof of838

Lemma 2.1 it comes that Σ̃ ∈ L
(
γ
2 , J̃

)
with J̃ depending only on J .839

Obviously, as the terms σ′ ∈ Σ that are different from σ have not been modified840

it comes that841

WΣ
σ =WΣ̃

<(z).842

Applying Lemma 2.2 it comes that for any ε > 0, there is Cε,γ,J > 0 such that843

|WΣ̃
<(z)(<(z))| ≥ Cε,γ,J e−ε<(z).844

Finally, recalling (54) and (55), we obtain845

|WΣ
σ (z)| = |WΣ̃

<(z)(z)| ≥ |W
Σ̃
<(z)(<(z))| ≥ Cε,γ,J e−ε<(z) ≥ Cε,γ,J e−ε

γ
2 e−εσ846

which ends the proof of Lemma 2.3.847

We now turn to the estimates we need for the derivatives of 1
WΣ
σ

.848

proposition 2.5. Let γ > 0 and J : R+ → R.849

Then, for any l ≥ 0, for any ε > 0, there exists Cl,ε,γ,J > 0 such that for any850

Σ ∈ L(γ,J ),851 ∣∣∣∣∣
(

1

WΣ
σ

)(l)

(σ)

∣∣∣∣∣ ≤ Cl,ε,γ,J eεσ, ∀σ ∈ Σ.852

25

This manuscript is for review purposes only.



Proof. The case l = 0 is nothing but the estimate given in Lemma 2.3.853

Let854

Dσ,γ :=
{
z ∈ C+ ; |z − σ| ≤ γ

2

}
, Cσ,γ :=

{
z ∈ C+ ; |z − σ| = γ

2

}
.855

856

As WΣ
σ does not vanish in an open neighbourhood of Dσ,γ it comes that 1

WΣ
σ

is857

holomorphic on this domain. Thus applying Cauchy formula yields858 (
1

WΣ
σ

)(l)

(σ) =
l!

2iπ

∫
Cσ,γ

1
WΣ
σ

(z)

(z − σ)l+1
dz.859

From Lemma 2.3 it comes that for any ε > 0 there exists Cε,γ,J > 0 such that860 ∣∣∣∣( 1

WΣ
σ

)
(z)

∣∣∣∣ ≤ Cε,γ,J eεσ, ∀z ∈ Cσ,γ .861

This directly implies862 ∣∣∣∣∣
(

1

WΣ
σ

)(l)

(σ)

∣∣∣∣∣ ≤ Cε,γ,J l!γl eεσ863

and ends the proof of Proposition 2.5.864

We shall now move to the proof of Proposition 2.2 which is the main objective of865

this section.866

Proof (of Proposition 2.2). Recall that the function N : R+ → R is the one867

appearing in (26) and that the subsequences Λj are defined in (37).868

We recall that the index k is fixed, as well as the value θ ∈ Conv(Gk). We intro-869

duce the new sequence Λ̃j obtained from Λj by replacing the k-th value λk,min(j,gk)870

by θ i.e.871

Λ̃j :=
(
Λj\{λk,min(j,gk)}

)
∪ {θ}.872

Notice that, using Proposition 7.1, the fact that Λj is a subsequence of Λ such that873

each term belong to a different group, and by the assumption on θ, we obtain that874

Λ̃j satisfies the gap condition (27) with ρ replaced by γ = ρ
p . Notice that {θ} ∈875

L
(
1, ε 7→ 1

ε

)
. Thus using Remark 2.2 and the arguments of the proof of Lemma 2.1876

it comes that Λ̃j ∈ L
(
γ, J̃

)
with J̃ depending only on N .877

With these notations and Proposition 7.1 it comes that878

1

Wk(z)
=

p∏
j=1

1

W Λ̃j
θ (z)

.879

Finally, using Leibniz rule (for derivatives), evaluating the result at z = θ and using880

Proposition 2.5 yield the claim.881

2.2. Lack of null-controllability in small time.882

The goal of this section is to prove the point ii. of Theorem 1.1 in the case of883

algebraically simple eigenvalues. Thus, in all this section we assume that η = 1.884

To do so we will disprove the observability inequality given by Lemma 1.1 at time885

T < T0(Y0).886
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Proof. Let (kn)n≥1 be an extraction such that887

lim
n→∞

ln

 max
l∈J1,gknK

∥∥∥∥∥ l∑
j=1

ψkn,j∏
i∈J1,lK6=j

(λkn,j−λkn,i)

∥∥∥∥∥
�∗


λkn,1

= T0(Y0).888

For any n ≥ 1, let ln be an integer achieving the maximum appearing in the previous889

formula. Since 1 ≤ ln ≤ gkn ≤ p for any n, we can find a l∗ ∈ J1, pK such that ln = l∗890

for an infinite number of values of n. Therefore, there exists another extraction891

(κn)n≥1 such that892

(56) lim
n→∞

ln ‖xn‖�∗
λκn,1

= T0(Y0),893

where894

xn :=
l∗∑
j=1

ψκn,j∏
i∈J1,l∗K6=j

(λκn,j − λκn,i)
= ψ[λκn,1, . . . , λκn,l∗ ].895

Moreover, we can assume that for any m ∈ J1, l∗ − 1K896

lim sup
n→+∞

ln ‖ψ[λκn,1, . . . , λκn,m]‖�∗
λκn,1

< T0(Y0),897

since if it is not the case, we can reduce the value of l∗ accordingly.898

Let T be any number such that, for some ε > 0,899

(57) max
m∈J1,l∗−1K

(
lim sup
n→+∞

ln ‖ψ[λκn,1, . . . , λκn,m]‖�∗
λκn,1

)
< T < T0(Y0)− ε,900

where the left-hand side term is replaced by 0 when l∗ = 1. We will prove that system901

(1) is not null-controllable at time T from Y0, which will obsviously imply the same902

result for all the values of T in (0, T0(Y0)).903

By (56), for n sufficiently large we have904

(58) ‖xn‖�∗ ≥ e
λκn,1(T0(Y0)−ε).905

Note that, by (14), we have xn = P ∗Y0
(zn) with906

zn :=

l∗∑
j=1

φκn,j
B∗φκn,j∏

i∈J1,l∗K6=j
(λκn,j − λκn,i)

.907

If system (1) is null-controllable at time T from Y0, then using Lemma 1.1 with908

zT = zn, it comes that909

(59)
∥∥∥P ∗Y0

(e−TA
∗
zn)
∥∥∥2

�∗
≤ C

∫ T

0

∣∣∣∣∣∣∣
l∗∑
j=1

e−λκn,jt∏
i∈J1,l∗K6=j

(λκn,j − λκn,i)

∣∣∣∣∣∣∣
2

dt.910

By definition of zn we have911

e−TA
∗
zn =

l∗∑
j=1

e−λκn,jT
ψκn,j∏

i∈J1,l∗K6=j
(λκn,j − λκn,i)

.912
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From Newton formula (see Proposition 7.3) and Lagrange theorem (see Proposi-913

tion 7.4), for any t ∈ [0, T ], there exists ξn,t in [λκn,1, λκn,l∗ ] such that914 ∣∣∣∣∣∣∣
l∗∑
j=1

e−λκn,jt∏
i∈J1,l∗K6=j

(λκn,j − λκn,i)

∣∣∣∣∣∣∣ ≤
tl
∗

l∗!
e−ξn,tt ≤ tl

∗

l∗!
e−λκn,1t.915

Thus, the right-hand side of (59) goes to 0 as n goes to +∞. Notice that if l∗ = 1 this916

last inequality is direct and one does not need to use Newton formula nor Lagrange917

theorem.918

From (58) and (13) it comes that919 ∥∥e−λκn,l∗TP ∗Y0
(zn)

∥∥
�∗ = e−λκn,l∗T ‖xn‖�∗ ≥ e

−ρT eλκn,l∗ (T0(Y0)−ε−T ) −→
n→+∞

+∞.920

We will use this inequality to prove that the left side of (59) goes to +∞. For921

this purpose we show that922

(60)
∥∥∥P ∗Y0

(e−TA
∗
zn)− e−λκn,l∗TP ∗Y0

(zn)
∥∥∥
�∗
−→
n→∞

0.923

Together with (12) it will disprove the observability inequality (59) and thus null-924

controllability of the system (1) at time T from Y0.925

Notice that, if l∗ = 1, then e−TA
∗
zn = e−λκn,l∗T zn and thus (60) is obvious. We926

assume in the rest of the proof that l∗ > 1. Notice that from Propositions 7.3 and 7.6927

it comes that928

P ∗Y0
(e−TA

∗
zn) =

l∗∑
j=1

eT (λκn,j)ψκn,j∏
i∈J1,l∗K6=j

(λκn,j − λκn,i)
= (eTψ)[λκn,1, . . . , λκn,l∗ ]929

=

l∗∑
m=1

eT [λκn,l∗ , . . . , λκn,m] ψ[λκn,m, . . . , λκn,1],930

931

with eT defined in (5), and also932

P ∗Y0
(zn) = ψ[λκn,1, . . . , λκn,p∗].933

Thus,934

P ∗Y0
(e−TA

∗
zn)− e−λκn,l∗TP ∗Y0

(zn) =

l∗∑
m=1

eT [λκn,l∗ , . . . , λκn,m] ψ[λκn,m, . . . , λκn,1]935

− eT [λκn,l∗ ] ψ[λκn,1, . . . , λκn,l∗ ]936

=

l∗−1∑
m=1

eT [λκn,l∗ , . . . , λκn,m] ψ[λκn,m, . . . , λκn,1]937

938

From Lagrange theorem (see Proposition 7.4), there is ξm ∈ [λκn,m, λκn,l∗ ] such that939

∣∣eT [λκn,m, . . . , λκn,l∗ ]
∣∣ =
|e(l∗−m)
T (ξm)|
(l∗ −m)!

≤ T l
∗−m

(l∗ −m)!
e−λκn,1T940
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and thus941 ∥∥∥P ∗Y0
(e−TA

∗
zn)− e−λκn,l∗TP ∗Y0

(zn)
∥∥∥
�∗
≤ C

l∗−1∑
m=1

e−λκn,1T ‖ψ[λκn,1, . . . , λκn,m]‖�∗ .942

Using the conditions (57) on T finally implies943 ∥∥∥P ∗Y0
(e−TA

∗
zn)− e−λκn,l∗TP ∗Y0

(zn)
∥∥∥
�∗
−→
n→∞

0944

and ends the proof on the lack of null-controllability at time T < T0(Y0).945

The computations done in the previous proof provide the following lower bound946

for the cost of controllability from Y0 at time T as defined by Lemma 1.1.947

Corollary 2.3. Let p ∈ N∗, r, ρ > 0 and N : (0,+∞) → R. Assume that948

Λ ∈ Lw(p, ρ,N ) and let (Gk)k ∈ G(Λ, p, r, ρ) be an associated grouping. Let T > 0949

and Y0 ⊂ X−�. Assume that η = 1. If system (1) is null-controllable from Y0 at time950

T then,951

M(Y0, T ) ≥ sup
k≥1

max
l∈J1,gkK

l!
√
λk,1

T l
‖(eTψ)[λk,1, . . . , λk,l]‖�∗952

where eT is defined by (5), ψ is defined by (14) and M(Y0, T ) the cost of controllability953

from Y0 at time T is defined in Lemma 1.1.954

Proof. Let k ≥ 1 and l ∈ J1, gkK. If system (1) is null-controllable at time T from955

Y0, we apply Lemma 1.1 with956

zT :=

l∑
j=1

φk,j
B∗φk,j∏

i∈J1,lK6=j
(λk,j − λk,i)

.957

By definition of zT we have958

e−TA
∗
zT =

l∑
j=1

e−λk,jT
φk,j
B∗φk,j∏

i∈J1,lK6=j
(λk,j − λk,i)

,959

and thus960

M(Y0, T )2 ≥
∥∥P ∗Y0

(e−TA
∗
zT )
∥∥2

�∗∫ T

0

∣∣∣∣ l∑
j=1

e−λk,jt∏
i∈J1,lK6=j

(λk,j − λk,i)

∣∣∣∣2dt

.961

From Newton formula (see Proposition 7.3) and Lagrange theorem (see Proposi-962

tion 7.4), for any t ∈ [0, T ], there exists ξt in [λk,1, λk,l] such that963 ∣∣∣∣∣∣∣
l∑

j=1

e−λk,jt∏
i∈J1,lK6=j

(λk,j − λk,i)

∣∣∣∣∣∣∣ ≤
tl

l!
e−ξtt ≤ T l

l!
e−λk,1t.964

Using Newton formula (see Proposition 7.3), we have965

P ∗Y0
(e−TA

∗
zT ) = (eTψ)[λk,1, . . . , λk,l],966

which ends the proof of Corollary 2.3.967
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3. Comparison with some already known results.968

In this section, we prove that we actually recover the known formulas for the969

minimal null-control time when there is no condensation of eigenvalues or when the970

eigenvectors are assumed to form a Riesz basis of X∗� . Doing so we will highlight in971

Proposition 3.2 that the actual minimal null-control time is always smaller than the972

value predicted by the formula that would be valid under the Riesz basis assumption.973

As all these results were proved for albreaically simple eigenvalues we assume in all974

this section that η = 1.975

Notice that the proofs in all this section only rely on the definition of the minimal976

null-control time (18) and thus do not depend on Theorem 1.1.977

3.1. When there is no condensation of eigenvalues.978

In this section we prove that, if the condensation index of the sequence Λ vanishes979

(the definition of c(Λ) is recalled in Appendix 7.5) then the expression (18) coincides980

with the known expression relating the minimal time for null-controllability to the981

observation of the eigenvectors φλ through the operator B∗.982

proposition 3.1. Assume that A and B satisfy the assumptions of Theorem 1.1983

with η = 1. If c(Λ) = 0, then, we have984

T0(X−�) = lim sup
λ→∞
λ∈Λ

− ln |B∗φλ|
λ

.985

This result was already proved in [5] with the additional assumption that the986

family of eigenvectors Φ = (φλ)λ∈Λ forms a Riesz basis of X∗� or in [7, Remark 1.15]987

in a more general framework encompassing the one studied here.988

Proof. Notice that when Y0 = X−�, the operator P ∗Y0
reduces to the identity.989

Thus, considering l = 1 in (18) always lead to990

T0(X−�) ≥ lim sup
λ→∞
λ∈Λ

− ln |B∗φλ|
λ

.991

We assume that992

(61) T0(X−�) > lim sup
λ→∞
λ∈Λ

− ln |B∗φλ|
λ

,993

and we will prove that c(Λ) > 0.994

We shall reason as in the proof of point ii. of Theorem 1.1 (see Sec. 2.2) but995

starting with the formula (16) instead of (17). We can find an integer l∗ ≥ 1, an996

extraction (κn)n≥1 and integers mn such that 1 ≤ mn ≤ mn + l∗ − 1 ≤ gκn and such997

that if998

xn := ψ[λκn,mn , . . . , λκn,mn+l∗−1],999

we have1000

lim
n→∞

ln ‖xn‖�∗
λκn,1

= T0(X−�).1001
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Moreover, we can assume that for any l ∈ J1, l∗ − 1K, we have for some ε > 01002

T̃ (l) := lim sup
n→+∞

ln

 max
m,r∈J1,gκnK

m≤r
r−m<l

‖ψ[λκn,m, . . . , λκn,r]‖�∗


λκn,1

< T0(X−�)− ε,1003

since, if it is not the case, we can reduce the value of l∗ accordingly. Note that, as1004 ∥∥P ∗Y0
φλ
∥∥
�∗ ≤ 1, by (61), we know that l∗ > 1.1005

From the definition of divided differences (see Definition 7.1), it comes that1006

xn =
ψ[λκn,mn+1, . . . , λκn,mn+l∗−1]− ψ[λκn,mn , . . . , λκn,mn+l∗−2]

λκn,mn+l∗−1 − λκn,mn
.1007

For n sufficiently large, we have1008

‖xn‖�∗ ≥ e
λκn,1(T0(X−�)−ε/2).1009

Using the definition of T̃ (l∗ − 1) it comes that, for n large enough,1010

1011

‖ψ[λκn,mn+1, . . . , λκn,mn+l∗−1]‖�∗ + ‖ψ[λκn,mn , . . . , λκn,mn+l∗−2]‖�∗1012

≤ eλκn,1(T̃ (l∗−1)+ε/2).10131014

Thus, since l∗ ≥ 2, we can combine the last two estimates to obtain1015

|λκn,mn+1 − λκn,mn | ≤ |λκn,mn+l∗−1 − λκn,mn |

≤e−λκn,1(T0(X−�)−ε−T̃ (l∗−1))

≤eρ(T0(X−�)−ε−T̃ (l∗−1))e−λκn,mn (T0(X−�)−ε−T̃ (l∗−1)).

1016

In particular, we have1017

lim sup
n→∞

− ln |P ′Gκn (λκn,m)|
λκn,mn

≥ lim sup
n→∞

− ln |λκn,mn+1 − λκn,mn |
λκn,mn

1018

≥ T0(X−�)− ε− T̃ (l∗ − 1) > 0.10191020

Using Proposition 7.12, we conclude that c(Λ) > 0, and the claim is proved.1021

3.2. When there is a Riesz basis of eigenvectors.1022

As already mentioned the null-control problem for (1) has been considered in [5]1023

with the additional assumption that the family (φλ)λ∈Λ forms a Riesz basis of X∗� .1024

Observe that it is equivalent to ask that (φλ/ ‖φλ‖)λ∈Λ is a Riesz basis of X.1025

With this additional assumption, the minimal null-control time from Y0 = X−�1026

was proved to be equal to1027

(62) T ∗ := lim sup
λ→∞
λ∈Λ

ln 1
|B∗φλ| |E′Λ(λ)|

λ
,1028

where the interpolating function EΛ is defined in (125).1029
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Remark 3.1. Notice that, since φλ is normalized in X∗� , there exists C > 0 such1030

that1031
1

Cλ
≤ ‖φλ‖ ≤ C, ∀λ,1032

so that the value of T ∗ in (62) does not change if one considers the normalization of1033

eigenvectors in X instead of in X∗� .1034

In our setting, we prove that the formula above for T ∗ is always an upper bound1035

of the actual minimal null-control time, without assuming the Riesz basis condition.1036

proposition 3.2. Assume that A and B satisfy the assumptions of Theorem 1.11037

with η = 1. Then, T0(X−�) ≤ T ∗ where T ∗ is defined by (62).1038

Proof. First step: we begin by proving that the grouping designed in Proposi-1039

tion 7.1 ensures a simpler expression for T ∗. Let (Gk)k≥1 ∈ G(Λ, p, r, ρ) be a grouping1040

as introduced in Section 1.3.2. For each λ ∈ Λ, we denote by G[λ] the unique group1041

in (Gk)k≥1 that contains λ. Then, we have1042

(63) T ∗ = lim sup
λ→∞
λ∈Λ

ln 1
|B∗φλ| |P ′

G[λ]
(λ)|

λ
,1043

where, for each group G, the polynomial PG is defined by (6).1044

• Let G be a group of eigenvalues and λ ∈ G. We prove that, for any finite subset M1045

of Λ \G, whose cardinal is denoted by n := #M , we have1046

(64)
∏
µ∈M

|λ− µ| ≥ rn
⌊
n

2p

⌋
!1047

where r := ρ
p . To this end, for any j ∈ J1, pK, we define1048

Mj := {µ ∈M ; ∃k ≥ 1 such that µ = λk,j}.1049

Since the groups are covering Λ, we have a disjoint union M =

p⋃
j=1

Mj . It follows that1050

there exists j0 ∈ J1, pK such that #Mj0 ≥
⌊
n
p

⌋
. From (12) it comes that1051

|λ− µ| ≥ r, ∀µ ∈M,1052

and1053

|µ− µ′| ≥ r, ∀j ∈ J1, pK,∀µ, µ′ ∈Mj , µ 6= µ′.1054

Then,1055

∏
µ∈M

|λ− µ| =

 p∏
j=1
j 6=j0

∏
µ∈Mj

|λ− µ|


 ∏
µ∈Mj0

|λ− µ|

1056

≥
(
r#(M\Mj0

)
)(

r#(Mj0
)
)⌊#Mj0

2

⌋
!1057

1058

This proves (64).1059
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• From (64) we apply [5, Theorem 3.8] to obtain that for any subsequence (λn)n≥1 ⊂1060

Λ,1061

(65) lim
n→∞

 ln 1
|E′Λ(λn)|

λn
−

ln 1
|P ′
G[λn]

(λn)|

λn

 = 0.1062

This directly implies (63).1063

Remark 3.2. Notice that (64) is not the exact assumption required in [5, Theo-1064

rem 3.8]. For this result the authors assumed1065

(66)
∏
µ∈M

|λ− µ| ≥ rnn!,1066

with the same notation as in the proof above. We claim that with the exact same proof1067

it is sufficient to assume (64). Indeed, in the proof of [5, Theorem 3.8], the only point1068

were assumption (66) is used is the Second step in the middle of page 2097. Then1069

the term n! is estimated asymptotically using Stirling formula to prove that the term1070

Γk,1 goes to 0 as k goes to ∞. As the rest of the proof is long, technical and remain1071

unchanged when replacing (66) by (64) we do not reproduce it here for the sake of1072

brevity.1073

Second step: we end the proof of Proposition 3.2. Recall that from (32) we have1074

that there exists Cp,ρ > 0 such that for any k ≥ 1, l ∈ J1, gkK and any j ∈ J1, lK,1075 ∏
i∈J1,lK6=j

|λk,j − λk,i| ≥ Cp,ρ|P ′Gk(λk,j)|.1076

As we have considered normalized eigenvectors, and by (4), for any k ≥ 1 and1077

any l ∈ J1, gkK, we have1078 ∥∥∥∥∥∥∥
l∑

j=1

ψk,j∏
i∈J1,lK6=j

(λk,j − λk,i)

∥∥∥∥∥∥∥
�∗

≤

∥∥∥∥∥∥∥
l∑

j=1

φk,j
B∗φk,j∏

i∈J1,lK6=j
(λk,j − λk,i)

∥∥∥∥∥∥∥
�∗

1079

≤ l max
j∈J1,lK

∥∥∥∥∥∥∥
φk,j
B∗φk,j∏

i∈J1,lK6=j
(λk,j − λk,i)

∥∥∥∥∥∥∥
�∗

1080

≤ l max
j∈J1,lK

1

|B∗φk,j |
∏

i∈J1,lK6=j
|λk,j − λk,i|

.1081

1082

Using (32) this leads to1083 ∥∥∥∥∥∥∥
l∑

j=1

ψk,j∏
i∈J1,lK6=j

(λk,j − λk,i)

∥∥∥∥∥∥∥
�∗

≤ Cl max
j∈J1,lK

1

|B∗φk,j ||P ′Gk(λk,j)|
.1084
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Thus,1085

ln max
l∈J1,gkK

∥∥∥∥∥ l∑
j=1

ψk,j∏
i∈J1,lK 6=j

(λk,j−λk,i)

∥∥∥∥∥
�∗


λk,1

≤ max
j∈J1,gkK

ln 1
|B∗φk,j ||P ′Gk (λk,j)|

λk,j

λk,j
λk,1

+
ln(Cl)

λk,1
.1086

1087

Then, using (63), we obtain1088

T0(X−�) ≤ T ∗.1089

We now prove that we indeed recover exactly the expression of the minimal1090

time (62) (or (63)) when we assume that the eigenvectors form a Riesz basis.1091

proposition 3.3. Assume that A and B satisfy the assumptions of Theorem 1.11092

with η = 1 and that (φλ)λ∈Λ forms a Riesz basis of X∗� . Then, T0(X−�) = T ∗ where1093

T ∗ is defined by (63).1094

Remark 3.3. It will appear clearly in the proof that the Riesz basis assumption
is much stronger than what we really need. The only thing that we actually use at
the very beginning of the proof, is that the spectral radius of the inverse of the Gram
matrix Mk := GramX∗�

(φk,1, . . . , φk,gk) satisfies

sup
k≥1

ρ(M−1
k ) < +∞.

A careful inspection of the proof shows that it is in fact sufficient to assume that

lim sup
k→∞

ln ρ(M−1
k )

λk,1
= 0.

Note in particular that, in practice, estimating such a spectral radius in each group is1095

much simpler than proving that the whole family is a Riesz basis.1096

Proof. As we assumed that (φλ)λ∈Λ is a Riesz basis of X∗� it comes that there1097

exists C > 0 such that for any k ≥ 1, for any αk,1, . . . , αk,gk ∈ R,1098

max
j∈J1,gkK

|αk,j | ≤

 gk∑
j=1

α2
k,j

 1
2

≤ C

∥∥∥∥∥∥
gk∑
j=1

αk,jφk,j

∥∥∥∥∥∥
�∗

,1099

and thus1100

max
j∈J1,gkK

|αk,j | ≤ C max
l∈J1,gkK

∥∥∥∥∥∥
l∑

j=1

αk,jφk,j

∥∥∥∥∥∥
�∗

.1101

Setting1102

αk,j :=
1

B∗φk,j
∏

i∈J1,gkK6=j
(λk,j − λk,i)

,1103

yield1104

max
j∈J1,gkK

1

|B∗φk,j |
∏

i∈J1,gkK6=j
|λk,j − λk,i|

≤ C

∥∥∥∥∥∥∥
gk∑
j=1

φk,j
B∗φk,j∏

i∈J1,gkK6=j
(λk,j − λk,i)

∥∥∥∥∥∥∥
�∗

1105

≤ C max
1≤l≤gk


∥∥∥∥∥∥∥

l∑
j=1

φk,j
B∗φk,j∏

i∈J1,lK6=j
(λk,j − λk,i)

∥∥∥∥∥∥∥
�∗

 .1106

1107
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It follows that for any j ∈ J1, gkK,1108

1

|B∗φk,j ||P ′Gk(λk,j)|
=

1

|B∗φk,j |
∏

i∈J1,gkK6=j
|λk,j − λk,i|

1109

≤ C max
1≤l≤gk


∥∥∥∥∥∥∥

l∑
j=1

φk,j
B∗φk,j∏

i∈J1,lK6=j
(λk,j − λk,i)

∥∥∥∥∥∥∥
�∗

 .1110

1111

Thus, taking the logarithm,1112

− ln |B∗φk,j ||P ′Gk(λk,j)|
λk,j

≤

ln max
l∈J1,gkK

∥∥∥∥∥ l∑
j=1

φk,j
B∗φk,j∏

i∈J1,lK6=j
(λk,j−λk,i)

∥∥∥∥∥
�∗


λk,1

+
lnC

λk,1
.1113

1114

Since by definition we have Gk = G[λk,j ], this ends the proof of Proposition 3.3.1115

4. The case of multiple eigenvalues.1116

In this section we prove Theorem 1.1 in the case where we allow algebraic multi-1117

plicity for the eigenvalues i.e. η ≥ 2. As previously, the main issue is the resolution1118

of the block moment problem given in (23). This is detailed in the next subsection.1119

4.1. Resolution of block moment problems.1120

We prove in this subsection the following theorem which is the generalization of1121

Theorem 2.1.1122

theorem 4.1. Let T ∈ (0,+∞]. Let p ∈ N∗, r, ρ > 0 and N : (0,+∞) → R.1123

Assume that Λ ∈ Lw(p, ρ,N ) and let (Gk)k ∈ G(Λ, p, r, ρ) be an associated grouping.1124

We also consider an integer η ≥ 1.1125

For any ε > 0, there exists a constant Cε,T,p,r,ρ,η,N > 0 such that for any k ≥ 1,1126

for any multi-index αk ∈ Ngk with |αk|∞ ≤ η, any set of values ωαk ∈ C|αk|, there1127

exists qk ∈ L2(0, T ;C) satisfying1128

(67)


∫ T

0

qk(t)
(−t)l′

l′!
e−λk′,j′ t dt = 0, ∀k′ 6= k, ∀j′ ∈ J1, gk′K,∀l′ ∈ J0, ηK,∫ T

0

qk(t)
(−t)l

l!
e−λk,jt dt = ωlk,j , ∀j ∈ J1, gkK,∀l ∈ J0, αk,j − 1K,

1129

and the bound1130

(68) ‖qk‖L2(0,T ;C) ≤ Cε,T,p,r,ρ,η,N eελk,1 max
µ∈Ngk
µ≤αk

∣∣∣ω[λ
(µ1)
k,1 , . . . , λ

(µk)
k,gk

]
∣∣∣ .1131

Moreover, up to the factor eελk,1 , this last estimate is sharp: any solution qk of (67),1132

satisfy1133

(69) ‖qk‖L2(0,T ;C) ≥ C̃p,η max
µ∈Ngk
µ≤α

∣∣∣ω[λ
(µ1)
k,1 , . . . , λ

(µk)
k,gk

]
∣∣∣ ,1134

for some C̃p,η > 0.1135
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In the case p = 1 (usual gap condition), a solution to (67) is given by the biorthogonal1136

family built in [4]. Here, we extend this resolution using a weak gap condition (8) and1137

we prove that the obtained estimates are uniform with respect to Λ in a given class1138

Lw(•, •, •).1139

Corollary 4.1. Let T ∈ (0,+∞]. Let p ∈ N∗, r, ρ > 0 and N : (0,+∞) → R.1140

Assume that Λ ∈ Lw(p, ρ,N ) and let (Gk)k ∈ G(Λ, p, r, ρ) be an associated grouping.1141

We consider an integer η ≥ 1 and for any k we suppose given a multi-index1142

αk ∈ Ngk such that |αk|∞ ≤ η.1143

Then, for any k ≥ 1, for any j ∈ J1, gkK and any l ∈ J0, αk,j − 1K there exists1144

qk,j,l ∈ L2(0, T ;C) satisfying1145 ∫ T

0

qk,j,l(t)
(−t)l′

l′!
e−λk′,j′ tdt = δk,k′δj,j′δl,l′ ,1146

for any k, k′ ≥ 1, any j ∈ J1, gkK, j′ ∈ J1, gk′K and any l ∈ J0, αk,j − 1K, l′ ∈1147

J0, αk′,j′ − 1K. Moreover, for any ε > 0, there exists a constant Cε,T,p,r,ρ,η,N > 0 such1148

that for any k ≥ 1, any j ∈ J1, gkK and any l ∈ J0, αk,j − 1K, we have1149

1150

‖qk,j,l‖L2(0,T ;C)1151

≤ Cε,T,p,r,ρ,η,N
eελk,1∏

i∈J1,gkK6=j
|λk,j − λk,i|αk,i

1(
min

i∈J1,gkK 6=j
|λk,j − λk,i|

)αk,j−l−1
.1152

1153

The proof of Corollary 4.1 is left to the reader: it follows closely the one of Corollary 2.11154

and makes use of the estimate given in Proposition 7.11 instead of the Newton formula1155

for standard divided differences.1156

Remark 4.1. Contrary to the estimate in Corollary 2.1, the above estimate is1157

not optimal in general, even if we do not consider the exponential factor. Indeed,1158

some cancellations can occur depending on the relative positions and multiplicities of1159

the eigenvalues that are not taken into account in the above general bound. In actual1160

examples, one needs to compute carefully the coefficients of the generalized divided1161

differences introduced in Proposition 7.11 to see whether or not a sharper estimate1162

can be obtained.1163

Here also, the proof of Theorem 4.1 relies on the resolution of the block moment1164

problem (67) with T = +∞ and then on a restriction argument. For pedagogical1165

resaons (the proof being less technical) let us present first this restriction argument1166

(which is the generalization of Proposition 2.3).1167

proposition 4.1. Let p ∈ N∗, r, ρ > 0 and N : (0,+∞) → R. Assume that1168

Λ ∈ Lw(p, ρ,N ) and let (Gk)k ∈ G(Λ, p, r, ρ) be an associated grouping. We also1169

consider an integer η ≥ 1.1170

For any T > 0, there exists a constant CT,p,r,ρ,η,N > 0 such that for any q̃ ∈
L2(0,+∞;C), there exists q ∈ L2(0, T ;C) satisfying∫ T

0

q(t)
(−t)l

l!
e−λt dt =

∫ +∞

0

q̃(t)
(−t)l

l!
e−λt dt, ∀λ ∈ Λ,∀l ∈ J0, ηK,

and the estimate

‖q‖L2(0,T ;C) ≤ CT,p,r,ρ,η,N ‖q̃‖L2(0,+∞;C).
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Proof. For any h > 0, we define

Λh :=

η⋃
l=0

(Λ + lh).

Using Remark 2.2 and Lemma 2.1 we have that Λh ∈ Lw(pη, ρ, Ñ ) for some Ñ which1171

does not depend on h. We suppose given a fixed q̃ and, for any h > 0, we can1172

apply Proposition 2.3 with the sequence Λh and obtain the existence of a function1173

qh ∈ L2(0, T ;C) such that1174

(70)

∫ T

0

qh(t)e−(λ+lh)tdt =

∫ +∞

0

q̃(t)e−(λ+lh)tdt, ∀λ ∈ Λ,∀l ∈ J0, ηK,1175

and satisfying moreover the uniform estimate

‖qh‖L2(0,T ;C) ≤ CT,pη,r,ρ,Ñ ‖q̃‖L2(0,+∞;C), ∀h > 0.

We can then find a subsquence (qhn)n that weakly converges towards some q ∈1176

L2(0, T ;C) such that ‖q‖L2(0,T ;C) ≤ CT,pη,r,ρ,Ñ ‖q̃‖L2(0,+∞;C). We will show that q1177

solves the required equations.1178

Let λ ∈ Λ and l ∈ J0, η − 1K be fixed. Combining the equations (70) to make1179

appear divided differences, we have the equality1180

(71)

∫ T

0

qhn(t)et[λ, . . . , λ+ lhn] dt =

∫ +∞

0

q̃(t)et[λ, . . . , λ+ lhn] dt,1181

where et is defined in (5). The Lagrange theorem (see Proposition 7.4) implies that,
for any t and any n, there is a ξt,n ∈ [λ, λ+ lhn] such that

et[λ, . . . , λ+ lhn] =
(−t)l

l!
e−ξt,nt,

which implies that |et[λ, . . . , λ+ lhn]| ≤ tl

l! e
−λt and

et[λ, . . . , λ+ lhn] −−−−→
n→∞

(−t)l

l!
e−λt.

By the Lebesgue dominated-convergence theorem we deduce the strong convergence1182

in L2(0,+∞;C) of t 7→ et[λ, . . . , λ+ lhn] towards t 7→ (−t)l
l! e−λt and the claim follows1183

by weak-strong convergence in (71).1184

Let us now turn to the resolution of the block moment problem (67) for T = +∞.1185

The next proposition is the generalization of Proposition 2.1.1186

proposition 4.2. Let p ∈ N∗, r, ρ > 0 and N : (0,+∞) → R. Assume that1187

Λ ∈ Lw(p, ρ,N ) and let (Gk)k ∈ G(Λ, p, r, ρ) be an associated grouping. We also1188

consider an integer η ≥ 1.1189

For any ε > 0, there exists a constant Cε,p,r,ρ,η,N > 0 such that for any k ≥ 1, for1190

any multi-index αk ∈ Ngk with |αk|∞ ≤ η, and any set of values ωαk ∈ C|αk|, there1191

exists qk ∈ L2(0,+∞;C) satisfying1192 
∫ +∞

0

qk(t)
(−t)l′

l′!
e−λk′,j′ t dt = 0, ∀k′ 6= k, ∀j′ ∈ J1, gk′K,∀l′ ∈ J0, ηK,∫ +∞

0

qk(t)
(−t)l

l!
e−λk,jt dt = ωlk,j , ∀j ∈ J1, gkK,∀l ∈ J0, αk,j − 1K,

1193
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and the bound1194

(72) ‖qk‖L2(0,+∞;C) ≤ Cε,p,r,ρ,η,N eελk,1 max
µ∈Ngk
µ≤αk

∣∣∣ω[λ
(µ1)
k,1 , . . . , λ

(µk)
k,gk

]
∣∣∣ .1195

Before getting to the proof let us mention that Propositions 4.1 and 4.2 imply1196

Theorem 4.1. The lower bound (69) is proved in the exact same way as (30) and is1197

thus left to the reader.1198

Proof. As in the previous proof, for h > 0, we define

Λh :=

η⋃
l=0

(Λ + lh),

that belongs to the class Lw(pη, ρ, Ñ ). For any k ≥ 1, we set

Gk,h :=

η⋃
l=0

(Gk + lh).

For any h < r/(2η), the family (Gk,h)k is a grouping in G(Λh, pη, r/2, ρ+ r/2).1199

Now, we are given a fixed index k. We observe that, there exists a h0 ∈ (0, r/(2η))1200

(possibly depending on k) such that, for any h < h0, the sets Gk, Gk +h, . . . , Gk + ηh1201

are pairwise disjoint.1202

Since we need to take into account precisely the multiplicities we are interested
in, encoded in the multi-index αk, we introduce the modified k-th group

G̃k,h =

gk⋃
j=1

{λk,j , λk,j + h, . . . , λk,j + (αk,j − 1)h} ⊂ Gk,h,

and the new family

Λ̃h =

⋃
l≥1
l 6=k

Gl,h

 ∪ G̃k,h,
which satisfies Λ̃h ⊂ Λh and therefore also belongs to the class Lw(pη, ρ, Ñ ).1203

By construction, the family of points in G̃k,h, that we denote by µk,h,1 < · · · <1204

µk,h,|αk| is an approximation of the weighted family ((λk,1, . . . , λk,gk), αk) in the sense1205

of Definition 7.2. Let F : R→ C be a smooth function satisfying the conditions1206

(73)
1

l!
F (l)(λk,j) = ωlk,j , ∀j ∈ J1, gkK,∀l ∈ J0, αk,j − 1K.1207

For each h > 0, we apply Proposition 2.1 to the family Λ̃h to find a solution qk,h ∈1208

L2(0,+∞;C) to the following moment problem1209

(74)


∫ +∞

0

qk,h(t)e−(λk′,j′+hl)t dt = 0, ∀k′ 6= k,∀j′ ∈ J1, gk′K,∀l ∈ J0, ηK,∫ +∞

0

qk,h(t)e−(λk,j+hl)t dt = F (λk,j + hl), ∀j ∈ J1, gkK,∀l ∈ J0, αk,j − 1K,
1210
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and satisfying the following bound, with a constant uniform with respect to h,

‖qk,h‖L2(0,+∞;C) ≤ Cε,ηp,r,ρ,Ñ e
ελk,1 max

i∈J1,|αk|K

∣∣∣F [µk,h,1, . . . , µk,h,i]
∣∣∣.

By Proposition 7.7, we know that the right-hand side in the above estimate converges1211

when h → 0 towards a similar quantity with generalized divided differences instead1212

of the usual divided differences. It follows that we can extract a subsequence (qk,hn)n1213

that weakly converges in L2(0,+∞;C) towards a function qk that satisifies the bound1214

(72).1215

Finally, by the same argument as in the proof of Proposition 4.1 above, we can1216

combine the equations (74) to make appear divided differences on both side and pass1217

to the weak-strong limit in the integral to finally get1218 
∫ +∞

0

qk(t)
(−t)l

l!
e−λk′,j′ t dt = 0, ∀k′ 6= k, ∀j′ ∈ J1, gk′K,∀l ∈ J0, ηK,∫ +∞

0

qk(t)
(−t)l

l!
e−λk,jt dt = F [λ

(l)
k,j ], ∀j ∈ J1, gkK,∀l ∈ J0, αk,j − 1K,

1219

which is exactly our claim since, by the computation rule (121) and by (73), we have1220

F [λ
(l)
k,j ] = ωlk,j .1221

4.2. Proof of the minimal null-control time property.1222

In this section we end the proof of Theorem 1.1. The extension of Corollaries 2.21223

and 2.3 as well as their proofs to the case η ≥ 2 are straightforward and left to the1224

reader.1225

Controllability in large time: proof of point i. of Theorem 1.1.1226

Let T > T0(Y0) and y0 ∈ Y0. For any k ≥ 1, let qk ∈ L2(0, T ;C) be given by1227

Theorem 4.1 with1228

ωlk,j :=
〈
y0, (eTψ)[λ

(l+1)
k,j ]

〉
−�,�

.1229

As in Sec. 2.1.3, since T > T0(Y0), the estimates (68) imply that1230

u := −
∑
k≥1

qk(T − •) ∈ L2(0, T ;C).1231

Moreover, as qk solves the block moment problem (67) it comes that u solves the1232

moment problem (21) and thus y(T ) = 0.1233

Lack of null-controllability in small time: proof of point ii. of Theorem 1.1.1234

Let1235

(75) φ̃lk,j :=
φlk,j
B∗φ0

k,j

, ∀k ≥ 1, ∀j ∈ J1, gkK, ∀l ∈ J0, αk,j − 1K.1236

Then, ψlk,j = P ∗Y0
φ̃lk,j .1237

Let (kn)n≥1 be an extraction such that1238

lim
n→∞

ln

(
max
µ≤αk

∥∥∥ψ[λ(µ1)
kn,1

, . . . , λ
(µgkn

)

kn,gkn

]∥∥∥
�∗

)
λkn,1

= T0(Y0).1239
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For any n ≥ 1, let µn ≤ αk be a multi-index in Ngk achieving the maximum appearing1240

in the previous formula. Since αk ≤ (η, . . . , η), we can find an integer l∗ and a multi-1241

index µ∗ ∈ Nl∗ such that µn = µ∗ for an infinite number of values of n. Therefore,1242

there exists another extraction (κn)n≥1 such that1243

lim
n→∞

ln
∥∥∥ψ[λ(µ∗1)

κn,1
, . . . , λ

(µ∗l∗ )
κn,l∗

]∥∥∥
�∗

λκn,1
= T0(Y0),1244

Moreover, we can assume that for any µ ∈ Nl∗ satisfying µ ≤ µ∗ and µ 6= µ∗, then1245

lim sup
n→+∞

ln
∥∥∥ψ[λ(µ1)

κn,1
, . . . , λ

(µl)
κn,l∗

]∥∥∥
�∗

λκn,1
< T0(Y0),1246

since if it is not the case, we can reduce the value of µ∗ accordingly.1247

For any n ≥ 1, let1248

zn := φ̃
[
λ

(µ∗1)
κn,1

, . . . , λ
(µ∗l∗ )
κn,l∗

]
,1249

where φ̃lk,j is defined by (75). From (20) we obtain that1250

e−tA
∗
zn = (etφ̃)

[
λ

(µ∗1)
κn,1

, . . . , λ
(µ∗l∗ )
κn,l∗

]
.1251

Recall that B∗φlk,j = 0 for any l ≥ 1. Then plugging zn in the observability inequal-1252

ity (25) and following the lines of Sec. 2.2, proves the lack of null-controllability of (1)1253

from Y0 at time T < T0(Y0) and ends the proof of Theorem 1.1.1254

5. Examples.1255

In this section we study various examples. In Sec. 5.1, we design ‘abstract ex-1256

amples’ to highlight the phenomenon described in Section 1.3.4: the condensation1257

of eigenvectors can compensate the condensation of eigenvalues. More precisely we1258

design an example which is null-controllable in arbitrary time but with an arbitrary1259

condensation of the eigenvalues. We also give examples to illustrate the new settings1260

covered by our analysis when the eigenvalues are algebraically multiple in the absence1261

of a gap condition. The interest of these abstract examples is to highlight the different1262

phenomena as the computations are straightforward.1263

Finally, we provide in Sec. 5.2, actual examples of one dimensional coupled1264

parabolic controlled systems that have motivated the present study. The precise anal-1265

ysis of null-controllability for those systems was not possible using existing results in1266

the literature.1267

5.1. Abstract examples: a possible compensation of condensation of1268

eigenvalues.1269

The design of these abstract examples is inspired from the work [3]. Our goal is1270

to illustrate, in particular, the fact that, even if the control operator has no influence1271

on the minimal null-control time, the knowledge of the condensation index of the1272

eigenvalues of the operator A is not sufficient to understand the null-controllability1273

properties of system (1).1274

Let A be a positive definite self-adjoint operator with compact resolvent in a1275

Hilbert space H whose eigenvalues (µk)k≥1 are assumed to be sorted in increasing1276
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order. One can think of A, for instance, as the Laplace operator −∂xx or any Sturm-1277

Liouville operator with homogeneous Dirichlet boundary conditions.1278

If we denote by (ϕk)k≥1 a corresponding Hilbert basis of eigenvectors, A may be1279

written1280

A =
∑
k≥1

µk (•, ϕk)H ϕk, D(A) =

x ∈ H ;
∑
k≥1

µ2
k (x, ϕk)

2
H < +∞

 ,1281

where (•, •)H denotes the scalar product in H. We assume that (µk)k≥1 satisfies (7)1282

and (8) with p = 1, i.e., satisfies the so-called gap property. Let ρ > 0 be such that1283

(76) 0 < ρ < inf
k≥1

(µk+1 − µk)1284

and f : σ(A)→ R a positive function defined on σ(A) the spectrum of A satisfying1285

(77) 0 < f(µk) < ρ, ∀k ≥ 1.1286

Let f(A) be the operator defined on D(A) by1287

f(A) :=
∑
k≥1

f(µk) (•, ϕk)H ϕk.1288

Let x0 ∈ H fixed satisfying1289

(78) | (x0, ϕk)H | ≥ e
−√µk , ∀k ≥ 1.1290

1291

Remark 5.1. This vector x0 will be used to design the control operator B. This1292

assumption will ensure that the terms B∗φλ appearing in the definition (18) have1293

no influence. This will allow us to really emphasize the role of the condensation of1294

eigenvectors.1295

5.1.1. Perturbation of a 2× 2 Jordan block.1296

Let X = H ×H,1297

(79) A =

(
A I
0 A+ f(A)

)
, D(A) = D(A)×D(A),1298

and1299

(80) B : u ∈ R 7→ u

(
0
x0

)
∈ X.1300

It is easy to see that (−A, D(A)) generates a C0-semigroup on X and that B : R→ X1301

is bounded. Thus we consider for this example that X∗� = X = X−� and Y0 = X.1302

The spectrum of (A∗, D(A)) is given by1303

Λ = {µk, µk + f(µk) ; k ≥ 1}.1304

proposition 5.1. Let us consider the controlled system (1) with A and B given1305

by (79)-(80).1306
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i. For any function f satisfying (77), null-controllability from X holds in any1307

time i.e. T0(X) = 0.1308

ii. For any τ ∈ [0,+∞], there exists a function f satisfying (77) such that c(Λ) =1309

τ .1310

This gives a first example in this setting where the minimal time is not related to1311

the condensation index. As it will appear from the proof, see (81), this is due to a1312

condensation of eigenvectors compensating the condensation of eigenvalues.1313

Proof. The proof of point ii. directly follows from straightforward computations1314

using Proposition 7.12 with the explicit choices f : s 7→ ρe−
√
s, f : s 7→ ρe−cs with1315

c > 0 or f : s 7→ ρe−s
2

.1316

We now turn to the computation of the minimal null-control time. Using (76)1317

and (77), it comes that (7) and (8) are satisfied with p = 2. We define our grouping1318

by setting λk,1 := µk and λk,2 := µk + f(µk). The associated normalized eigenvectors1319

are1320

φk,1 :=
1√

1 + f(µk)2

(
−f(µk)

1

)
ϕk, φk,2 :=

(
0
1

)
ϕk,1321

which do form a complete family in X. Moreover, for all k ≥ 1,1322

B∗φk,1 =
1√

1 + f(µk)2
(x0, ϕk)H , and B∗φk,2 = (x0, ϕk)H ,1323

so that, with (14), we have1324

ψk,1 =
1

(x0, ϕk)H

(
−f(µk)

1

)
ϕk, ψk,2 =

1

(x0, ϕk)H

(
0
1

)
ϕk.1325

From Definition (17), we have1326

T0(X) = lim sup
k→∞

ln
(

max
{
‖ψk,1‖ , ‖ψk,2−ψk,1‖f(µk)

})
µk

.1327

One has1328

(81)
‖ψk,2 − ψk,1‖

f(µk)
=

1

| (x0, ϕk)H |

∥∥∥∥(1
0

)
ϕk

∥∥∥∥ =
1

| (x0, ϕk)H |
.1329

Using (78) and (77) we easily deduce that1330

T0(X) = lim sup
k→∞

ln 1
|(x0,ϕk)H |

µk
= 0.1331

Remark 5.2. Notice that,1332

‖φk,2 − φk,1‖2 =
2
(

1 + f(µk)2 −
√

1 + f(µk)2
)

1 + f(µk)2
−→
k→∞

0,1333

thus the eigenvectors of A∗ do not form a Riesz basis of X. If this family were a1334

Riesz basis, then we would deduce from [5] that the minimal null-control time would1335

be equal to the condensation index c(Λ).1336
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Remark 5.3. Let us consider in the same setting the evolution problem (1) given1337

by1338

A =

(
A I
0 A

)
.1339

In this case, the operator A∗ has spectrum σ(A∗) = {µk ; k ≥ 1} with algebraically1340

double eigenvalues satisfying the gap property and an associated Hilbert basis of (gen-1341

eralized) eigenvectors given by1342

φ0
k =

(
0
1

)
ϕk, and φ1

k =

(
1
0

)
ϕk.1343

Notice that from (81) one has1344

ψk,2 − ψk,1
f(µk)

=
1

(x0, ϕk)H

(
1
0

)
ϕk =

φ1
k

B∗φ0
k

.1345

Thus, the analysis of (79)-(80), is unchanged if ones sets f = 0.1346

5.1.2. Algebraically multiple eigenvalues.1347

Let X = H ×H ×H. Let β > 0 and g : σ(A)→ R be such that1348

(82) g(µk) = ρe−βµk ,1349

with ρ satisfying (76). Let1350

(83) A =

A I 0
0 A 0
0 0 A+ g(A)

 , D(A) = D(A)×D(A)×D(A),1351

and1352

(84) B : u ∈ R 7→ u

 0
x0

x0

 .1353

Again B is a bounded control operator and we also set for this exampleX∗� = X = X−�1354

and Y0 = X.1355

The spectrum of (A∗, D(A)) is given by1356

Λ = {µk, µk + g(µk) ; k ≥ 1}.1357

proposition 5.2. Let us consider the controlled system (1) with A and B given1358

by (83)-(84). Then,1359

(85) T0(X) = 2β = 2 c(Λ).1360

Remark 5.4. In this case, the family of (generalized) eigenvectors do form a1361

Hilbert basis in X. However due to the presence of algebraically multiple eigenvalues1362

one cannot compute the value of the minimal null-control time using [5]. Its value1363

is still related to the condensation index of Λ but also depends on the multiplicity of1364

each eigenvalue in the system.1365
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Proof. From (82), we see that the eigenvalues are geometrically simple. Then, it1366

comes that (7) and (8) are satisfied with p = 2. We define our grouping by setting1367

λk,1 := µk and λk,2 := µk + g(µk).1368

In this setting, the eigenvalue λk,1 is algebraically double and λk,2 is algebraically1369

simple. The associated eigenvectors and generalized eigenvectors of A∗ are1370

φ0
k,1 :=

0
1
0

ϕk, φ1
k,1 :=

1
0
0

ϕk, φ0
k,2 :=

0
0
1

ϕk,1371

which obviously form a complete family in X. Moreover, for all k ≥ 1,1372

B∗φ0
k,1 = B∗φ0

k,2 = (x0, ϕk)H ,1373

leading to1374

ψ0
k,1 =

1

(x0, ϕk)H

0
1
0

ϕk, ψ0
k,2 =

1

(x0, ϕk)H

0
0
1

ϕk,1375

and1376

ψ1
k,1 =

1

(x0, ϕk)H

1
0
0

ϕk.1377

To compute the minimal time T0(X), let us estimate the different terms appearing1378

in (17). We have ψ[λk,1] = ψ0
k,1 and ψ[λk,1, λk,1] = ψ1

k,1 implying1379

‖ψ[λk,1]‖ = ‖ψ[λk,1, λk,1]‖ =
1

| (x0, ϕk)H |
.1380

Using Proposition 7.10, it only remains to compute and estimate the generalized1381

divided difference ψ[λk,1, λk,1, λk,2]. This comes from (121) and (122) as follows1382

ψ[λk,1, λk,2] =
1

(x0, ϕk)H

1

λk,2 − λk,1

 0
−1
1

ϕk =
1

(x0, ϕk)H

1

g(µk)

 0
−1
1

ϕk,1383

and1384

ψ[λk,1, λk,1, λk,2] =
ψ[λk,1, λk,2]− ψ[λk,1, λk,1]

λk,2 − λk,1
1385

=
1

(x0, ϕk)H

1

g(µk)2

−g(µk)
−1
1

ϕk.1386

1387

Thus, using (82) we obtain1388

‖ψ[λk,1, λk,1, λk,2]‖ =
1

(x0, ϕk)H

1

g(µk)2

√
g(µk)2 + 21389

=
1

(x0, ϕk)H
ρ−2e2βµk

√
ρ2e−2βµk + 2.1390

1391

Then, for k large enough, we have1392

max
{

1, ρ−2e2βµk
√
ρ2e−2βµk + 2

}
= ρ−2e2βµk

√
ρ2e−2βµk + 2,1393

and, using (78), this leads to (85).1394
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5.1.3. Competition between different perturbations.1395

Let X = H ×H ×H. Let α, β > 0 with α 6= β and f, g : σ(A)→ R be such that1396

f(µk) = ρe−αµk , g(µk) = ρe−βµk ,1397

with ρ satisfying (76). Let1398

(86) A =

A I 0
0 A+ f(A) 0
0 0 A+ g(A)

 , D(A) = D(A)×D(A)×D(A),1399

and1400

(87) B : u ∈ R 7→ u

 0
x0

x0

 .1401

Again B is a bounded control operator and we still set for this example X∗� = X = X−�1402

and Y0 = X.1403

proposition 5.3. Let us consider the controlled system (1) with A and B given1404

by (86)-(87). Then,1405

T0(X) = β + min{α, β}.1406

Proof. The spectrum of (A∗, D(A)) is given by1407

Λ = {µk, µk + f(µk), µk + g(µk) ; k ≥ 1}.1408

By construction, these eigenvalues are geometrically simple. Then, it comes that (7)1409

and (8) are satisfied with p = 3. We define our grouping by setting1410

λk,1 := µk, λk,2 := µk + f(µk), and λk,3 = µk + g(µk).1411

Notice that the eigenvalues are not necessarily increasingly sorted inside the kth group1412

depending on the relative positions of α and β but, due to the invariance of divided1413

differences with respect to permutations, this does not change our analysis.1414

These eigenvalues are algebraically and geometrically simple and the associated1415

eigenvectors are1416

φk,1 :=
1√

1 + f(µk)2

−f(µk)
1
0

ϕk, φk,2 :=

0
1
0

ϕk, φk,3 :=

0
0
1

ϕk,1417

which do form a complete family in X. Moreover, for all k ≥ 1,1418

B∗φk,1 =
1√

1 + f(µk)2
(x0, ϕk)H , and B∗φk,2 = B∗φk,3 = (x0, ϕk)H ,1419

leading to1420

ψk,1 =
1

(x0, ϕk)H

−f(µk)
1
0

ϕk, ψk,2 =
1

(x0, ϕk)H

0
1
0

ϕk,1421
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and1422

ψk,3 =
1

(x0, ϕk)H

0
0
1

ϕk.1423

To compute the minimal time T0(X), let us determine the different terms appearing1424

in (17). We have ψ[λk,1] = ψk,1,1425

ψ[λk,1, λk,2] =
1

(x0, ϕk)H

1

λk,2 − λk,1

f(µk)
0
0

ϕk =
1

(x0, ϕk)H

1
0
0

ϕk,1426

1427

ψ[λk,2, λk,3] =
1

(x0, ϕk)H

1

λk,3 − λk,2

 0
−1
1

ϕk =
1

(x0, ϕk)H

1

g(µk)− f(µk)

 0
−1
1

ϕk,1428

and finally1429

ψ[λk,1, λk,2, λk,3] =
ψ[λk,1, λk,2]− ψ[λk,2, λk,3]

λk,1 − λk,3
1430

=
1

(x0, ϕk)H

1

g(µk) (g(µk)− f(µk))

g(µk)− f(µk)
−1
1

ϕk.1431

1432

Since limk→+∞ g(µk) = 0, we immediately see that, for k large enough, we have

max
{
‖ψ[λk,1]‖ , ‖ψ[λk,1, λk,2]‖ , ‖ψ[λk,1, λk,2, λk,3]‖

}
= ‖ψ[λk,1, λk,2, λk,3]‖ ,

so that using (78) and (17) we get1433

(88) T0(X) = lim sup
k→∞

ln ‖ψ[λk,1, λk,2, λk,3]‖
µk

= lim sup
k→∞

− ln |g(µk)(g(µk)− f(µk))|
µk

.1434

The analysis is now split into two cases:1435

1. Assume first that1436

(89) β < α.1437

We deduce from (88) that1438

T0(X) = lim sup
k→∞

− ln e−2βµk
(
1− e−(α−β)µk

)
µk

= 2β.1439

2. Assume now that1440

(90) β > α.1441

We deduce from (88) that1442

T0(X) = lim sup
k→∞

− ln e−(α+β)µk
(
1− e−(β−α)µk

)
µk

= α+ β.1443
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Remark 5.5. As previously the family of eigenvectors does not form a Riesz basis1444

since for instance we have ‖φk,1 − φk,2‖ −→
k→∞

0. Thus, one cannot apply the results1445

of [5] that would give that the minimal null-control time is (see Appendix 7.5)1446

c(Λ) = lim sup
k→∞

− ln (f(µk)g(µk))

µk
= α+ β.1447

Yet, in the case (90) we still have T0(X) = c(Λ). However, in the case (89) we have1448

0 < T0(X) = 2β < c(Λ). Notice that, in this case, setting f = 0 one recovers the1449

system studied in subsection 5.1.2 for which the minimal time is exactly 2β.1450

5.2. Condensation in partial differential equations.1451

We provide in this section actual PDE examples covered by our analysis. First1452

of all, let us emphasize that our setting naturally covers a wide range of coupled one1453

dimensional parabolic equations. Indeed if there exists p ∈ N∗ such that the spectrum1454

of A is given by the union of p family1455

Λj =
{
λjk ; k ≥ 1

}
1456

such that each family satisfies (8) and (7), then the structural assumptions on Λ are1457

automatically satisfied (see Lemma 2.1).1458

5.2.1. A system with two different potentials.1459

Let us consider the following boundary control system1460

(91)


∂ty +

(
−∂xx + c1(x) 1

0 −∂xx + c2(x)

)
y =

(
0
0

)
, (t, x) ∈ (0, T )× (0, 1),

y(t, 0) =

(
0
u(t)

)
, y(t, 1) =

(
0
0

)
, t ∈ (0, T ),

y(0, x) = y0(x),

1461

where c1, c2 ∈ L2(0, 1;R). Without loss of generality we assume that c1 and c2 are non-1462

negative. The operator A appearing in this system is defined in X = (L2(0, 1;R))21463

with domain X∗1 = D(A) =
(
H2(0, 1;R) ∩H1

0 (0, 1;R)
)2

. The control operator B is1464

defined in a weak sense as in [45]. The expression of its adjoint is easier to rule out1465

and is given by1466

B∗ :

(
f
g

)
∈ X∗1 7→

(
0
B∗g

)
=

(
0

−g′(0)

)
.1467

Here we denoted by B∗ the (scalar) normal derivative operator at x = 0 defined1468

on H2(0, 1;R). Standard parabolic regularity properties show that, if we define1469

X∗� = (H1
0 (0, 1;R))2, then the operator B is admissible with respect to X−� =1470

(H−1(0, 1;R))2, in the sense of (3). Therefore, for any u ∈ L2(0, T ;R), (91) is well-1471

posed in C0([0, T ], (H−1(0, 1;R))2).1472

For any non-negative potential c ∈ L2(0, 1;R), we denote by Ac the definite posi-1473

tive self-adjoint operator in L2(0, 1;R) with domain H2(0, 1;R) ∩H1
0 (0, 1;R) defined1474

by Acy = −∂xxy + c(x)y. Its spectrum is denoted by Λc ⊂ (π2,+∞) and satisfies1475

(92) inf
λ,µ∈Λc

λ 6=µ

|
√
λ−√µ| > 0.1476
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We choose associated eigenfunctions denoted by ϕcλ that are normalized in L2(0, 1;R)1477

and that satisfy (see for instance [33, Theorem 4.11])1478

(93) ϕcλ(x) =
√

2 sin(
√
λx) +O

(
1√
λ

)
, uniformly in x,1479

1480

(94) ∂xϕ
c
λ(x) =

√
2
√
λ cos(

√
λx) +O (1) , uniformly in x.1481

In particular, there exist C̄, C̃ > 0 such that,1482

(95) C̄
√
λ ≤ |B∗ϕciλ | = |∂xϕ

ci
λ (0)| ≤ C̃

√
λ, ∀λ ∈ Λci ,∀i = 1, 2.1483

The analysis will be based on the careful inspection of spectral properties of the
adjoint operator

A∗ =

(
Ac1 0
1 Ac2

)
.

It is easily seen that the spectrum of A∗ is given by Λ = Λc1 ∪Λc2 . We will often use1484

the following straightforward property1485

(96) (Aciϕ
cj
λ , ϕ

cj
λ ) ≤ Cλ, ∀λ ∈ Λcj , ∀i, j ∈ {1, 2},1486

where C depends only on ‖c1‖ and ‖c2‖.1487

Our controllability result concerning system (91) is the following.1488

theorem 5.1. For any non-negative potentials c1, c2, there exists a closed sub-1489

space Y0 of (H−1(0, 1;R))2 of finite codimension such that:1490

• For any y0 6∈ Y0, system (91) is not approximately controllable.1491

• For any y0 ∈ Y0, system (91) is null-controllable at any time T > 0.1492

Remark 5.6. The set Y0 can be equal to the whole space (H−1(0, 1;R))2, for1493

instance if c1 and c2 are close enough.1494

Before proving this theorem, we would like to emphasize the fact that for a system1495

like (91), the condensation index of its spectrum can be arbitrary. Therefore, Theorem1496

5.1 gives another example of a system which is null-controllable at any time T > 01497

(for well-prepared initial data) despite the fact that the condensation index of the1498

spectrum is non zero.1499

proposition 5.4. For any τ ∈ [0,+∞] there exist c1, c2 ∈ L2(0, 1;R) such that1500

the condensation index of the spectrum Λ of the operator A∗ satisfies c(Λ) = τ .1501

Proof. This follows from inverse spectral theory. Indeed, it is proven in [40,1502

Chapter 3] for instance, that for any α ∈ R and any sequence (νk)k≥1 ∈ l2, one can find1503

a potential c ∈ L2(0, 1;R) such that the spectrum of Ac is given by (k2π2 +α+ νk)k.1504

It is then clear that we can choose c1 and c2 such that the spectrums of Ac1 and Ac21505

are asymptotically as close as we want and then generate an arbitrary condensation1506

index for the spectrum of A∗. Note that such potentials are not necessarily non-1507

negative, but this is actually not really needed in our analysis (we simply need that1508

the spectrum of Ac is made of positive eigenvalues).1509

In the context of controlled parabolic problems, this was already noticed and used1510

in [36].1511

We can now move to the proof of the main result of this section.1512
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Proof (of Theorem 5.1). The first part of the proof consists in a precise descrip-1513

tion of the spectral properties of A∗.1514

• For any λ ∈ Λc2 , we have a first eigenfunction of A∗ given by1515

(97) φ0
λ :=

(
0
ϕc2λ

)
.1516

Moreover, by (95), we have

B∗φ0
λ = B∗ϕc2λ 6= 0,

so that all those eigenfunctions are observable.1517

– If λ 6∈ Λc1 , this eigenfunction is algebraically and geometrically simple.1518

– However, if λ ∈ Λc2 ∩ Λc1 , this eigenvalue is (algebrically or geometri-1519

cally) double. Let us define1520

(98) βλ := (ϕc1λ , ϕ
c2
λ ).1521

By (93), we see that there exists λ0 such that1522

(99)
1

2
≤ βλ ≤ 1, ∀λ ∈ Λc2 ∩ Λc1 , s.t. λ > λ0.1523

∗ If βλ = 0 then there exists a solution of

(Ac2 − λ)ϑλ = −ϕc1λ ,

that we can choose to satisfy B∗ϑλ = 0 in such a way that

φ̃0
λ :=

(
ϕc1λ
ϑλ

)
,

is another independent eigenfunction of A∗ associated with λ that1524

satisfy B∗φ̃0
λ = 0. Note that, by (99), we know that βλ can vanish1525

only for a finite number of values of λ.1526

∗ Assume now that βλ 6= 0. In that case, λ is geometrically simple
but there exists a generalized eigenfunction φ1

λ associated with φ0
λ

of the following form

φ1
λ :=

1

βλ

(
ϕc1λ
χλ

)
,

where χλ is the unique solution of

(Ac2 − λ)χλ = βλϕ
c2
λ − ϕ

c1
λ ,

that satisfy B∗χλ = 0.1527

We can express χλ in the basis ϕc2• as follows1528

χλ = aλϕ
c2
λ −

∑
µ∈Λc2

µ6=λ

(ϕc1λ , ϕ
c2
µ )

λ− µ
ϕc2µ ,1529

with1530

aλ =
1

B∗ϕc2λ

∑
µ∈Λc2

µ6=λ

(ϕc1λ , ϕ
c2
µ )

λ− µ
B∗ϕc2µ .1531
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• Consider now λ ∈ Λc1 \Λc2 . We obtain another family of eigenfunctions given1532

by1533

(100) φ0
λ :=

(
ϕc1λ
ξλ

)
,1534

where ξλ satisfies
(Ac2 − λ)ξλ = −ϕc1λ .

This last equation has a unique solution since λ 6∈ Λc2 and it can be expressed1535

as follows1536

(101) ξλ =
∑
µ∈Λc2

(ϕc1λ , ϕ
c2
µ )

λ− µ
ϕc2µ .1537

We now state the following lemma, whose proof is postponed at the end of1538

this subsection.1539

Lemma 5.1. There exists C1, C2 > 0 depending only on c1, c2 such that1540

(102) |B∗ξλ|2 ≥ C1λ− C2, ∀λ ∈ Λc1 \ Λc2 .1541

This lemma shows in particular that B∗ξλ can only vanish for a finite number1542

of values of λ.1543

It is straightforward to prove that the family of (generalized) eigenfunctions we1544

just computed is complete in X. We can now define Y0 to be the set of initial data1545

y0 ∈ X−� such that1546 
〈
y0, φ̃

0
λ

〉
−�,�

= 0, ∀λ ∈ Λc1 ∩ Λc2 , s.t. βλ = 0, see (98),〈
y0, φ

0
λ

〉
−�,� = 0, ∀λ ∈ Λc1 \ Λc2 , s.t. B∗ξλ = 0, see (101).

1547

By construction, this set is closed and of finite codimension, moreover it is clear that1548

initial data not belonging to this set are not approximately controllable. Note that this1549

definition actually excludes the influence of the possible presence of a geometrically1550

double eigenvalue in the system.1551

We will now endow the space X∗� with the following norm∥∥∥∥(fg
)∥∥∥∥2

�∗
:= 〈Ac1f, f〉H−1,H1

0
+ 〈Ac2g, g〉H−1,H1

0
,

which is equivalent to the usual H1-norm and more comfortable for the following1552

computations. Note that, if f, g ∈ H2(0, 1;R), this quantity is simply equal to1553

(Ac1f, f) + (Ac2g, g).1554

From (92), we can find a ρ > 0 such that

|
√
λ−√µ| > ρ, ∀λ 6= µ ∈ Λci ,∀i = 1, 2.

This implies, in particular, that1555

(103) |λ− µ| > ρ(
√
λ+
√
µ) > ρ, ∀λ 6= µ ∈ Λci ,∀i = 1, 2.1556

Without loss of generality, we can assume that ρ < C
2C1

where C and C1 are respec-1557

tively defined in (95) and (102).1558
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It follows that Λ satisfies the summability condition (7), as well as the weak gap1559

condition (8) with p = 2. We can thus consider a grouping (Gk)k ∈ G(Λ, 2, r, ρ) for1560

a suitable r > 0. We will now use the formula (16) we obtained for T0(Y0) to prove1561

that the system is null-controllable from Y0 at any time T > 0. For that we will1562

consider one of the groups G (we drop the index k which is not important here) and1563

give estimates of the corresponding divided differences.1564

• Case 1 : G = {λ} is of cardinal 1.1565

– If λ ∈ Λc2 we need to estimate the quantity

‖ψ[λ]‖2�∗ :=

∥∥∥∥P ∗Y0
φ0
λ

B∗φ0
λ

∥∥∥∥2

�∗
≤
∥∥∥∥ φ0

λ

B∗φ0
λ

∥∥∥∥2

�∗

except if λ ∈ Λc1 ∩ Λc2 and βλ = 0. The computations above, and (95),
show that

‖ψ[λ]‖2�∗ ≤
1

|B∗ϕc2λ |2
(Ac2ϕc2λ , ϕ

c2
λ ) =

λ

|B∗ϕc2λ |2
≤ 1

C̄2
.

– If λ ∈ Λc1 \ Λc2 , recall that φ0
λ is given by (100) and that we need to1566

estimate the same quantity ‖ψ[λ]‖�∗ , in the case where B∗ξλ 6= 0. Since1567

λ is the only element in the group G, we know that |λ− µ| ≥ r for any1568

other eigenvalue µ. With this remark, we can deduce that1569

‖ψ[λ]‖2�∗ ≤
1

|B∗ξλ|2
(
(Ac1ϕc1λ , ϕ

c1
λ ) + (Ac2ξλ, ξλ)

)
1570

=
1

|B∗ξλ|2

λ+
∑
µ∈Λc2

µ(ϕc1λ , ϕ
c2
µ )2

(λ− µ)2

1571

≤ 1

|B∗ξλ|2

λ+
1

r2

∑
µ∈Λc2

(ϕc1λ , ϕ
c2
µ )(ϕc1λ , A

c2ϕc2µ )

 .1572

1573

Using Parseval’s identity, (96) and then (102), we finally obtain1574

‖ψ[λ]‖2�∗ ≤
1

|B∗ξλ|2

(
λ+

1

r2
(ϕc1λ , A

c2ϕc1λ )

)
1575

≤ λ

|B∗ξλ|2

(
1 +

C

r2

)
1576

≤ C.15771578

– Finally, if λ ∈ Λc1 ∩ Λc2 , then we need to estimate the contribution of1579

the generalized eigenvector ‖ψ[λ, λ]‖2�∗ :=
∥∥P ∗Y0

φ1
λ/(B∗φ0

λ)
∥∥2

�∗ . A com-1580
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putation similar to the one above, for λ > λ0, leads to1581

‖ψ[λ, λ]‖2�∗ ≤
1

|B∗φ0
λ|2β2

λ

((Ac1ϕc1λ , ϕ
c1
λ ) + (Ac2χλ, χλ))1582

=
1

|B∗ϕc2λ |2β2
λ

λ(1 + a2
λ) +

∑
µ∈Λc2

µ6=λ

(ϕc1λ , ϕ
c2
µ )2

(λ− µ)2
µ

1583

≤ 1

|B∗ϕc2λ |2β2
λ

(
λ(1 + a2

λ) +
1

r2
(Ac2ϕc1λ , ϕ

c1
λ )

)
1584

≤ λ

|B∗ϕc2λ |2β2
λ

(
1 + a2

λ +
C

r2

)
1585

≤ C(1 + a2
λ).15861587

Here, we have used (99) to bound from below the term βλ. It remains1588

to bound aλ. We proceed as follows, by using (94), (103), and (96)1589

|aλ| ≤
1

|B∗ϕc2λ |
∑
µ∈Λc2

µ6=λ

∣∣∣∣ (ϕc1λ , ϕc2µ )

λ− µ

∣∣∣∣ |B∗ϕc2µ |1590

≤ C√
λ

∑
µ∈Λc2

µ6=λ

|(ϕc1λ , ϕ
c2
µ )|

√
µ

√
λ+
√
µ

1591

≤ 1√
λ

 ∑
µ∈Λc2

µ6=λ

|(ϕc1λ , ϕ
c2
µ )|2µ


1
2  ∑

µ∈Λc2

1

µ

 1
2

1592

≤ C√
λ

(Ac2ϕc1λ , ϕ
c1
λ )

1
21593

≤ C.15941595

This concludes the proof of the uniform bound of ‖ψ[λ, λ]‖�∗ .1596

• Case 2 : G = {λ1, λ2} is of cardinal 2. Since the diameter of G is smaller than
ρ, we can choose the numbering such that λ1 ∈ Λc1 \Λc2 and λ2 ∈ Λc2 \Λc1 .
In particular, we have B∗φ0

λ1
6= 0, B∗φ0

λ2
6= 0 and there is no generalized

eigenvector associated to this group G. Therefore, the only new quantity we
need to estimate is the contribution of the following divided difference

‖ψ[λ1, λ2]‖2�∗ ≤
1

|λ1 − λ2|2

∥∥∥∥∥ φ0
λ1

B∗φ0
λ1

−
φ0
λ2

B∗φ0
λ2

∥∥∥∥∥
2

�∗
.

Using formulas (97) and (100), we find1597

‖ψ[λ1, λ2]‖2�∗ ≤
1

|λ1 − λ2|2

∥∥∥∥∥ 1

B∗ξλ1

(
ϕc1λ1

ξλ1

)
− 1

B∗ϕc2λ2

(
0
ϕc2λ2

)∥∥∥∥∥
2

�∗
.1598

1599

Since λ1 and λ2 can be arbitrarily close it is not clear that this estimate does1600

not blow up. In particular, if we use the triangle inequality, we will not be1601

able to take benefit of compensations that occur in the divided difference.1602
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We will thus make appear from (101) the principal part of ξλ1
as follows

ξλ1
=

βλ1,λ2

λ1 − λ2

(
ϕc2λ2

+ ζλ1

)
,

with βλ1,λ2
:= (ϕc1λ1

, ϕc2λ2
) and

ζλ1 :=
λ1 − λ2

βλ1,λ2

∑
µ∈Λc2

µ 6=λ2

(ϕc1λ1
, ϕc2µ )

λ1 − µ
ϕc2µ .

Thus,1603

ξλ1

B∗ξλ1

−
ϕc2λ2

B∗ϕc2λ2

=
ϕc2λ2

+ ζλ1

B∗(ϕc2λ2
+ ζλ1

)
−

ϕc2λ2

B∗ϕc2λ2

1604

=

(
1

B∗(ϕc2λ2
+ ζλ1

)
− 1

B∗ϕc2λ2

)
ϕc2λ2

+
ζλ1

B∗(ϕc2λ2
+ ζλ1

)
(104)1605

1606

Since we are only interested in the asymptotic behavior when λ1 and λ2 are1607

large, we see that we can assume from (93) that the following properties hold1608

(105) |βλ1,λ2 | ≥ 1/2,
√
λ2 ≥

√
λ1/2 ≥ 1.1609

Using that |λ1 − µ| ≥ r for all µ ∈ Λc2 , with µ 6= λ2, we can find with (105)1610

and (96) the following bound1611

(106) (Ac2ζλ1
, ζλ1

) ≤ |λ1 − λ2|2
(Ac2ϕc1λ1

, ϕc1λ1
)

r2|βλ1,λ2
|2
≤ C∗|λ1 − λ2|2λ1.1612

Moreover, we have1613

|B∗ζλ1 | ≤
|λ1 − λ2|
|βλ1,λ2

|
∑
µ∈Λc2

µ 6=λ2

|(ϕc1λ1
, ϕc2µ )|

|λ1 − µ|
|B∗ϕc2µ |,

≤ CC̃|λ1 − λ2|
∑
µ∈Λc2

µ6=λ2

|(ϕc1λ1
, ϕc2µ )|

|λ1 − µ|
√
µ

≤ CC̃|λ1 − λ2|

 ∑
µ∈Λc2

µ6=λ2

(ϕc1λ1
, ϕc2µ )2µ


1/2 ∑

µ∈Λc2

µ6=λ2

1

|λ1 − µ|2


1/2

.

1614

We use Parseval’s identity and (96) to bound the second factor by C
√
λ1.

Moreover, by using (103), we have for any µ ∈ Λc2 , µ 6= λ2,

|λ1 − µ| ≥ |λ2 − µ| − |λ1 − λ2| ≥ ρ(
√
µ+

√
λ2)− ρ ≥ ρ√µ,

so that the value of the series in the last factor is uniformly bounded. Hence,1615

we have proved1616

(107) |B∗ζλ1
| ≤ C1|λ1 − λ2|

√
λ1.1617
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From this last estimate, (102) and (95), we deduce that1618

|B∗(ϕc2λ2
+ ζλ1

)| ≥
(
|B∗ϕc2λ2

| − C1|λ1 − λ2|
√
λ1

)
1619

≥ C̄
√
λ1 − C1|λ1 − λ2|

√
λ1.16201621

Recall that ρ < C̄/(2C1). Since λ1 and λ2 belong to the same group G, we1622

have |λ1 − λ2| ≤ ρ and thus, we obtain the estimate1623

(108) |B∗(ϕc2λ2
+ ζλ1

)| ≥ C̄

2

√
λ1.1624

Coming back to the definition of ψ[λ1, λ2] and using (104) and the triangle1625

inequality, we write1626

‖ψ[λ1, λ2]‖2�∗ =
1

|λ1 − λ2|2

∥∥∥∥∥ 1

B∗(ϕc2λ2
+ ζλ1

)

(
λ1−λ2

βλ1,λ2
ϕc1λ1

ϕc2λ2
+ ζλ1

)
− 1

B∗ϕc2λ2

(
0
ϕc2λ2

)∥∥∥∥∥
2

�∗
1627

≤

∥∥∥∥(ϕc1λ1

0

)∥∥∥∥2

�∗

β2
λ1,λ2

|B∗(ϕc2λ2
+ ζλ1)|2

+

2

∥∥∥∥( 0
ζλ1

)∥∥∥∥2

�∗

|B∗(ϕc2λ2
+ ζλ1)|2|λ1 − λ2|2

1628

+

2

∥∥∥∥( 0
ϕc2λ2

)∥∥∥∥2

�∗

|λ1 − λ2|2

(
1

B∗(ϕc2λ2
+ ζλ1

)
− 1

B∗ϕc2λ2

)2

1629

=:S1 + S2 + S3.16301631

We now analyze each of the three terms.1632

– Using (96), (105) and (108), we can obtain

S1 ≤
16

C̄2
.

– Using (106) and (108), we get

S2 ≤
8C∗

C̄2
.

– Finally, with (96), we write

S3 =
λ2

|λ1 − λ2|2
(B∗ζλ1)2

(B∗(ϕc2λ2
+ ζλ1

))2(B∗ϕc2λ2
)2
,

so that, with (95), (108) and (107), we get

S3 ≤
C2

1

C̄4
.

All in all, we have obtained a uniform bound for ‖ψ[λ1, λ2]‖�∗ , which is exactly1633

the compensation phenomenon we were expecting for this particular system.1634

As a conclusion, we finally proved that, whatever the group G is, all the divided1635

differences ψ[λ], ψ[λ, λ] or ψ[λ1, λ2] remain bounded uniformly. It follows from (16)1636

that T0(Y0) ≤ 0, so that our main Theorem 1.1 show that (91) is null-controllable at1637

any time T > 0 for any initial data y0 ∈ Y0.1638
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It remains to prove the lemma.1639

Proof (of Lemma 5.1). By definition, the function ξλ satisfies1640

(109) − ∂xxξλ + c2(x)ξλ = λξλ − ϕc1λ , in (0, 1).1641

Using [2, Lemmas 2.2 and 2.3], and the fact that ϕc1λ is normalized in L2(0, 1;R), we
have

|ξλ(x)|2 +
1

λ
|∂xξλ(x)|2 ≤ C

(
|ξλ(y)|2 +

1

λ
|∂xξλ(y)|2

)
+
C

λ
, ∀x, y ∈ [0, 1].

We take y = 0 in this inequality and we integrate with respect to x to obtain

‖ξλ‖2 ≤
C

λ
|∂xξλ(0)|2 +

C

λ
=
C

λ
|B∗ξλ|2 +

C

λ
.

It remains to bound from below the L2 norm of ξλ. To this end, we multiply (109)
by ϕc1λ and integrate over (0, 1). After integration by parts, and using the equation
satisfied by ϕc1λ , we get

−1 =

∫ 1

0

(c2 − c1)ξλϕ
c1
λ .

The Cauchy-Schwarz inequality gives

1 ≤ ‖c1 − c2‖‖ξλ‖‖ϕc1λ ‖L∞ ,

and since by (93), we have a uniform L∞ bound on ϕc1λ , the proof is complete.1642

5.2.2. A system with different diffusions and a non constant coupling1643

term. Let us briefly describe another example of a boundary controlled coupled1644

parabolic system which has motivated our study. This example is analyzed in details1645

in [42]. We consider the following system1646

(110)


∂ty +

(
−∂xx q(x)

0 −ν∂xx

)
y =

(
0
0

)
, (t, x) ∈ (0, T )× (0, 1),

y(t, 0) =

(
0
u(t)

)
, y(t, 1) =

(
0
0

)
, t ∈ (0, T ),

y(0, x) = y0(x),

1647

where q ∈ L∞(0, 1) and ν > 0.1648

The spectrum of A∗ =

(
−∂xx 0
q(x) −ν∂xx

)
is Λ = {k2, ν k2, k ≥ 1}.1649

• System (110) in the case where q(x) = 1 and ν 6= 1 was studied in [5] where1650

the influence of the condensation of eigenvalues in the system was first pointed1651

out. It was proved that the minimal null-control time was exactly the con-1652

densation index of Λ, provided that
√
ν 6∈ Q.1653

• System (110) with a non constant q but with the same diffusions, that is1654

ν = 1, was studied in [6]. The picture is different since in that case, there is1655

no condensation of eigenvalues but there may however exist a minimal null-1656

control time (depending on the coupling term q) due to very weak observation1657

properties of the eigenfunctions.1658
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• In the general case, assuming that
√
ν 6∈ Q, the eigenvalues are algebraically1659

and geometrically simple and it is proved in [42] that the associated family of1660

eigenfunctions is complete in X∗� = (H−1(0, 1))2, and that, moreover, there1661

exist functions q and values of ν,
√
ν 6∈ Q, such that this family (properly1662

normalized) is not a Riesz basis of X∗� . Therefore the abstract results in [5, 6]1663

do not apply.1664

Inspirated by the block moment method presented in the present paper, a1665

suitable value of T q,ν0 is defined in [42] (taking into account both effects of1666

condensation of eigenvalues and weak observation of eigenfunctions) such that1667

T q,ν0 is the minimal null-control time of (110).1668

6. Extensions, comments and open problems.1669

6.1. Dealing with complex valued eigenvalues.1670

In the previous sections, we decided to state our results in the framework of1671

real eigenvalues to simplify the presentation. However, most of them still hold for1672

complex eigenvalues satisfying assumptions largely inspired from [5]. More precisely,1673

for a function N : R+ → R, we will consider the class Lw(δ, p, ρ,N ) of the families1674

Λ ⊂ C satisfying1675

• Parabolicity condition:

<λ ≥ δ|λ|, ∀λ ∈ Λ.

• Asymptotic behavior : for any ε > 0, we have∑
λ∈Λ

|λ|>N (ε)

1

|λ|
≤ ε.

• Weak gap condition with parameters ρ > 0 and p ∈ N∗:

#Λ ∩ ([µ, µ+ ρ] + iR) ≤ p, ∀µ > 0.

In that case, a grouping (Gk)k should satisfy

Λ =
⋃
k≥1

Gk, #Gk ≤ p, diam(Gk) < ρ, inf(<Gk+1)− sup(<Gk) > r.

The corresponding formula the minimal time T0(Y0) will be now given by

T0(Y0) := lim sup
k→∞

ln

 max
µ∈Ngk
µ≤αk

∥∥∥ψ[λ
(µ1)
k,1 , . . . , λ

(µgk )

k,gk
]
∥∥∥
�∗


<λk,1

,

and our results (namely Theorems 1.1, 2.1 and 4.1) still hold in that case.1676

Most of the proofs are very similar by taking care of the following points:1677

• The divided differences associated with pairwise distinct points x0, . . . , xn1678

in the complex plane do not satisfy the Lagrange theorem but instead the1679

following slightly weaker result, due to Jensen [32].1680
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proposition 6.1. Let U ⊂ C be a convex open set and x0, . . . , xn ∈ U be1681

pairwise distinct. For any holomorphic function f : U → C,1682

– there exists a z ∈ Conv({x0, . . . , xn}) such that

|f [x0, . . . , xn]| ≤ f (n)(z)

n!
.

– For any z ∈ U , we have∣∣∣∣f [x0, . . . , xn]− f (n)(z)

n!

∣∣∣∣ ≤ Cf,ndiam(U).

• The Blaschke product Wk should be replaced by

Wk(z) =

p∏
j=1

∏
λ∈Λj

λ− z
λ̄+ z

.

• Finally, in the restriction argument of Section 2.1.2, the holomorphy domain1683

C+
2ε should be replaced by a sector {z ∈ C,<z > 2ε, |=z| ≤ δ

2 |λ|}.1684

6.2. Weakening the assumptions on the control operator.1685

In this article, we not only study the classical null-controllability property (i.e.1686

Y0 = X−�), we also provide a more accurate description depending on the space of1687

initial conditions Y0 one wants to drive to 0. In this setting, the assumption (9) can1688

be too strong.1689

It is easily seen than a necessary approximate null-controllability condition in1690

that case is the following: for any λ ∈ Λ and any l ∈ J0, αλ − 1K we have1691

(111)
(
B∗φjλ = 0, ∀j ∈ J0, lK

)
⇒
(
P ∗Y0

φjλ = 0, ∀j ∈ J0, lK
)
,1692

where, in this formula, (φjλ)j is a Jordan chain associated with the eigenvalue λ. Note1693

that such a Jordan chain is not unique but (111) does not depend on the particular1694

chain we choose. Note also that the assumption (11) can be verified using any Jordan1695

chain.1696

From now on, we assume that (111) holds. For any λ ∈ Λ, two cases have to be1697

considered:1698

• Case 1 : We have1699

B∗φjλ = 0, for all j ∈ J0, αλ − 1K.1700

From (111), it follows that for any y0 ∈ Y0, any T > 0, all the moment1701

equation (19) corresponding to this eigenvalue are automatically satisfied. It1702

follows that we can simply remove this eigenvalue from the family Λ when1703

studying the control problem at time T from Y0.1704

• Case 2 :1705

(112) there exists j∗ ∈ J0, αλ − 1K s.t. B∗φjλ = 0,∀j < j∗, and B∗φj
∗

λ 6= 0.1706

In that case, for j > j∗ we set

βj := −
B∗φjλ
B∗φj∗λ

,
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and then by induction, we define1707

(113) φ̃jλ =


φjλ, for j ≤ j∗,

φjλ +

j−1∑
k=j∗

βj+j∗−kφ̃
k
λ, for j > j∗.

1708

This construction ensures that (φ̃jλ)j and (φjλ)j span the same space, that1709

(114) B∗φ̃jλ = 0, if and only if j 6= j∗,1710

and finally satisfy the equations

A∗φ̃jλ = λφ̃jλ + φ̃j−1
λ + γjφ

j∗−1
λ ,

for some γj ∈ R whose precise value is unimportant in the sequel.1711

A straightforward computation shows that the semi-group generated by −A∗
satisfy

e−tA
∗
φ̃jλ ∈ (etφ̃)[λ(j+1)] + V j

∗
,

where V j
∗

:= Span(φ0
λ, . . . , φ

j∗−1
λ ). We shall prove that the term in V j

∗
does1712

not contribute to the moment problem. Indeed, from (111) and (112), we1713

have V j
∗ ⊂ KerB∗ ∩KerP ∗Y0

. Thus:1714

– Concerning the control term, we have

B∗e−tA
∗
φ̃jλ = B∗(etφ̃)[λ(j+1)],

and by (114), it simply remains

B∗e−tA
∗
φ̃jλ =

{
0, if j < j∗,(
B∗φ̃j

∗

λ

)
et[λ

(j−j∗)], if j ≥ j∗.

– Concerning the contribution of the source term, we have1715

P ∗Y0
e−TA

∗
φ̃jλ = P ∗Y0

(eT φ̃)[λ(j+1)]1716

= P ∗Y0

j+1∑
k=1

eT [λ(j+2−k)]φ̃[λ(k)]1717

= P ∗Y0

j+1∑
k=j∗+1

eT [λ(j+2−k)]φ̃[λ(k)],1718

1719

with the convention that the sum is 0 as soon as j < j∗.1720

We may now adapt the definition of our null-control time by setting1721

(115) ψlλ =
P ∗Y0

φ̃j
∗+l
λ

B∗φ̃j∗λ
, ∀l ∈ J0, αλ − 1− j∗K,1722

so that the moment problem associated with this eigenvalue becomes1723 ∫ T

0

u(T − t) (−t)l

l!
e−λtdt = −

〈
y0, (eTψ)[λ(l+1)]

〉
−�,�

, ∀l ∈ J0, αλ− 1− j∗K.1724

This is formally exactly the same as (21) except that the multiplicity of the1725

eigenvalue have been changed into αλ − j∗ and the associated values of ψ•λ1726

have been constructed as explained above by (113) and (115).1727
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As a conclusion, to obtain the definition of the minimal null-control time from Y01728

assuming that (111) holds, we simply need to ignore the eigenvalues corresponding1729

to case 1, and to modify the multiplicity and the Jordan chain as explained above1730

for the eigenvalues that are in case 2. Then, we define formally T0(Y0) by the same1731

formula as (15) and we obtain exactly the same result as Theorem 1.1.1732

Moreover, it clearly appears from the proof that (111) is actually a necessary and1733

sufficient condition to solve the moment problem associated to any finite number of1734

eigenvalues. Thus (111) is a necessary and sufficient condition for the approximate1735

null-controllability from Y0.1736

7. Appendices.1737

We gather in this final section some of the definition or intermediate results that1738

we used in this paper.1739

7.1. Wellposedness.1740

This section is dedicated to the proof of Proposition 1.1.1741

First of all, let us notice that the problem (2) admits at most one solution y ∈1742

C0([0, T ];X−1) and that the continuous dependancy directly follows from (2). Thus,1743

it remains to prove the existence of a function y ∈ C0([0, T ];X−1) satisfying (2).1744

From [45, Propositions 2.10.3] it comes that A can be uniquely extended to an1745

operator Ã ∈ L(X,X−1). Moreover it comes from [45, Propositions 2.10.4] that −Ã1746

generates an C0−semigroup in X−1 satisfying1747

e−tÃ = Ãe−tAÃ−1, ∀t ≥ 0.1748

Thus, for any T > 0, any y0 ∈ X−1 and any u ∈ L2(0, T ;U) the problem1749 {
y′(t) + Ãy(t) = Bu(t),

y(0) = y0

1750

admits a unique mild solution y ∈ C0([0, T ], X−1) given by1751

(116) y(t) = e−tÃy0 +

∫ t

0

e−(t−s)ÃBu(s)ds.1752

We prove now that this function satisfies (2). To do so, we simply prove that the1753

semigroup e−tÃ is the adjoint of e−tA
∗

in the duality between X∗1 and X−1.1754

Let x ∈ X and z ∈ X1 such that x = Az. As Ã is an extension of A it also comes1755

that x = Ãz. Then, as e−tA(X1) ⊂ X1 it comes that1756

e−tÃx = Ãe−tAÃ−1Ãz = Ãe−tAz = Ae−tAz = e−tAAz = e−tAx.1757

Then, for any x ∈ X and any z ∈ X∗11758 〈
e−tÃx, z

〉
−1,1∗

=
〈
e−tAx, z

〉
−1,1∗

=
(
e−tAx, z

)
=
(
x, e−tA

∗
z
)

=
〈
x, e−tA

∗
z
〉
−1,1∗

.1759

Thus, the density of X in X−1 implies1760

(117)
〈
e−tÃy, z

〉
−1,1∗

=
〈
y, e−tA

∗
z
〉
−1,1∗

, ∀y ∈ X−1,∀z ∈ X∗1 .1761

Finally, the duality pairing of (116) with any zt ∈ X∗1 with the computation rule (117)1762

directly gives (2).1763
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7.2. Existence of a grouping for sequences satisfying the weak gap con-1764

dition.1765

proposition 7.1. For any Λ satisyfing (8), there exists at least one grouping in1766

G
(

Λ, p, ρp , ρ
)

.1767

Proof. Let r = ρ/p. We set µ1 = inf Λ. and we consider the p disjoint sets

Λ ∩ (µ1, µ1 + r],Λ ∩ (µ1 + r, µ1 + 2r], . . . ,Λ ∩ (µ1 + (p− 1)r, µ1 + pr].

By (8), we know that one of this sets is empty since if it not the case, there is at least
p+ 1 elements in Λ∩ [µ1, µ1 + ρ] because µ1 ∈ Λ and pr = ρ. Let j ∈ J1, pK such that
Λ ∩ (µ1 + (j − 1)r, µ1 + jr] = ∅. We define

G1 := Λ ∩ [µ1, µ1 + (j − 1)r],

whose cardinal is, by (8), less or equal than p and diameter is less than ρ. Moreover,
by construction, we have (

inf(Λ \G1)
)
− supG1 > r.

This allows to build G2 by the same construction applied on Λ \ G1 while ensuring1768

the required properties, and following this process we construct the sequence (Gk)k.1769

7.3. About divided differences.1770

In this section we give all the properties concerning divided differences that are1771

used all along this article. This notion is a key technical tool in our analysis as it1772

drastically ease the computations and the formulation of the results. The definition1773

and results given in Sec. 7.3.1 are classical in the field of interpolation (see for in-1774

stance [39, Chap. 5]). To deal with algebraic multiplicity we use a generalization of1775

divided differences where the ‘interpolation points’ are not necessarily distincts. Let1776

us mention that there exists generalizations in this direction (see for instance [39,1777

Chap. 5]) in the context of Hermite interpolation. However as we are not directly1778

dealing with interpolation, we propose such a generalization adapted to our purposes.1779

This is detailed in Sec. 7.3.2.1780

7.3.1. Definitions and basic properties.1781

Let V be a real vector space, n ∈ N and x1, . . . , xn ∈ R. Assume that x1, . . . , xn1782

are pairwise distinct (see Sec. 7.3.2 for a generalization). Let f1, . . . , fn ∈ V be given.1783

Definition 7.1. The divided differences are defined by

f [xi] := fi, ∀i ∈ J1, nK,

and then recursively for any k ∈ J2, nK, for any pairwise distinct i1, . . . , ik ∈ J1, nK, by1784

f [xi1 , . . . , xik ] :=
f [xi1 , . . . , xik−1

]− f [xi2 , . . . , xik ]

xi1 − xik
.1785

In all what follows, if f : R → V is a given function it will be implicitely assumed1786

that fi = f [xi] = f(xi).1787
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proposition 7.2. The divided differences are symmetric with respect to their ar-1788

guments : for any k ∈ J1, nK, for any pairwise distinct i1, . . . , ik ∈ J1, nK and any1789

σ ∈ S({i1, . . . , ik}),1790

f [xσ(i1), . . . , xσ(ik)] = f [xi1 , . . . , xik ].1791

The following property states another (equivalent) definition of divided differences1792

known as Newton formula.1793

proposition 7.3. For any k ∈ J1, nK, for any pairwise distinct i1, . . . , ik ∈ J1, nK1794

f [xi1 , . . . , xik ] =

k∑
j=1

f [xij ]∏
l∈J1,kK6=j

(xij − xil)
.1795

The next result about divided differences is crucial to obtain the different esti-1796

mates we need. It is known as Lagrange theorem.1797

proposition 7.4. Assume that V = R and that f ∈ Cn−1 (Conv{x1, . . . , xn}).1798

For any k ∈ J1, nK, for any pairwise distinct i1, . . . , ik ∈ J1, nK, there exists a z ∈1799

Conv{xi1 , . . . , xik} such that1800

f [xi1 , . . . , xik ] =
f (k−1)(z)

(k − 1)!
.1801

The divided differences naturally appear in polynomial interpolation problems as1802

recalled in the following classical result.1803

proposition 7.5. The polynomial function P : R→ V defined by1804

(118) P (x) := f [x1] + (x− x1)f [x1, x2] + · · ·+

(
n−1∏
i=1

(x− xi)

)
f [x1, . . . , xn],1805

is the unique polynomial of degree less than n− 1 such that1806

(119) P (xi) = f [xi], ∀i ∈ J1, nK.1807

We recall a simple way to compute divided differences of a product of functions1808

which is known as the Leibniz rule.1809

proposition 7.6. Let g : R→ R and (gf)[x] := g(x)f [x]. For any k ∈ J1, nK, for1810

any pairwise distinct i1, . . . , ik ∈ J1, nK,1811

(gf)[xi1 , . . . , xik ] =

k∑
j=1

g[xi1 , . . . , xij ]f [xij , . . . , xik ].1812

Finally, we deduce from the results above the following useful corollary.1813

Corollary 7.1. Assume that V is equipped with a norm ‖•‖V . For any k ∈1814

J1, nK and any pairwise distinct i1, . . . , ik ∈ J1, nK, we have1815

‖f [xi1 , . . . , xik ]‖V ≤ n2n−1(1 +R)n−1 max
j∈J1,nK

‖f [x1, . . . , xj ]‖V ,1816

where R = diam({x1, . . . , xn}).1817
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Proof. Let P be the Lagrange interpolation polynomial defined in (118) and let1818

i1, . . . , ik be fixed.1819

By the Hahn-Banach theorem, there exists φ ∈ V ′, such that ‖φ‖V ′ = 1 and1820

〈φ, f [xi1 , . . . , xik ]〉V ′,V = ‖f [xi1 , . . . , xik ]‖V .1821

Additionally, by (119) and by linearity of φ, we know that1822

〈φ, f [xi1 , . . . , xik ]〉V ′,V = 〈φ, P 〉V ′,V [xi1 , . . . , xik ].1823

Applying Proposition 7.4 to x 7→ 〈φ, P (x)〉V ′,V ∈ R we find that for some z ∈1824

Conv{x1, . . . , xn}, we have1825

〈φ, P 〉V ′,V [xi1 , . . . , xik ] =
1

(k − 1)!
(〈φ, P 〉V ′,V )(k−1)(z)1826

=
1

(k − 1)!

〈
φ, P (k−1)(z)

〉
V ′,V

.1827
1828

Combining those identities, we arrive at1829

‖f [xi1 , . . . , xik ]‖V =
1

(k − 1)!

〈
φ, P (k−1)(z)

〉
V ′,V

≤ 1

(k − 1)!

∥∥∥P (k−1)(z)
∥∥∥
V
.1830

Let us compute the derivatives of P . Let C be the circle of center z and radius R in1831

the complex plane. The Cauchy formula leads to1832

1

(k − 1)!
P (k−1)(z) =

1

2iπ

∫
C

P (w)

(z − w)k
dw,1833

so that1834
1

(k − 1)!

∥∥∥P (k−1)(z)
∥∥∥
V
≤ R1−k max

w∈C
‖P (w)‖V .1835

Then, the triangle inequality implies that for any w ∈ C,1836

‖P (w)‖V ≤ ‖f [x1]‖V + (2R) ‖f [x1, x2]‖V + · · ·+ (2R)n−1 ‖f [x1, . . . , xn]‖V ,1837

which finally gives the result.1838

7.3.2. Generalization of divided differences.1839

Assume that V is a normed vector space.1840

Let x = (x1, . . . , xn) ∈ Rn be pairwise distinct real numbers and let α ∈ Nn a
multi-index such that α > 0. To such a multi-index we associate elements of V that
we gather in a fα ∈ V |α| and that are indexed as follows

f lj , j ∈ J1, nK, l ∈ J0, αj − 1K.

Definition 7.2. We set N = |α|. We say that a family of points (yhp )p∈J1,NK,1841

depending on a small parameter h > 0, is an approximation of the weighted family1842

(x, α) if1843

• For each h > 0, the points yh1 , . . . , y
h
N are pairwise distinct.1844

• There exist disjoint subsets Pj ⊂ J1, NK such that for any j ∈ J1, nK,

#Pj = αj , and yhp −−−→
h→0

xj , ∀p ∈ Pj .
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proposition 7.7. With the notation above, let F : R→ V be any smooth function1845

satisfying1846

(120)
1

l!
F (l)(xj) = f lj , ∀j ∈ J1, nK, ∀l ∈ J0, αj − 1K.1847

For any approximation of the weighted family (x, α), the (usual) divided difference1848

F [yh1 , . . . , y
h
N ] weakly converges when h → 0 towards an element in V that depends1849

only on x, α and fα. In particular it does not depend on the particular choice of F1850

nor or the approximation families (yhp )p.1851

This limit is called the generalized divided difference associated with the points x,1852

the multi-index α and the values fα and is denoted by1853

f [x
(α1)
1 , . . . , x(αn)

n ], or f [x1, . . . , x1︸ ︷︷ ︸
α1times

, x2, . . . , x2︸ ︷︷ ︸
α2times

, . . . ],1854

or, in a more compact way, f [x(α)].1855

Moreover, we extend this definition if some of the αj are 0, simply by not consid-1856

ering the corresponding points.1857

Remark 7.1. If the function F is chosen to take its values in a finite dimension1858

space then the above convergence is actually strong. It is always possible to make1859

this assumption, for instance by chosing F that takes its values in the subspace of V1860

spanned by the elements fα.1861

Proof (of Proposition 7.7). The proof is done by recurrence on N .1862

• If N = 1, then we necessarily have n = 1 and α1 = 1. The result is just a1863

consequence of the continuity of F and we simply have f [x1] = f0
1 .1864

• Assume that the result holds for a given value of N and let us prove it for the value1865

N + 1.1866

– First case : If there is only one point x1. It means that n = 1 and α1 = N+1.1867

In this case, for any h > 0, and any ψ ∈ V ′, we use the Lagrange theorem to1868

get the existence of a zψ,h ∈ Conv({yh1 , . . . , yhN+1}) such that1869 〈
ψ,F [yh1 , . . . , y

h
N+1]

〉
V ′,V

= 〈ψ, F 〉V ′,V [yh1 , . . . , y
h
N+1]1870

=
1

N !
〈ψ,F 〉(N)

V ′,V (zψ,h).1871
1872

Since, by assumption, all the points yhp converge to the same point x1, we1873

have zψ,h → x1 and thus1874 〈
ψ,F [yh1 , . . . , y

h
N+1]

〉
V ′,V

−−−→
h→0

1

N !

〈
ψ, F (N)(x1)

〉
V ′,V

=
〈
ψ, fN1

〉
V ′,V

,1875

– Second case : We assume that n > 1. By assumption there exists two distinct1876

indices j1, j2 ∈ J1, nK and two distinct indices p1, p2 ∈ J1, N + 1K such that1877

yhp1
→ xj1 and yhp2

→ xj2 . By symmetry of the usual divided differences, we1878

can always assume that p1 = N and p2 = N + 1. It follows that we can write1879

F [yh1 , . . . , y
h
N+1] =

F [yh1 , . . . , y
h
N−1, y

h
N+1]− F [yh1 , . . . , y

h
N ]

yhN+1 − yhN
.1880

The recurrence assumption shows that the two terms in the numerator have1881

weak limits that only depends on the points x, the multiplicities α and on the1882

values fα, whereas the denominator yhN+1 − yhN converges to xj2 − xj1 which1883

is not zero. The result follows.1884
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The above construction also shows, as a by-product, the following rules to com-1885

pute the generalized divided differences: for any µ ∈ Nn such that µ ≤ α1886

(121) f [x
(µ1)
1 , . . . , x(µn)

n ] = f
µj−1
j , if µj′ = 0 for any j′ 6= j,1887

and for all j1 6= j2 and µj1 > 0, µj2 > 01888

(122)

f [x
(µ1)
1 , . . . , x(µn)

n ] =
f [. . . , x

(µj1−1)
j1

, . . . , x
(µj2 )
j2

, . . . ]− f [. . . , x
(µj1 )
j1

, . . . , x
(µj2−1)
j2

, . . . ]

xj1 − xj2
.1889

Let us now give some useful properties that are the extension of the classical1890

properties recalled in Sec. 7.3.1.1891

Definition 7.3. Let α ∈ Nn be a multi-index, fα ∈ R|α| a set of real values1892

associated with α and gα ∈ V |α| a set of elements of V associated with α.1893

We define (fg)α ∈ V |α| to be the product set of values as follows :

(fg)lj :=

l∑
k=0

fkj g
l−k
j , ∀j ∈ J1, nK,∀l ∈ J0, αj − 1K.

proposition 7.8 (Leibniz formula). Let x ∈ Rn pairwise distinct points, α ∈ Nn,1894

fα ∈ R|α| a set of real values, and gα ∈ V |α| a set of values in V .1895

Then, for any family of multi-indices (µp)p∈J0,|α|K ⊂ Nn satisfying1896

(123)


µp−1 ≤ µp, ∀p ∈ J1, |α|K,
|µp| = p, ∀p ∈ J0, |α|K,
µ|α| = α,

1897

we have the Leibniz formula

(fg)[x(α)] =

|α|∑
p=1

f [x(µp)]g[x(α−µp−1)].

Proof. By assumption, for each p ∈ J1, |α|K, the multi-index µp is obtained from1898

µp−1 by incrementing exactly one of its element. We denote by ip ∈ J1, nK this index,1899

and we define yhp := xip + ph. It is easily seen that, for h > 0 small enough, those1900

points are pairwise distinct.1901

Let F : R → R be a function satisfying (120) and G : R → V be a function
satisfying (120) but with the values gα instead of fα. The usual Leibniz formula as
well as the Definition 7.3 shows that the product function FG exactly satisfies

1

l!
(FG)(l)(xj) = (fg)lj , ∀j ∈ J1, nK, ∀l ∈ J0, αj − 1K.

We can thus apply the Leibniz formula from Proposition 7.6 as follows

(FG)[yh1 , . . . , y
h
|α|] =

|α|∑
p=1

F [yh1 , . . . , y
h
p ]G[yhp , . . . , y

h
|α|],

and then pass to the limit as h→ 0 to obtain the claim.1902
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proposition 7.9 (Lagrange theorem). Let x, α as before. We set N = |α|. With
any f : R→ R of class CN−1, we associate the set of values fα ∈ RN by

f lj :=
1

l!
f (l)(xj), ∀j ∈ J1, nK,∀l ∈ J0, αj − 1K.

Then, there exists a z ∈ Conv({x1, . . . , xn}) such that the generalized divided differ-
ence built on these data satisfy

f [x(α)] =
1

(N − 1)!
f (N−1)(z).

Proof. Let yh1 , . . . , y
h
N be an approximation of the weighted family of points (x, α)

as in Definition 7.2. By definition, the generalized divided difference f [x(α)] is the
limit as h goes to 0, of the usual divided difference f [yh1 , . . . , y

h
N ]. For this last divided

difference, we can apply Lagrange theorem (see Proposition 7.4) to get the existence
of a point zh ∈ Conv({yh1 , . . . , yhN}) such that

f [yh1 , . . . , y
h
N ] =

1

(N − 1)!
f (N−1)(zh).

It is clear that (zh)h is contained in a compact set so that, up to a subsequence,1903

we may find a limit z of (zh)h that belongs to Conv({x1, . . . , xn}) and satisfies the1904

required property.1905

proposition 7.10. Let (µp)p∈J0,|α|K ⊂ Nn be a family of multi-indices satisfying
(123). For any multi-index µ such that µ ≤ α we have

‖f [x(µ)]]‖ ≤ N2N−1(1 +R)N−1 max
p∈J1,|α|K

‖f [x(µp)]‖.

Proof. We proceed as in the proof of Proposition 7.8 by passing to the limit in1906

the similar result for standard divided differences (Corollary 7.1).1907

For generalized divided differences, there is no simple equivalent to the Newton1908

formula (Proposition 7.3). However, we can state the following result.1909

proposition 7.11. For any multi-index µ ≤ α, there exists coefficients (θµj,l)j,l1910

depending only on x and µ, such that1911

f [x(µ)] =

n∑
j=1

αj−1∑
l=0

θµj,lf
l
j ,1912

and which satisfy the following estimates

|θµj,l| ≤


0 if µj < l + 1,

C|µ|(∏
i∈J1,nK6=j |xi − xj |

µi

) 1

(mini∈J1,nK6=j |xi − xj |)µj−l−1
, if µj ≥ l + 1.

Proof. Since the divided difference are clearly linear with respect to the data1913

fα, the existence of the coefficients θµj,l is straightforward. Let us prove the claimed1914

estimates. From now on we assume that l is fixed. Moreover, for any j ∈ J1, nK we1915

introduce the notation dj := mini∈J1,nK6=j |xi − xj | and we define δj ∈ Nn to be the1916

Kronecker multi-index, that is δji = 0 for i 6= j and δjj = 1.1917
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• When µj < l + 1, it is clear from the recurrence formulas (121) and (122)1918

that the value of f [x(µ)] does not dependent on the value f lj , and therefore1919

θµj,l = 0.1920

• Let us show by induction on N = |µ| that, for all j ∈ J1, nK, with µj ≥ l + 1,1921

we have1922

(124) |θµj,l| ≤
C|µ|(∏

i∈J1,nK6=j |xj − xi|
µi

) 1

d
µj−l−1
j

.1923

– Assume first that N = l + 1 and let µ such that |µ| = N . If µj < l + 1
we have already seen that θµj,l = 0 which obviously implies (124). If
µj = l+ 1, since |µ| = l+ 1, we necessarily have µi = 0 for any i 6= j, so
that (121) gives

f [x(µ)] = f lj ,

which implies that θµj,l = 1, that is exactly (124) with C|µ| = 1 in that1924

case.1925

– Assume now that, for some N ≥ l + 1, (124) holds and let µ such that1926

|µ| = N + 1.1927

If µi = 0 for any i 6= j , then we have

f [x(µ)] = f
µj−1
j ,

which implies that θµj,l = 0 since l 6= µj − 1 and (124) is obvious.1928

If there is a i0 6= j such that µi0 ≥ 1 then we use (122) to get

f [x(µ)] =
f [x(µ−δj)]− f [x(µ−δi0 )]

xi0 − xj
,

which implies the formula

θµj,l =
θµ−δ

j

j,l − θµ−δ
i0

j,l

xi0 − xj
,

and thus

|θµj,l| ≤
|θµ−δ

j

j,l |
|xi0 − xj |

+
|θµ−δ

i0

j,l |
|xi0 − xj |

.

Since |µ− δj | = |µ− δi0 | = N , we can apply the induction hypothesis to1929

bound the two terms in the right-hand side as follows1930
1931

|θµ−δ
j

j,l |
|xi0 − xj |

≤
CN−1|θµ−δ

j

j,l |
dj

≤ CN−1(∏
i∈J1,nK6=j |xj − xi|

µi

) 1

d
µj−l−2
j

1

dj
,1932

1933

and1934
1935

|θµ−δ
i0

j,l |
|xi − xj |

≤
CN−1|θµ−δ

i0

j,l |
|xj − xi0 |

1936

≤ CN−1(∏
i∈J1,nK6=j |xj − xi|

µi−δ
i0
i

) 1

d
µj−l−1
j

1

|xj − xi0 |
.1937

1938

Summing those two inequalities give (124) with CN = 2CN−1.1939
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7.4. The supremum of T0(y0).1940

We prove here Propositon 1.3, that is1941

sup
y0∈Y0

T0(y0) = T0(Y0).1942

1943

Proof. Since by definition T0(y0) only depends on Span(y0), it is actually equiv-1944

alent to prove1945

sup
y0∈Y0

‖y0‖−�=1

T0(y0) = T0(Y0).1946

To ease the reading let us do the computations in the simpler case η = 1; the1947

extension to the case η ≥ 2 being straightforward. Let us introduce1948

xk,l :=

l∑
j=1

ψk,j∏
1≤i6=j≤l

(λk,j − λk,i)
, ∀k ≥ 1,∀l ∈ J1, gkK.1949

with ψk,j :=
P∗Y0

φk,j

B∗φk,j as defined in (14).1950

Notice that, since ‖y0‖−� = 1, for any z ∈ X∗� ,1951 ∥∥∥P ∗Span(y0)z
∥∥∥
�∗

= sup
y∈X−�
‖y‖−�=1

∣∣∣∣〈y, P ∗Span(y0)z
〉
−�,�

∣∣∣∣1952

= sup
y∈X−�
‖y‖−�=1

∣∣∣〈PSpan(y0)y, z
〉
−�,�

∣∣∣1953

= sup
y∈X−�
‖y‖−�=1

∣∣∣(y, y0)−� 〈y0, z〉−�,�
∣∣∣1954

=
∣∣∣〈y0, z〉−�,�

∣∣∣ .1955
1956

Thus, with those notations, we have1957

T0(y0) = lim sup
k→+∞

ln

(
max

l∈J1,gkK

∣∣∣〈y0, xk,l〉−�,�
∣∣∣)

λk,1
,1958

T0(Y0) = lim sup
k→+∞

ln

(
max

l∈J1,gkK
‖xk,l‖�∗

)
λk,1

.1959

1960

• Since y0 is normalized, we have
∣∣∣〈y0, xk,l〉−�,�

∣∣∣ ≤ ‖xk,l‖�∗ , for any k and l, it1961

immediately comes that T0(y0) ≤ T0(Y0) and thus1962

sup
y0∈Y0

T0(y0) ≤ T0(Y0).1963

• Conversely, let T be such that1964

sup
y0∈Y0

‖y0‖−�=1

T0(y0) < T.1965
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Setting x̃k,l := e−λk,1Txk,l, it comes that for any y0 ∈ Y0, we have1966

sup
k≥1

l∈J1,gkK

∣∣∣〈y0, x̃k,l〉−�,�
∣∣∣ < +∞,1967

and this property is in fact true for any y0 ∈ X−� since P ∗Y0
x̃k,l = x̃k,l, so

that we have

〈y0, x̃k,l〉−�,� =
〈
y0, P

∗
Y0
x̃k,l
〉
−�,� = 〈PY0

y0, x̃k,l〉−�,� ,

and PY0
y0 ∈ Y0.1968

Applying the Banach-Steinhaus theorem, this implies that1969

sup
k≥1

l∈J1,gkK

‖x̃k,l‖�∗ < +∞.1970

Thus there exists C > 0 such that ‖xk,l‖�∗ ≤ Ce
λk,1T for any k ≥ 1 and any1971

1 ≤ l ≤ gk. Finally this yields,1972

T0(Y0) = lim sup
k→∞

ln

(
max

l∈J1,gkK
‖xk,l‖�∗

)
λk,1

≤ T.1973

This ends the proof of Proposition 1.3.1974

7.5. On the condensation index.1975

In this appendix we give some useful properties concerning the condensation index1976

of a sequence. Let Σ be a family of positive real numbers. We start by recalling the1977

definition of c(Σ).1978

Definition 7.4. Assume that Σ satisfies1979 ∑
σ∈Σ

1

σ
< +∞.1980

The interpolating function is defined by1981

(125) EΣ : z ∈ C 7→
∏
σ∈Σ

(
1− z2

σ2

)
.1982

The condensation index c(Σ) is defined by1983

c(Σ) = lim sup
σ∈Σ
σ→∞

− ln |E′Σ(σ)|
σ

.1984

This definition (and also its extension to complex sequences) is given in [44].1985

In the case where the considered sequence satisfies the weak gap condition (8) the1986

computation of the condensation index can be simplified: the grouping introduced in1987

Proposition 7.1 is an optimal condensation grouping in the following sense.1988
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proposition 7.12. Assume that Σ satisfies the assumptions of Definition 7.4 as1989

well as the weak gap condition (8). Denote by (Gk)k≥1 a grouping satisfying the1990

conditions of Definition 1.2. Then,1991

c(Σ) = lim sup
σ∈Σ
σ→∞

− ln |P ′
G[σ](σ)|
σ

.1992

Recall that G[σ] is the element of (Gk)k≥1 containing σ.1993

Proof. The proof follow directly from (65).1994

Using this result, we compute easily the condensation index of the particular1995

sequence used in Sec. 5.1.1996

proposition 7.13. Let (µk)k≥1 be a real increasing sequence such that1997 ∑
k≥1

1

µk
< +∞.1998

Let α > β > 0 and Θ = {µk, µk + e−αµk , µk + e−βµk ; k ∈ N∗}. Then,1999

c(Θ) = α+ β.2000

Proof. One can directly verify that the grouping defined by2001

Gk :=
{
µk, µk + e−αµk , µk + e−βµk

}
2002

satisfies the requirements given in Proposition 7.1. Then, direct computations lead to2003

|P ′Gk(µk)| = |µk − (µk + e−αµk)| |µk − (µk + e−βµk)| = e−(α+β)µk ,2004

2005

|P ′Gk(µk + e−αµk)| = |µk + e−αµk − µk| |µk + e−αµk − (µk + e−βµk)|2006

= e−(α+β)µk
(

1− e−(α−β)µk
)
,2007

2008

and2009

|P ′Gk(µk + e−βµk)| = |µk + e−βµk − µk| |µk + e−βµk − (µk + e−αµk)|2010

= e−2βµk
(

1− e−(α−β)µk
)
.2011

2012

Thus, as 2β < α+ β, we obtain c(Θ) = α+ β.2013
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