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SUMMARY

The discovery of torsional Alfvén waves (geostrophic Alfvén waves) in the Earth’s core

(Gillet et al. 2010) calls for a better understanding of their properties. We present the first

experimental observations of torsional Alfvén waves, performed in the DTS-Ω set-up. In

this set-up, 50L of liquid sodium (magnetic Prandtl number Pm = 7.4 × 10−6) are con-

fined between an inner sphere (ri = 74 mm) and an outer shell (ro = 210 mm). The inner

sphere houses a permanent magnet, imposing a vertically aligned dipolar magnetic field

(Bmax = 345 mT). Both the inner sphere and the outer shell can rotate around the vertical

axis. Alfvén waves are triggered by a sudden and short rotation (jerk) of the inner sphere.

We study the propagation of these waves when the fluid is initially at rest, and when it

spins at a rotation rate up to 15 Hz. The waves produce an azimuthal magnetic field, which

we measure at different radii inside the fluid with magnetometers installed in a sleeve. We

also record the electric potential signature on the outer shell at several latitudes. Besides,

we probe the associated azimuthal velocity field using ultrasound Doppler velocimetry.

With a 15 Hz rotation rate, and because of the radial decay of the magnetic field intensity,

the dynamical regimes we achieve are characterized by dimensionless numbers in the fol-

lowing ranges: Lundquist number 0.5 < Lu < 16, Lehnert number 0.01 < Le < 0.3,

Rossby number Ro ∼ 0.1.
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We observe that the magnetic signal propagates away from the inner sphere, damped by

magnetic diffusion. Rotation affects the magnetic signature in a subtle way. Its effect

is more pronounced on the surface electric potentials, which are sensitive to the actual

fluid velocity of the wave. The ultrasound Doppler probes provide the first experimental

measurement of the fluid velocity of an Alfvén wave.

To complement these observations, we ran numerical simulations, using the XSHELLS

pseudo-spectral code with parameters as close as possible to the experimental ones. The

synthetic magnetic and electric signals match our measurements. The meridional snap-

shots of the synthetic azimuthal velocity field reveal the formation of geostrophic cylin-

ders expected for torsional Alfvén waves, and the excitation of inertial modes for abrupt

jerks of the inner sphere. In the absence of rotation, inertial effects become dominant

both in the experiments and in the simulations. The resulting non-linear regimes reveal

the formation of an equatorial sheet with a mushroom-shape cross-section.

We establish scaling laws for the magnetic and kinetic energies of Alfvén waves with

and without rotation. In both cases, we find that the magnetic energy EM saturates at

a level proportional to Rm2
jerk, where Rmjerk = Ujerkro/η is the magnetic Reynolds

number built with the maximum azimuthal velocity of the inner sphere during the jerk.

The Emax
K /Emax

M ratio (where Emax
K is the maximum kinetic energy), close to 1 for very

short rotation, increases linearly with the jerk duration.

Key words: Core – Dynamo: theories and simulations – Planetary interiors

1 INTRODUCTION

The discovery of torsional Alfvén waves in the liquid core of the Earth (Gillet et al. 2010) represents a

milestone in the exploration of the Earth’s deep interior. The presence of a dynamo-produced magnetic

field in the electrically conducting liquid iron core allows for the propagation of hydromagnetic waves

(Alfvén 1942). The Lorentz force is the restoring force for these waves, which are solutions of the

coupled system of the Navier-Stokes equation and the magnetic induction equation.

In a rotating system, such as a planetary core, the Coriolis force inhibits motions that vary along

the rotation axis. This is the Proudman-Taylor theorem. Therefore, rotation inhibits Alfvén waves

that violate the Proudman-Taylor constraint. In a sphere, axisymmetric motions that are purely az-
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imuthal and invariant along the rotation axis obey the Proudman-Taylor’s constraint. They are called

geostrophic motions. Geostrophic Alfvén waves are thus favored in a rotating system (Lehnert 1954b;

Braginsky 1970; Jault and Finlay 2015). They are called torsional Alfvén waves or torsional waves for

short.

Gillet et al. (2010) found convincing evidence for such waves in the Earth’s core. The secular

variation of the magnetic field at the surface of the Earth reflects the motions that take place at the sur-

face of the liquid core. Core flows reconstructed from the observed secular variation reveal azimuthal

motions on axi-centered cylinders that propagate across the liquid core. It takes them about 4 years to

cross the core. The velocity of Alfvén waves being proportional to the intensity of the magnetic field,

these observations yield a crucial information on the intensity of the magnetic field inside the liquid

core. They also provide a remarkable explanation for the variations of the length-of-day observed at

periods of about 6 years (Gillet et al. 2010, 2015).

Despite their importance, torsional Alfvén waves have never been explored in laboratory experi-

ments. In this article, we present observations of torsional Alfvén waves triggered in the DTS-Ω liquid

sodium experiment. We conduct numerical simulations of these waves, using parameters as close as

possible to the experimental ones, as already done for sustained turbulence in this set-up by Kaplan

et al. (2018).

Only a few laboratory experiments have been performed to study Alfvén waves in liquid metals.

In fact, magnetic diffusion renders the study of Alfvén waves very difficult in the lab. The very first

experimental hint of Alfvén waves was obtained by Lundquist (1949) in a cylindrical vessel under a

uniform magnetic field. He used mercury as a working fluid and a field intensity of 1 T. He excited

Alfvén waves by oscillating a crenelated disk at the base of the cylinder, and searched for resonances

associated to a standing wave. Lundquist did not reach the resonance peak and pointed out the strong

effect of magnetic damping in these experiments. Using liquid sodium, Lehnert (1954a) was able to

observe a resonance peak, in agreement with theoretical predictions. Jameson (1964) devised a more

elaborate toroidal device and measured a sharp resonance from Alfvén waves excited by current sheets

at the walls of the torus. The Alfvén waves excited in these devices were all axisymmetric and toroidal.

They were called ‘torsional’ by Lehnert (1954a), a terminology which is still widely used in the solar

corona context (e.g. Spruit 1982). Note that they differ from what we call torsional Alfvén waves: they

are not invariant along the symmetry axis, since they propagate in that direction. Applying magnetic

fields up to 13 T on a gallium alloy, Alboussiere et al. (2011) were able to document the propagation of

Alfvén waves, while previous studies focused on standing wave resonances. Their waves were poloidal

instead of toroidal.

One important difference between our experiment and previous ones is that we apply a dipolar
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magnetic field instead of a constant homogeneous magnetic field. Note that the propagation of tor-

sional Alfvén waves requires a magnetic field component perpendicular to the axis of rotation.

Global rotation is a required ingredient for torsional Alfvén waves, and was absent from all lab-

oratory experiments so far. In contrast, several theoretical studies have considered the influence of

rotation, starting with the pioneer analysis of Lehnert (1954b). Lehnert showed that the influence of

rotation depends upon the ratio of the rotation time to the Alfvén time, which is now called the Lehn-

ert number, following Jault (2008). For small enough Lehnert number (strong rotation), he found that

two families of waves are present: fast inertial waves modified by the magnetic field, and slow Alfvén

waves modified by rotation. One important property of Alfvén waves is that their kinetic and magnetic

energies are equal. Lehnert points out that this equipartition is lost in the presence of rotation. More

recently, Sreenivasan and Narasimhan (2017) have conducted a thorough analysis of the damping of

magnetohydrodynamic waves with rotation focused towards liquid metals. They study the evolution

of waves triggered by an initial velocity perturbation, and determine several characteristic times sep-

arating different dynamic regimes. The time-evolution of the magnetic and kinetic energies of the

two families of waves follow power laws with different exponents in the propagation and diffusion

regimes. Both studies consider an infinite domain with a homogeneous magnetic field aligned with

the rotation axis. In contrast, Bardsley and Davidson (2016) investigated the case when the magnetic

field is perpendicular to the rotation axis. Waves leading to quasi-geostrophy are then observed: they

propagate at the Alfvén wave velocity in the direction of the magnetic field, and at the group velocity

of inertial waves along the rotation axis, and exhibit energy equipartition.

In the Earth’s core, the presence of spherical boundaries has a strong impact: inertial waves build

geostrophic columns, which carry most of the energy and allow for the propagation of torsional Alfvén

waves in the direction perpendicular to the rotation axis. The relevant parameters for the Earth’s core

yield low magnetic diffusivity and strong rotation, and this is the regime studied by Jault (2008) and

colleagues (Gillet et al. 2012; Schaeffer et al. 2012). Their studies demonstrate that quasi-geostrophic

(z-invariant) structures dominate the flows at short time-scales, even when the magnetic field is strong

as measured by the Elsasser number (the ratio of Lorentz to Coriolis forces). Indeed, Jault (2008)

demonstrates that geostrophic torsional Alfvén waves persist for an Elsasser number of order 10 as

long as the Lehnert is smaller than 3× 10−2.

The DTS-Ω experiment was built to explore the magnetostrophic regime, with Elsasser number

around 1 (Cardin et al. 2002; Nataf et al. 2006; Brito et al. 2011). Here, we trigger waves mechanically
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by sudden jerks of its inner sphere, in order to investigate the formation of Alfvén waves and torsional

Alfvén waves in a situation where magnetic diffusion plays an important role.

The present paper is organized as follows. In section 2, we present the experimental set-up of DTS-

Ω, the first raw observations, the numerical set-up and the governing equations. Section 3 presents the

expected ideal Alfvén and torsional Alfvén waves, discusses the effect of magnetic diffusion, and

introduces the relevant dimensionless numbers. The main experimental and simulation results are

presented in section 4. We examine the role of rotation through the combined analysis of the mag-

netic waveforms, the electric potentials, and the fluid velocity field measured by Ultrasound Doppler

Velocimetry (UDV). Detailed comparison with the numerical simulations permits deciphering the be-

haviour of Alfvén waves and torsional Alfvén waves in a dipolar magnetic field. Section 5 establishes

the scaling laws of the time evolution of the kinetic and magnetic energies. Section 6 summarizes the

main conclusions of this work and provides some perspectives.

2 EXPERIMENTAL AND NUMERICAL SET-UP

We first recall the DTS-Ω experimental set-up and present the first raw observations of torsional wave

signals. We then detail the numerical set-up and the equations we solve.

2.1 Experimental set-up

The DTS experiment produces a rotating spherical Couette flow in a dipolar magnetic field. It displays

all required ingredients to trigger and observe torsional Alfvén waves. Its recently upgraded version

DTS-Ω includes an embarked electronics, which permits the simultaneous acquisition of 200 signals

in the rotating frame. Figure 1a shows the DTS-Ω set-up with its stainless steel outer shell (radius

ro = 210 mm) containing 50 liters of liquid sodium, a good electric conductor. Its inner sphere (radius

ri = 74 mm) consists in a copper shell housing a strong permanent magnet, which provides a nearly

dipolar magnetic field with a vertical axis. See Brito et al. (2011) for more details.

The inner sphere and the outer shell spin independently around the vertical axis at rotation rates

fi and fo respectively. For this study, we spun DTS-Ω up to fo = 15 Hz. Once in solid body rotation

(fo = fi ≡ f ), we trigger Alfvén waves by sudden jerks of the inner sphere. We define the angle ∆ϕ

swept by the inner sphere during the jerk time tjerk. We characterize the jerk by its magnetic Reynolds

number Rmjerk = roUjerk/η, with Ujerk = ri∆ϕ/tjerk, and η the magnetic diffusivity.

In the DTS-Ω experiment, the magnetic field is produced by a permanent magnet enclosed in

the inner sphere. The field is mainly axisymmetric and dipolar along a vertical axis in the fluid. In
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a)

b)

Figure 1. Sketch of the DTS-Ω set-up. (a) The spherical shell of DTS-Ω showing the inner sphere and its

shaft viewed through the 5mm-thick stainless steel outer shell. Little holes on the outer shell host electrodes.

Ultrasound beams used for Doppler velocimetry are shot from two ports. A sleeve (not shown) penetrating

radially from a port hosts Hall magnetometers. (b) sketch of the positions of the Bϕ magnetometers in the

sleeve, and of the ∆Vθ electric potential measurements at the surface, in a meridional section of the DTS-Ω

experiment (lower quadrant).

spherical coordinates (r, θ, ϕ), we get:

Bd(r, θ) =
µ0M
4πr3

(2r̂ cos θ + θ̂ sin θ), (1)

with M ' 700 Am2, where r̂ and θ̂ are the unit vectors in the radial and orthoradial directions,

respectively. The intensity of the imposed field reaches 345 mT at the pole of the inner sphere (r =

ri, θ = 0), decreasing to 7.5 mT at the equator of the outer sphere (r = ro, θ = π/2). We use this latter

value to define our magnetic intensity scale B0. Table 1 recalls these values and lists the kinematic

viscosity ν, the magnetic diffusivity η, and the magnetic Prandtl number Pm = ν/η of liquid sodium.

In this article, we present signals of the azimuthal magnetic fieldBϕ measured in a sleeve installed

in one of the two -20◦-latitude ports, visible in Figure 1a. We have also recorded additional signals at

[h]

ri ro Bd(ri, π/2) Bd(ro, π/2) η ν Pm

mm mm mT mT m2/s m2/s ν/η

74 210 175 7.5 8.8× 10−2 6.5× 10−7 7.4× 10−6

Table 1. Main relevant properties of the sodium-filled DTS-Ω experiment.
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a) b)

Figure 2. (a) Magnetic (BP5) and (b) electric (∆V−40) signature of 99 different jerks of the inner sphere. The

rise time trise of these jerks range from 16 to 56 ms, and the angle ∆ϕ swept by the inner sphere during a jerk

ranges from 16◦ to 190◦.

10◦ and 40◦. Electric potential differences ∆Vθ are measured along a meridian between electrodes 10◦-

apart, implanted in the outer stainless steel shell (see Figure 1a). The position of these measurements

is shown in Figure 1b.

Let’s have a look at the typical Bϕ and ∆Vθ signals we obtain.

2.2 Raw observations

Figure 2 displays the signals recorded for a collection of 99 jerks of the inner sphere, during 1 second

after the jerk start. The rotation rate is f = 15 Hz. The Bϕ magnetic signal closest to the inner sphere

(rBP5 = 94 mm) at a latitude of -20◦ (see Figure 1b) is shown in Figure 2a. Its maximum amplitude

ranges from 3 to 18 mT. Figure 2b is the corresponding electric potential difference ∆V−40 at the

surface between latitudes -45◦ and -35◦. Its maximum amplitude ranges from 0.04 to 0.24 mV.

In both cases, the dispersion of the curves at t = 0 gives an indication of the precision of the

measurements. While the electric signals tend to zero at long times, the Bϕ signals level off at various

values. This is due to non-axisymmetric components of the magnetic field produced by the magnet

inside the inner sphere (see Appendix A1.1). We also note strong oscillations at a frequency of about

18 Hz. These are due to rapid oscillations of the inner sphere triggered by the jerk (see Appendix B).

We will deal with these experimental artefacts later on.

In order to decipher the behaviour of torsional Alfvén waves, we ran numerical simulations, which

we now describe.
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[h]

shell material radial extent electric conductivity

mm 106 Ω−1m−1

stainless steel 210 : 215 1

liquid sodium 74 : 210 9

copper ∼ 63 : 74 38

Table 2. Electric conductivity shells in the sodium-filled DTS-Ω experiment.

2.3 Numerical set-up

We have performed pseudo-spectral numerical simulations of the generation and propagation of tor-

sional Alfvén waves in a spherical fluid shell without and with global rotation using the XSHELLS

v1.4 software (Figueroa et al. 2013). XSHELLS simulates MHD incompressible fluids and time-

steps both induction and Navier-Stokes equations (presented in section 2.4) in the spherical config-

uration. The code uses second order finite differences in the radial direction with many points con-

centrated near the walls (boundary layers) and the spherical harmonic transform library SHTns (Scha-

effer 2013) in the latitudinal direction, as well as hybrid parallel execution using OpenMP and/or

MPI. XSHELLS v1.4 uses a semi-implicit time-stepping scheme with diffusive terms treated by the

Crank-Nicolson method and all other terms (including non-linear terms) are treated by a second-order

Adams-Bashforth scheme. XSHELLS has been used previously to efficiently simulate the DTS ex-

periment (Figueroa et al. 2013; Cabanes et al. 2014a), the DTS-Ω experiment (Kaplan et al. 2018), as

well as unmagnetized spherical Couette (Barik et al. 2018) and torsional Alfvén waves (Gillet et al.

2012; Schaeffer et al. 2012; Schaeffer and Jault 2016).

We model torsional Alfvén waves with an imposed dipolar magnetic field, keeping parameters as

close as possible to those of the DTS-Ω experiments. Note that XSHELLS simulations do not include

geometric details of the experiment such as the shaft holding the inner sphere. We only consider

axisymmetric (m=0) solutions. All physical properties are the same as in the experiment, except for

the viscosity, which cannot be as low as in the experiment for numerical reasons. Nevertheless, all

simulations are in the low magnetic Prandtl number regime, with Pm ≤ 10−3. The actual simulation

parameters are summarized in Table A2 of Appendix D.

No-slip boundary conditions are used for the fluid velocity field on the inner and outer surfaces.

The magnetic boundary conditions require a special treatment because of the electric conductivity

jumps between the inner sphere, the liquid, and the outer shell, which we keep the same as in the

DTS-Ω experiment, given in Table 2. The procedure is described in detail in Appendix C of Cabanes

et al. (2014a).
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We have introduced two types of jerk time-function, the first one is a boxcar, and the second one

closely mimics the actual jerk time-function of the experiment (see Appendix A2). The angle swept by

the inner sphere during a jerk typically reaches 90◦ or more in the experiment, yieldingRmjerk values

of order unity, implying Reynolds numbers Rejerk = Rmjerk/Pm larger than 105. Even though we

use larger Pm values in the numerical simulations, we are still in a non-linear regime. A group of

simulations considers smaller jerk-angles corresponding to quasi-linear regimes.

2.4 Equations

The dynamical behaviour of the fluid motion and magnetic induction are described by the Navier-

Stokes equations (2, 3) and the induction equations (4, 5),

∂u

∂t︸︷︷︸
Fdt

+ (u · ∇)u︸ ︷︷ ︸
Fadv

+ 2Ω× u︸ ︷︷ ︸
FCor

(2)

= −1

ρ
∇P︸ ︷︷ ︸
FP

+
1

ρµ0
(∇× b)×Bd︸ ︷︷ ︸

F lin
Lor

+
1

ρµ0
(∇× b)× b︸ ︷︷ ︸
FNL
Lor

+ ν∇2u︸ ︷︷ ︸
Fdiff

∇ · u = 0 (3)
∂b

∂t︸︷︷︸
Gdt

= ∇× (u×Bd)︸ ︷︷ ︸
Glin

ind

+∇× (u× b)︸ ︷︷ ︸
GNL

ind

+ η∇2b︸ ︷︷ ︸
Gdiff

(4)

∇ · b = 0 (5)

where u and b are the fluid velocity and magnetic fields of the perturbation, respectively, and ρ, ν and

η are the density, viscosity and magnetic diffusivity of the fluid. The magnetic diffusivity is defined by

η = 1/σµ0 where σ and µ0 are the electrical conductivity and the magnetic permeability of the fluid.

We choose the outer shell radius ro as a typical length scale, and the magnetic diffusion time tη =

r2
o/η for time scale. As mentioned in section 2.1, the jerk magnetic Reynolds number Rmjerk is of

order unity in the experiments and simulations. Therefore we expect |b| � |Bd|, implying that FNLLor

and GNLind are not dominant compared to respectively F linLor and Glinind. The kinetic Reynolds number

Rejerk is large implying that the viscous term Fdiff is always small at large scale. In the absence of

rotation, the inertial term Fadv cannot be neglected. With rotation, this term can be compared with the

Coriolis term FCor, using the Rossby number Ro = Ujerk/(2πfro) ∼ 0.1 for f = 15 Hz. Thus, at

large scales the non linear term Fadv is expected to be non significant compared to the linear term FCor

or F linLor. Therefore in the experimental conditions the fluid acceleration Fdt is, at large scales, mainly

due to the Coriolis force FCor and the Lorentz force F linLor, leading to (6). The induction derivative Gdt

is mainly due to the electromotive force Glinind and the dissipation Gdiff , leading to (7). We note that

the pressure P plays a passive role, as it can be removed taking the curl of (6).
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∂u

∂t︸︷︷︸
Fdt

+ 2Ω× u︸ ︷︷ ︸
FCor

= −1

ρ
∇P︸ ︷︷ ︸
FP

+
1

ρµ0
(∇× b)×Bd︸ ︷︷ ︸

F lin
Lor

(6)

∂b

∂t︸︷︷︸
Gdt

= ∇× (u×Bd)︸ ︷︷ ︸
Glin

ind

+ η∇2b︸ ︷︷ ︸
Gdiff

(7)

Ideal waves result from (6) and (7) without the ohmic dissipation Gdiff . The generation of Alfvén

waves versus torsional Alfvén waves depends on whether in (6) the Coriolis acceleration FCor can

be neglected or not compared to the Lorentz acceleration F linLor (section 3.1). In the non ideal case

when Ohmic dissipation Gdiff cannot be neglected, two characteristic time scales can be defined, a

magnetic diffusion time tη and a Joule time tJ , derived from (7) by comparing Gdiff to respectively

Gdt and Glinind (section 3.2).

3 Alfvén WAVES VERSUS TORSIONAL Alfvén WAVES

3.1 Ideal waves

3.1.1 Ideal Alfvén waves

Ideal (i.e., non-dissipative) Alfvén waves are non-dispersive waves that follow magnetic field lines in a

fluid or plasma. The corresponding dispersion relation can be derived from (6) and (7) with Ω = 0 and

neglecting the magnetic dissipation term Gdiff . The local velocity of Alfvén waves VA(r) is given

by:

VA(r) =
Bd(r)
√
µ0ρ

, (8)

where Bd(r) is the magnetic field at position r defined in (1). In this case we also have |u|/|b| ≈

1/
√
µ0ρ and the characteristic time scale of Alfvén waves is given by tA(r) = ro

√
µ0ρ/|Bd(r)| (see

Table 3).

The travel time of ideal Alfvén waves is determined by integrating d`/VA(r, θ) along field lines

from the source (the surface of the inner sphere, r = ri) to all (r, θ) points. The resulting wavefronts

are shown in Figure 3a. Ideal Alfvén waves reach the outer sphere in only 120 ms (at the pole) to 420

ms (at the equator). Note that we have only drawn wavefronts emitted from the upper hemisphere, and

do not consider reflexions at the boundaries. Following the dipolar field lines, some waves cross the

equator and reach the opposite side of the inner sphere. We will see a consequence of this behaviour

in section 4.2.
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0 400 800

a)

0 200 400

b)

Figure 3. Wavefronts of (a) ideal Alfvén waves and (b) ideal torsional Alfvén waves in a dipolar magnetic

field. The waves are triggered by a jerk of the inner sphere (in brown). The color scales give the travel times in

milliseconds for the DTS-Ω parameters.

3.1.2 Ideal torsional Alfvén waves

In a rapidly rotating sphere, such that FCor cannot be neglected in (6), the Coriolis force inhibits

velocity variations along the rotation axis ẑ. Torsional Alfvén waves are geostrophic and propagate

along the cylindrical radius direction s = r sin θ, with a velocity given by:

VTA(s) = ŝ

√
1

2h(s)µ0ρ

∫ h

−h
B2
s (s, z)dz, (9)

with h(s) =
√
r2
o − s2 being half the height of the geostrophic cylinder at s (e.g. Gillet et al. 2010;

Jault and Finlay 2015). We only consider torsional Alfvén waves propagating outside the cylinder

tangent to the inner sphere, which represents the source of the wave, and we do not consider reflexions

at the boundaries. We obtain the travel time of torsional Alfvén waves by integrating ds/VTA(s) from

that source (s = ri) to all s > ri. The resulting wavefronts are shown in Figure 3b. Ideal torsional

Alfvén waves reach the equatorial region of the outer sphere in about 420 ms.

3.1.3 The Lehnert number

Torsional Alfvén waves appear provided that the Coriolis force is sufficiently strong compared to

the Lorentz force, which corresponds in (6) to strong enough FCor compared to F linLor. Introducing a
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tη tA tJ Lu Le Λ Eη Rmjerk Rejerk
r2o
η

ro
√
µ0ρ

Bd(r)
t2A/tη

roBd(r)
η
√
µ0ρ

Bd(r)
2πfro

√
µ0ρ

Lu Le Le/Lu Ujerk ro
η Rmjerk/Pm

Bd(ri, π/2) 500 41 3.4 12 0.26 3.15 0.021 5.52 751,000

Bd(ro, π/2) 500 960 1,840 0.53 0.011 0.0058 0.021 5.52 751,000

Table 3. Magnetic diffusion time, Alfvén time, Joule time (all in milliseconds) and key dimensionless numbers

for torsional Alfvén waves in the DTS-Ω experiment, calculated taking eitherBd(ri, π/2) orBd(ro, π/2) ≡ B0

as the intensity of the imposed magnetic field. The rotation rate is f = 15 Hz, and the jerk sweeps an angle

∆ϕ = 180◦, over a time tjerk = 100 ms (trise = 50 ms).

typical rotation time tΩ = Ω−1 such condition corresponds to tΩ � tA. Lehnert (1954b) was the

first to study the effect of the Coriolis force on Alfvén waves. Following Jault (2008), we define the

Lehnert number as:

Le =
tΩ
tA

=
Bd(r)

Ωro
√
µ0ρ

(10)

Jault (2008) showed that clearly z-invariant torsional Alfvén waves form when the Lehnert number is

smaller than about 3 × 10−2. As shown in Table 3, we reach values of the Lehnert number between

1.1 × 10−2 and 2.6 × 10−1 in our experiment at our highest rotation rate f = Ω/2π = 15 Hz,

depending on whether we pick for Bd(r) the intensity of the equatorial magnetic field at r = ro or

r = ri.

3.2 The effect of magnetic diffusion

While dissipation can often be neglected in natural systems such as planetary cores and stars, it plays

a major role in laboratory experiments.

3.2.1 The Lundquist number

One can measure the role of magnetic diffusion by comparing the Alfvén time tA to the magnetic

diffusion time tη. This yields the Lundquist number:

Lu =
tη
tA

=
roBd(r)

η
√
µ0ρ

. (11)

Table 3 shows that in our experiment the Lundquist number decreases from a value of 12 at r = ri to

0.53 at r = ro. Therefore, we expect an important magnetic dissipation.

3.2.2 The Joule damping time

The quasistatic approximation is widely used in studies of MHD flows in liquid metals (e.g. Roberts

1967; Sommeria and Moreau 1982; Siso-Nadal and Davidson 2004). It is a high magnetic diffusion
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limit, which assumes that Gdt is negligible in (7). For a large imposed magnetic field, the fluid

acceleration Fdt is dominated by the Lorentz force F linLor in (6). This yields a characteristic time

tJ = ρ/(σB2
d(r)), which is called the Joule damping time. The values of tJ are listed in Table 3

for the DTS-Ω set-up.

It only amounts to tJ = 3.4 ms when we pick Bd(ri) as the relevant magnetic field intensity. One

might therefore infer that Joule damping controls the flow dynamics near the inner sphere. This is not

the case. Indeed, the Joule damping time can be written as tJ = tA/Lu, showing that it will always

be small at large Lundquist numbers, which is in contradiction with the fact that magnetic diffusion is

small at large Lu. Physically, what happens is that the presence of the Gdt term reduces the electric

currents j needed to produce b, making the induction term Glinind much smaller than assumed for

deriving tJ . The quasistatic approximation cannot be used when dealing with Alfvén waves.

4 EXPERIMENTAL AND SIMULATED SIGNALS: THE EFFECT OF ROTATION

4.1 Early signals

Let’s first consider signals arriving within 80 ms from the jerk start. The large range of the raw signals

illustrated by Figure 2 is due to the variety of the inner sphere jerks we produced. Indeed, we cannot

control precisely the duration and amplitude of the jerks we trigger. We characterize the jerks by the

total angle ∆ϕ they swept, and their rise time trise, as described in Appendix A. Here, we select

29 jerks of similar size (∆ϕ = 110◦ ± 20◦), with a rise time between 35 and 46 ms, and we stack

the corresponding records. Figure 4a shows the resulting Bϕ signals at latitude -20◦ at all five radial

positions displayed in Figure 1b. We see a clear time progression of the signals, in excellent agreement

with the simulation with ∆ϕ = π/2 and trise = 40 ms shown in Figure 4c. Only ' 16 ms separate

the BP5-signal from the BP1-signal (measured at mid-height) in the experiment, compared to 20 ms

(= 0.04 tη) in the simulation, while an ideal torsional Alfvén wave would have taken 160 ms. This

illustrates the key role of magnetic diffusion in the experiment. Figure 4b shows the electric potential

differences at the surface of the sphere at the four latitudes displayed in Figure 1b. They compare very

well with their simulation counterparts shown in Figure 4d. In both cases, the signals have the same

shape at all four latitudes, and superpose almost exactly with the BP1 magnetic signal.

We note that all experimental signals arrive tlag ' 10 ms = 0.02 tη late compared to the simu-

lations. This is due to a short delay between the initiation of the jerk on the inner sphere pulley and

the reaction of the inner sphere itself. Indeed, the inner sphere of DTS-Ω is entrained via a magnetic

coupler, as described in Brito et al. (2011). In Appendix B, we use tlag to compute the angle lag δϕlag



14 Z. Tigrine, H.-C. Nataf, N. Schaeffer, P. Cardin, F. Plunian

0 0.05 0.1 0.15

time / t

0

0.2

0.4

0.6

0.8

1

B
 /

 m
a

x
(B

)

BP5

BP4

BP3

BP2

BP1

a)
0 0.05 0.1 0.15

time / t

0

0.2

0.4

0.6

0.8

1

 V
 /

 m
a

x
(

 V
)

V-10

V-20

V-30

V-40

b)

0.00 0.05 0.10 0.15
time / tη

0.0

0.2

0.4

0.6

0.8

1.0

B ϕ
 / 

m
ax

(B
ϕ)

BP5
BP4
BP3
BP2
BP1

c)
0.00 0.05 0.10 0.15

time / tη
0.0

0.2

0.4

0.6

0.8

1.0

ΔV
θ /

 m
ax

ΔΔ
V θ

)

V-10
V-20
V-30
V-40

d)

Figure 4. Magnetic and electric waveforms of torsional Alfvén waves in the DTS-Ω experiment for a rotation

rate f = 15 Hz. Observed (a) and simulated (c)Bϕ azimuthal magnetic signals inside the liquid at a latitude of -

20◦ for five radii color-coded as in Figure 1b. Observed (b) and simulated (d) ∆Vθ electric potential differences

at the surface of the stainless steel outer shell at four latitudes. All signals are normalized to their maximum

amplitude, and plotted versus time normalized by the magnetic diffusion time tη .

of the inner sphere with respect to its pulley by integrating the instantaneous rotation rate of the pulley

during the constant acceleration rise, and get: δϕlag ' 1.2◦.

We now examine the complete waveforms over two magnetic diffusion times, and compare the

rotating case (f = 15 Hz) with the non-rotating one (f = 0). We select stronger jerks than in the

previous section, in order to minimize the contribution of the inner sphere oscillations to the signals.

4.2 Magnetic waveforms

Figure 5a shows the Bϕ stacks of a selection of 18 jerks of similar size (∆ϕ = 155◦ ± 25◦), with a

rise time between 50 and 56 ms, for f = 0. By stacking the signals, we get rid of the offsets that were

visible after the jerks in Figure 2a. They only show up in the root mean square fluctuations (shaded



Torsional Alfvén waves in a dipolar magnetic field 15

area) around the mean. In contrast with Figure 4, we retain the amplitudes of the different signals, and

we clearly see the strong attenuation of the magnetic field (from BP5 to BP1) as the wave moves away

from the inner sphere.

Figure 5b shows Bϕ stacks for a similar selection of 22 jerks at f = 15 Hz. The differences with

Figure 5a are subtle, but we note slightly larger amplitudes, a wider positive pulse, and almost no

negative overshoot. These differences are also met in the corresponding simulations (∆ϕ = π and

trise = 50 ms) shown in Figures 5c and 5d, which use the same jerk time-function as the experiments

(see Appendix A2).

The negative overshoot of Bϕ near the inner sphere is somewhat unexpected. The numerical sim-

ulations help us get a better understanding when we examine the isolines of the azimuthal magnetic

field in a meridional plane. Figures 6a and 6b show such snapshots at t = 0.3 tη for f = 0 and f = 15

Hz, respectively, while Figures 6c and 6d show the corresponding Uϕ isolines. The sudden positive

jerk (Uϕ > 0 , red in Figure 6c) entrains the feet of the field lines of the imposed dipole on the inner

sphere, producing a negative (green) Bϕ in the upper hemisphere and positive (violet) Bϕ in the lower

hemisphere.

However, a patch of reversed Bϕ polarities shows up clearly near the equator of the inner sphere.

This is the signature of an Alfvén wave that originated in the opposite hemisphere (see Figure 3a): it

retains its original polarity throughout. Diffusion strongly smears both the magnetic and the velocity

signals, and we can better see this phenomenon if we reduce the diffusion by two orders of magnitude,

as in the simulations displayed in Figure 7. In the latter, we also see the signature of Alfvén waves

reflected on the inner sphere. Reflection of an Alfvén wave on a rigid conducting wall (our copper inner

sphere) reverses the polarity of velocity while the magnetic perturbation retains its polarity (Alfvén

and Fälthammar 1963, p.86).

Torsional Alfvén waves do not travel from one hemisphere to the other (see Figure 3b); hence the

absence of Bϕ negative overshoot.

We note that the differences between the rotating and non-rotating cases are subtle for the magnetic

field (Figures 5ab and 6ab), while the velocity fields appear clearly different in Figure 6cd. The flow

is dominated by an equatorial ring for f = 0, while it rapidly takes the shape of geostrophic cylinders

for f = 15 Hz.
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Figure 5. Azimuthal magnetic field Bϕ of the wave as a function of time at a latitude of −20◦ at 5 radii

color-coded as in Figure 1b. Time is given in magnetic diffusion time tη units. Magnetic field is normalized by

B0Rmjerk. (a) stack of Bϕ for 18 similar jerks with no rotation (f = 0). The shaded region represents the rms

around the mean. (b) stack of Bϕ for 22 similar jerks with rotation (f = 15 Hz). (c) numerical simulation for

f = 0. (d) numerical simulation for f = 15 Hz.

4.3 Electric potentials

Within some limits, surface electric potentials can serve as a proxy of the fluid velocity (Lehnert

1954a). From Ohm’s law, following Brito et al. (2011), we can write:

Uϕ =
1

Br

∆Vθ
ro∆θ

, (12)

where Uϕ represents some fluid azimuthal velocity in the bulk, Br is the radial component of the

imposed dipole at colatitude θ, and ∆Vθ is the finite electric potential difference between points at

latitude θ + ∆θ/2 and θ −∆θ/2.
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Figure 6. Comparison of meridional snapshots of computed Alfvén waves (left; f = 0) versus computed

torsional Alfvén waves (right; f = 15 Hz) for the Bϕ azimuthal magnetic field (a,b), and Uϕ azimuthal velocity

field (c,d) at time t = 0.3 tη . Magnetic field Bϕ is normalized by B0Rmjerk. Azimuthal fluid velocity Uϕ is

normalized by Ujerk = ri∆ϕ/tjerk.

Figures 8a and 8b display the waveforms of the surface electric potential differences ∆Vθ at lati-

tudes from −10◦ to −40◦, for f = 0 and f = 15 Hz, respectively. The selection of jerks is the same

as for Figure 5.

The maximum amplitude increases with latitude, a consequence of the increase of Br in equation

12. We note that for f = 15 Hz the amplitudes of the electric potentials decay much more slowly than

that of the magnetic signals.

Figures 8c and 8d show the corresponding synthetic electric potential differences computed in our

simulations. We recover the same behaviour as in the experiments, except that the simulated signals

last longer than we observe for f = 0. Note the much broader initial pulse for f = 15 Hz in both the

experiments and the simulations. Surprisingly, the simulated electric potentials show some wiggles for
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Figure 7. Meridional snapshots of Alfvén waves for simulations with a Lundquist number 100 times larger than

in DTS-Ω. (a,c) without rotation at time t = 0.001 tη . (b,d) with rotation rate f = 15 Hz at time t = 0.001 tη .

Uϕ and Bϕ/
√
ρµ0 both in units of ro/tη . See parameters for these simulations in Table A2.

f = 15 Hz. In fact, these are the signature of inertial modes, which are excited by the jerk. There is

a hint of their presence in the observed signals as well, somewhat obscured by the presence of inner

sphere oscillations (see Appendix B).

Note that the amplitudes of the simulated waveforms for bothBϕ and ∆Vθ match fairly well those

of the experiments. For that, we had to reduce the electric conductivity of the inner sphere shell from

that of copper down to that of liquid sodium. This accounts for electric coupling issues as discussed

in Appendix C. Similarly, the electric potentials in the upper hemisphere (not shown) are somewhat

weaker than in the lower one when f = 0.
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Figure 8. Orthoradial electric potential differences ∆Vθ as a function of time at the surface of the outer sphere,

at 4 latitudes color-coded as in Figure 1b. Time is given in magnetic diffusion time tη units. Electric potential

difference is normalized by B0 Ujerk ro ∆θ, where ∆θ = 10◦ is the latitudinal distance between the two elec-

trodes. (a) stack of ∆Vθ for 18 similar jerks with no rotation (f = 0). The shaded region represents the rms

around the mean. (b) stack of ∆Vθ for 22 similar jerks with rotation (f = 15 Hz). (c) numerical simulation for

f = 0. (d) numerical simulation for f = 15 Hz.

4.4 Time evolution of the magnetic and velocity fields

The numerical simulations enable us to better understand the combined time evolution of the magnetic

and velocity fields. Going back to Figure 6, we can first stress the differences between the case without

rotation (Figure 6ac) versus the case with rotation (Figure 6bd). The main difference is the organization

of the velocity field in geostrophic cylinders around the inner sphere in the presence of rotation. This

characteristic signature of torsional Alfvén waves appears to be present in the experimental conditions,

despite the important magnetic diffusion.
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In the case without rotation, we note that the maximum of the Uϕ velocity occurs in the equatorial

plane and propagates outwards, while no magnetic field line points in that direction. The radial velocity

is also strong there. As the Alfvén wave velocity blob propagates away from the inner sphere, it

experiences a smaller magnetic field, and inertia takes over. The tip of the resulting equatorial sheet

progressively evolves into a typical mushroom shape, as shown in movies Up-0.mp4 and Bp-0.mp4

(see supplementary material). Although Alfvén waves are linear by definition, we observe a clear

nonlinear behaviour in this simulation. This is not surprising given the large value of the hydrodynamic

Reynolds number Re ∼ 105 in this simulation (and even larger in the corresponding experiment

Re ∼ 2× 106).

In the rotating case, we observe that jerks of the inner sphere trigger inertial waves. Some of

them end up building the geostrophic cylinder that carries the torsional wave. Others reflect on the

outer shell and form oscillating inertial modes, which modulate the velocity field (Figure 6d) and the

surface electric potentials (Figure 8bd). This is best seen in the movies Up-15.mp4 and Bp-15.mp4

(see supplementary material). The shorter the jerk duration tjerk, the stronger the inertial modes.

4.5 Velocity measurements

None of the previous studies of Alfvén waves in liquid metals that we know of, provided measure-

ments of the fluid velocity. Here, we use ultrasound Doppler velocimetry as pioneered by Brito et al.

(2001) in liquid sodium. There are several problems that render the measure particularly difficult: (i)

the acquisition time must be as short as 10 ms to capture the wave; (ii) expected fluid velocities are

only a few centimeters per second. Additional issues arise when the outer sphere spins: (iii) particles

that scatter ultrasounds back to the probe become scarce as they get centrifuged; (iv) small unbalance

of the rotating sphere creates signals at the rotation frequency and its overtones; (v) the electric sig-

nals to and from the embarked ultrasound probes pass through slip rings, where they get polluted by

electromagnetic noise.

In order to measure angular velocities –the expected main component of our Alfvén waves– we

shoot ultrasound beams from ports in the outer shell at 24◦ from the radial direction, as in Brito et al.

(2011). We could retrieve satisfactory data from two beams, drawn in Figure 1a. Figure 9 shows the

projection of their (straight) rays in an (s, z) plane, where s is the cylindrical radius. Drawn dots are

separated by a constant distance along the ray of 0.1 ro. Ray 1 is symmetric with respect to the equa-

torial plane, while ray 2 retains a constant latitude of −20◦. To keep the acquisition time as short as

possible, we measure fluid velocities only along a portion of the ray straddling its midpoint, which is

closest to the inner sphere. We use the trigger mode of our Signal Processing DOP3010 ultrasound ve-

locimeter to start the acquisition at the instant we trigger the jerk, which is in turn related to the actual
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Figure 9. Projections of ultrasound rays 1 (red) and 2 (green) in the (s, z) plane of the DTS-Ω experiment. Dots

are drawn at the midpoint of the ray, and every 0.1 ro away from it along the ray where data shown in Figure 10

is collected.

start of the jerk deduced from the torque of the inner sphere motor drive, as described in Appendix A.

Figure 10a shows a surface rendering of the Alfvén wave angular velocity as a function of time

and distance along ultrasound ray 1, when the outer sphere is at rest (f = 0). We have stacked 5

records of jerks similar to those of sections 4.2 and 4.3, with ∆ϕ = 170◦ ± 9◦ and trise ' 55 ms.

The probed region only extends from a distance along the ray dray/ro = −0.13 to 0.18 around the

midpoint, and the time resolution is 16 ms. We see the rapid rise of the angular velocity at the Alfvén

wave front, followed by a slow decrease. The peak velocity is slightly offset from the midpoint of the

ray.

Synthetics of our measurements, computed from the same simulation as in sections 4.2 and 4.3, are

shown in Figure 10c. We recall that this simulation uses the experimental jerk time-function, and has

a reduced inner sphere conductivity. The siumulation shows a similar behaviour, with two important

differences: (i) the maximum amplitude in our measurements is about twice smaller than simulated;

(ii) measured velocities decay with time about 6 times more slowly than predicted.

Ray 2 looks more promising to probe the presence of the geostrophic velocity column that marks

the constraint of rotation (see Figure 6). Symptomatic of the difficulties mentioned earlier, we could

only get a handful of records for this ray geometry for f = −10 Hz. We stacked 8 jerks with ∆ϕ =

143◦ ± 1◦ and trise = 45 ms. The result is shown in Figure 10b. The time resolution is 20 ms, but

we had to to apply a 3 points median-filter in time to remove some spurious peaks at the rotation

frequency.

The corresponding simulation synthetics are shown in Figure 10d, Again, the measured velocities
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Figure 10. Color surface rendering of the fluid angular velocity ωfluid, as a function of time (normalized by tη)

and distance along the ray (normalized by ro), with dray = 0 at the midpoint of the ray. Angular velocities are

normalized by ∆ϕ/tjerk. (a) Ray 1. Stack of 5 records for f = 0. (b) Ray 2. Stack of 8 records for f = −10

Hz. (c) Ray 1. Synthetics for f = 0, with the same parameters as in figure 5c. (d) Ray 2. Synthetics for f = −10

Hz.

are about twice smaller than simulated, and they do not peak at the same dray.

For the short ray portions we could measure, the synthetics do not show huge differences between

the rotating versus non-rotating case. Overall, our harvest of velocity measurements is somewhat dis-

appointing. On the sunny side, we obtain clear and reproducible signals that nicely show the sudden
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Figure 11. Log-log plots of the time-evolution of the kinetic (blue) and magnetic (orange) energies of Alfvén

waves and torsional Alfvén waves from numerical simulations. (a) f = 0; (b) f = 15 Hz. Inner sphere jerks

sweep a ∆ϕ = 90◦ angle. The jerk duration is tjerk = 0.15 tη . Both EM and EK are normalized by ρr5o/t
2
η .

rise and slow decay of angular velocity of the Alfvén and torsional Alfvén waves. On the dark side,

our records do not clearly identify the influence of rotation, and the velocities we measure are about

twice smaller than predicted. We think that the latter problem is due to coupling issues, which are

discussed in Appendix C. Indeed, Table A1 indicates that the coupling was lower for these runs.

5 SCALING LAWS

We ran a series of numerical simulations with DTS-Ω parameters, varying the swept angle ∆ϕ from 1◦

to 180◦, and the jerk duration tjerk from 0.05 to 0.6 tη. The time-function of the jerk rotation rate was

a simple boxcar, and we set the magnetic Prandtl number to Pm = 10−3. The electric conductivities

were those of Table 2. The simulations covered both linear (Re � 1) and non-linear (Re � 1)

regimes, without or with rotation, but all were axisymmetric.

5.1 Time evolution of the kinetic and magnetic energies

We integrate the energy densities over the volume of the spherical shell to obtain the total instantaneous

kinetic EK(t) and magnetic EM (t) energies of the waves.

Figure 11 displays the time evolution of the kinetic and magnetic energies for simulations without

rotation (left) and with rotation (right). Both jerks sweep a ∆ϕ = 90◦ angle with a boxcar time
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function with tjerk = 0.15 tη. We see that the kinetic and magnetic energies initially build up at similar

rates, but that the magnetic energy levels off after t ' 0.05 tη while the kinetic energy continues

rising until the jerk stops. Magnetic energy is leaking out of the sphere because of magnetic diffusion

while kinetic energy accumulates. After that, both energies decrease, magnetic energy decreasing more

rapidly than kinetic energy.

In the absence of rotation, the damping reaches a power law, with EK ∼ t−1.3 and EM ∼ t−2.2,

while exponents −1/2 and −3/2 were derived for the decay of turbulence by Alfvén waves in a

uniform magnetic field by Moffatt (1967).

For torsional Alfvén waves, the behaviour is not strikingly different, but we observe that the en-

ergies decay exponentially with time rather than with a power law, in contrast with the results of

Sreenivasan and Narasimhan (2017). The maximum magnetic energy is slightly larger than in the no-

rotation case, yielding almost energy equipartition for the shortest jerks. The wiggles that show up in

the magnetic energy curves are the magnetic signature of inertial waves.

5.2 Maximum energies

We now examine how the maximum magnetic EmaxM and kinetic EmaxK energies scale with the jerk

parameters. Figure 12 compiles EmaxM versus Rm2
jerk for several numerical simulations and exper-

iments. For the latter, we convert the BP5 (Bϕ closest to the inner sphere) amplitude to EmaxM , as-

suming the same relationship as in the corresponding simulations. For all runs, we find that EmaxM is

proportional to the square of the magnetic Reynolds number Rmjerk = Ujerkro/η, irrespective of the

Lehnert number and jerk duration. More specifically, expressing the energies in ρU2
jerkr

3
o units, we

get: EmaxM ' 5× 10−2.

We find that theEmaxK /EmaxM ratio increases almost linearly with tjerk for torsional Alfvén waves,

with EmaxK /EmaxM ' 22 tjerk/tη, independent of Rmjerk.

Reducing the conductivity of the inner sphere reduces the magnetic and kinetic energies of the

wave. Finally, we note that the surface electric potentials follow the trend of the fluid velocity, con-

firming that they can be used as a proxy of the latter, as in section 4.3.

It is interesting to compare the kinetic and magnetic energies of Alfvén waves to their equivalent

when the inner sphere spins at a constant rate ∆f with respect to the outer sphere. Nataf (2013) and

Cabanes et al. (2014a) report values obtained from global reconstructions of the mean axisymmetric

velocity and magnetic fields in the DTS experiment. Both energies scale with U2 = (2π∆fri)
2 at

first order. Expressing the energies in ρU2r3
o units, they range from EK ' 3.6 and EM ' 1.6× 10−3

for Rm = 3.5 to EK ' 2.8 and EM ' 3.5× 10−3 for Rm = 10, after converting to our definition of
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Figure 12. Evolution of the maximum magnetic energy EmaxM with Rm2
jerk in simulations (connected points)

and experiments (symbols). The rotation rate is f = 15 Hz for all data shown, but non-rotating cases show a

very similar behaviour. The curve labelled ’dts-jerk’ uses σi = σNa and a dts-jerk time function.

U . The magnetic energy of the waves is much larger than the magnetic energy achieved in the steady

state. We can see this as the ability of the flow to adjust for limiting magnetic induction, as in Ferraro’s

law (Ferraro 1937).

6 DISCUSSION

We have presented the first experimental evidence for torsional Alfvén waves, i.e. geostrophic Alfvén

waves, which obey the Proudman-Taylor constraint imposed by rapid rotation. We have measured both

the induced azimuthal magnetic field inside the fluid shell (Figure 5) and the electric potentials at the

surface of the container (Figure 8). The signature of rotation is best seen on surface electric poten-

tials, which are sensitive to the velocity field through Ohm’s law. The velocity field is indeed strongly

modified by rotation, as shown by meridional maps of the azimuthal velocity field from numerical

simulations (Figure 6). We have also performed the first measurements of the velocity perturbation

associated with Alfvén waves, using ultrasound Doppler velocimetry (Figure 10), but we could not

use them to clearly identify the role of rotation.

The effect of rotation also shows up in the magnetic waveforms we record (Figure 5). Indeed,

the case with no rotation displays a negative overshoot, which is nearly absent in the rotating case.

Numerical simulations (Figure 6) indicate that the negative overshoot if the signature of an Alfvén

wave that originated in the opposite hemisphere, a consequence of the dipolar nature of the imposed
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Figure 13. Inertial modes signatures in a meridional snapshot of azimuthal fluid velocityUϕ at time t = 0.421 tη

for a numerical simulation with Pm = 10−5, f = 15 Hz, ∆ϕ = 1◦, boxcar jerk time-function with tjerk =

0.05 tη .

magnetic field (see Figure 3). This phenomenon is best seen on snapshots of the meridional maps

of the azimuthal magnetic field for simulations with a much reduced magnetic diffusion (Figure 7).

Geostrophic Alfvén waves, which travel in the s-direction, do not show this phenomenon. However,

magnetic diffusion introduces an additional twist in that case. The meridional map of the azimuthal

velocity in Figure 6d, shows that the geostrophic cylinder is smeared. It extends back around the inner

sphere, and persists after the end of the jerk, producing a weak reversed shear in that region, inducing

a weak negative overshoot for the magnetic field.

With global rotation, both experiments and simulations show that sudden jerks trigger inertial

waves in the fluid. In contrast with earlier studies dealing with the interaction of inertial waves with

an imposed magnetic field (Moffatt 1967; Bardsley and Davidson 2016; Sreenivasan and Narasimhan

2017), waves encounter boundaries in our study. In doing so, they create geostrophic cylinders (Figure

6d), which are the key feature of torsional Alfvén waves. The interferences of other inertial waves

build inertial modes, as best seen in Figure 13 and movie Up-15-modes.mp4.

The Lundquist number in our experiment is only 12 at the equator of the inner sphere, decreasing

to 0.5 at the outer sphere. The effect of magnetic diffusion is therefore larger than in the sodium exper-

iments of Jameson (1964), or in the gallium alloy experiments of Alboussiere et al. (2011), which both
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reached Lu = 60. We note that the propagation velocity of the resulting damped Alfvén wave appears

larger than that of ideal waves when we observe the signals in the time domain (Figure 4). We get

the opposite answer when we compare the position of the wave in space, as illustrated by comparing

Figures 6 (Lu = 12) and 7 (Lu = 1200). The core of the waves has travelled farther away in the latter

case, while the snapshot is taken at a time three times shorter in Alfvén time units.

There are several properties of our set-up that make it interesting, besides the possibility to study

the effect of rotation. As noted by Jameson (1964), the vertical walls of the container were responsible

for a large dissipation in the early experiments (Lundquist 1949; Lehnert 1954a). In our set-up, Alfvén

waves propagate freely from the inner sphere outwards, without meeting any wall, except for the inner

sphere itself, were interesting reflexions do occur.

Another interesting feature of our set-up is the way we trigger the Alfvén wave by a jerk of the

inner sphere. It produces simultaneously an azimuthal velocity impulse and an azimuthal magnetic

field impulse, the latter being proportional to the imposed magnetic field. The simple and smooth ge-

ometry of the inner body permits quantitative comparisons with axisymmetric numerical simulations

in spherical geometry. And we found indeed a good quantitative agreement between the experiments

and the simulations for the amplitudes of the magnetic field and of surface electric potentials, provided

we reduce the electric conductivity of the inner sphere from that of copper to that of sodium, because

of coupling issues (see Appendix C).

Schaeffer and Jault (2016) emphasize the role of the electrical conductivity of the walls for in-

hibiting the reflexion of torsional waves when they reach the equator. They show that the reflexion

coefficient R can be approximated by R = 1−Q−
√
Pm

1+Q+
√
Pm

, where Q = VAδw/ηw, for a wall of thickness

δw and magnetic diffusivity ηw, with VA the velocity of Alfvén waves near the wall. In our set-up,

we get Q ' 1 so that torsional Alfvén waves would hardly reflect, were their amplitudes not heavily

diminished by magnetic diffusion in the bulk.

Finally, we note that none of the diagnostics we used in the experiment (induced azimuthal mag-

netic field, surface electric potentials, in situ fluid velocities) is accessible in the study of torsional

waves in the Earth’s core. Instead, it is only the surface fluid velocities deduced from the magnetic

field secular variation that enabled Gillet et al. (2010) to detect and study torsional waves in the

core. This works well in the Earth because: (i) the Lundquist number is large enough (Lu ∼ 104)

for the frozen-flux approximation to be valid, (ii) the Lehnert number is small enough (Le ∼ 10−4)
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for torsional waves to be really z-invariant. In the DTS-Ω experiment, we have recorded the ’secular

variation’ of the magnetic field at the surface, but magnetic diffusion prohibits using the frozen-flux

approximation. Nevertheless, we might try to disentangle the effects of advection and diffusion in a

follow-up study, as in Cabanes et al. (2014a).
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Appendices

APPENDIX A: TRACKING JERKS OF THE INNER SPHERE

In order to better describe the source of our Alfvén waves, we need to retrieve a few properties of the

impulsive inner sphere rotation achieved in our DTS-Ω experiment. We produce this ’jerk’ by ordering

a sudden jump of the rotation rate to the motor driving the inner sphere, followed by a sudden drop

to its original value. We do not control the exact timing of these two orders, and therefore, we obtain

jerks of various sizes. In this appendix, we describe how we retrieve the two properties needed to

compare with simulations: the total angle ∆ϕ swept by the inner sphere (in the rotating frame) and

the jerk time-function.

A1 Obtaining ∆ϕ

We use two different methods to measure ∆ϕ, depending on whether the outer sphere is at rest (Alfvén

waves) or spins (torsional Alfvén waves). The ∆ϕ produced by our jerks range from 10◦ to 190◦.

A1.1 obtaining ∆ϕ for Alfvén waves

Figure A1a shows magnetic field records for a succession of 8 inner sphere jerks, when the outer sphere

is at rest. The three components Br, Bθ, Bϕ are measured (in a sleeve) ∼ 20 mm above the surface

of the inner sphere. The dipole field has been subtracted. The jerks show up as very thin impulses,

separated by long plateaus of different heights. During a jerk, the inner sphere changes from angular

position ϕ0 to ϕ0 + ∆ϕ with respect to the outer sphere (hence the sleeve). The plateaus indicate that

the magnetic field produced by the inner magnet is not perfectly axisymmetric. In fact, this property

was used by Cabanes et al. (2014b, 2015) to probe the effective magnetic diffusivity in DTS, and

Cabanes et al. (2014a) provide the scalar magnetic potential of this non-axisymmetric component (see

their figure 13a). The combination of the height of the plateaus for the 3 B-components unequivocally

characterizes the angular position of the inner sphere, hence the ∆ϕ angle swept by the inner sphere

during a jerk.

A1.2 obtaining ∆ϕ for torsional Alfvén waves

We use a different method when the outer sphere spins. We can time precisely when the outer sphere

reference longitude matches the lab frame reference, and similarly for the inner sphere. This provides

the rotation rates of both spheres. We can also determine the time delay, and hence the phase lag,
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Figure A1. Determination of the angle ∆ϕ swept by each jerk. (a) no rotation case: the figure shows the 3

components (Br, Bθ, Bϕ) of the induced magnetic field close to to the inner sphere as a function of time.

Eight jerks are visible. ∆ϕ is obtained from the difference between the inner sphere longitudes after and before

each jerk, deduced from their specific (Br, Bθ, Bϕ) combination. (b) rotating case (f = 15 Hz): the longitude

difference between the inner sphere and the outer sphere is plotted as a function of the turn index of the outer

sphere. A constant residual drift of the inner sphere of about 1◦/turn has been subtracted. The figure illustrates

how ∆ϕ is retrieved for each jerk.

between the two spheres at each turn. Figure A1b illustrates the determination of ∆ϕ for a subset of 7

inner sphere jerks for f = 15 Hz.
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A2 Jerk time-function

The first thing is to get the precise starting time of each jerk. We obtain this from the record of the

torque applied to the inner sphere provided by its motor drive. It rises abruptly from some initial value

to values in excess of 100 Nm, and we can pin-point the rise start with a precision of about 1 ms. It

drops very abruptly as well, and we pin-point the time at which it crosses its initial level to within 1

ms as well. This defines the rise time trise of the jerk. It ranges from 15 to 60 ms.

The motor drive also provides the instantaneous rotation rate ∆f(t) of the motor. Figure A2

displays a typical record of that signal. It is somewhat noisy, but one clearly sees a linear rise between

the two vertical lines that mark the rise and fall of the torque. It is followed by a quasi-exponential

decay, with a time constant tdecay ' 75 ms. Knowing the total angle ∆ϕ of the jerk from our previous

analysis, we can calculate the peak rotation rate ∆fmax by the integration of this rise-and-decay time-

function. We get:

2π∆fmax =
∆ϕ

tdecay + trise/2
. (A.1)

Figure A2 shows that the synthetic jerk time-function thus obtained provides a good fit. We define

tjerk = tdecay + trise/2. We implemented this time-function in the simulations.

∆fmax is used in the estimate of the magnetic Reynolds number of the jerk:Rmjerk = roUjerk/η,

with Ujerk = 2π∆fmaxri = ri∆ϕ/tjerk.

APPENDIX B: OSCILLATIONS OF THE INNER SPHERE

The above procedure provides the jerk time-function of the pulley that drives the inner sphere of DTS-

Ω. However, the pulley entrains the inner sphere through a magnetic coupler. Sudden jerks create a

small phase lag δϕlag between the pulley and the inner sphere, which we can estimate from the time

lag tlag of the observed magnetic signal compared to our simulation (see section 4.1):

δϕlag = 2π

∫ tlag

0
∆f(t)dt =

2π∆fmax
trise

t2lag
2
, (B.1)

where ∆fmax is calculated in Appendix A2. We get δϕlag ' 1.2◦.

The magnetic coupler-inner sphere system then behaves as a damped oscillator, with a character-

istic frequency νosc ' 18 Hz. The actual jerk waveform thus combines the pulley time-function and

the oscillations resulting from the magnetic coupler, which have a clear signature on the measured

magnetic (Figures 5ab) and electric (Figures 8ab) signals.

We have not included these oscillations in our simulations, but we can estimate their expected
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Figure A2. Typical time-function of a jerk in DTS-Ω. The figure displays the torque (green curve in Nm) and

differential rotation rate (red curve in Hz) of the inner sphere motor drive during a jerk, for f = 15 Hz. The

sudden rise of the torque to a value of about 150 Nm (off scale) yields the jerk origin time. The rotation rate

increases linearly until the torque suddenly drops to negative values, here at about 50 ms after the jerk start.

This defines trise for this jerk. Then, the differential rotation rate decreases exponentially back to zero, with

tdecay ' 75 ms. This jerk swept an angle ∆ϕ ' 135◦. The blue piecewise curve is the synthetic jerk we use in

the numerical simulations.

signature from our scaling laws. The magnetic Reynolds number of the oscillations is:

Rmosc =
2π νosc δϕlag ri ro

η
' 0.42. (B.2)

This is about 13 times smaller than the magnetic Reynolds number of the jerks selected in Figure

5ab. We should find the same ratio between the signature of the oscillations and the jerk’s main signal,

since the scaling laws we found in section 5 predict thatB is proportional toRm. This is roughly what

we find. The oscillations are slightly smaller for the electric potentials, consistent with an expected

additional
√
tosc/trise ' 0.5 factor.

APPENDIX C: COUPLING ISSUES

As in the early experiments of Lehnert (1954a), our Alfvén waves are produced by a shearing of the

magnetic field lines at the copper-sodium interface at the inner sphere surface. The electric coupling

between the liquid sodium and the copper inner shell therefore plays a crucial role. During its 12 years

of operation, the DTS experiment has seen its coupling vary substantially, for reasons which have not

been really understood. While it was good and stable in the experiments reported on by Brito et al.
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[h]

Fig f ∆ϕ trise/tη coupling Le(ro) Rmjerk

# Hz ◦

2ab,12c 15 14-190 0.04-0.12 0.5 0.011 0.5-5.6

4ab 15 110± 20 0.08 0.5 0.011 2.9

5a,8a 0 155± 25 0.1 0.5 ∞ ∼ 4.9

5b,8b 15 155± 25 0.1 0.5 0.011 ∼ 4.9

10a 0 167-185 0.1 0.1 ∞ ∼ 5.6

10b −10 143 0.08 0.15 0.017 ∼ 4.6

A1a 0 0.5 ∞

A1b 15 0.5 0.011

A2 15 135 0.1 0.5 0.011 4.2

Table A1. Parameters of the experiments. Le(ro) is the Lehnert number of equation 10 evaluated using the

intensity of the magnetic field at the equator of the outer shell (r = ro). Rmjerk is the magnetic Reynolds

number of the jerk. ’coupling’ is the ratio of the measured ∆V−40 over its value simulated with an inner sphere

with copper electric conductivity.

(2011), Schmitt et al. (2013), Nataf (2013) and Cabanes et al. (2014a,b, 2015), it was partly impaired

in those of Nataf et al. (2006, 2008) and Schmitt et al. (2008). The coupling was good again in the first

runs of the upgraded version DTS-Ω, but it deteriorated and remained imperfect even after a complete

replacement of our sodium performed in September 2016.

However, Nataf et al. (2008) show that surface electric potentials provide a good proxy for the

quality of the coupling for a given differential rotation rate. In order to get the good quantitative

agreement between our measurements and our numerical simulations shown in Figures 5 and 8, we

had to reduce the conductivity of the inner sphere shell from that of copper to that of liquid sodium in

the numerical simulations. The coupling was not as good when we succeeded obtaining the ultrasound

Doppler velocity profiles shown in Figure 10, with ∆V40 electric potentials 3 to 5 times smaller. Note

that some coupling inhomogeneity between the upper and lower hemispheres is also revealed by the

electric potentials in some cases.

APPENDIX D: EXPERIMENTAL AND NUMERICAL PARAMETERS

Table A1 summarizes the parameters of the experiments and Table A2 those of the numerical simula-

tions presented in this article.
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[h]

Fig f ∆ϕ trise/tη jerk time σi/σNa Lu(ri) Pm `max NR

# Hz ◦ -function

4cd 15 90 0.08 dts 1 12 10−4 300 1000

5c,8c,6ac,10c 0 180 0.1 dts 1 12 10−4 300 1000

5d,8d,6bd 15 180 0.1 dts 1 12 10−4 300 1000

10d −10 180 0.1 dts 1 12 10−4 300 1000

tjerk/tη

7ac 0 0.1 2× 10−4 boxcar 4.2 1200 10−3 120 550

7bd† 15 0.1 2× 10−4 boxcar 4.2 1200 10−1 460 1200

11abd 0,15 90 0.05,0.15 boxcar 4.2 12 10−3 120 550

12abd 0,15 1-180 0.05-0.6 boxcar 4.2 12 10−3 120 550

Table A2. Parameters of the numerical simulations. The ‘dts’ jerk time-function is described in Appendix A2.

σi is the electric conductivity of the shell housing the magnet of the inner sphere, while σNa is the electric

conductivity of liquid sodium. The σi/σNa ratio is 4.2 for a copper shell. Lu(ri) is the Lundquist number of

equation 11 evaluated using the intensity of the magnetic field at the equator of the inner sphere (r = ri). `max

is the maximum harmonic degree of the simulation, and NR the number of radial grid points. †This simulation

had ro = 21 m in order to get the same Elsasser number as in the experiment at 15 Hz, implying a Lehnert

number 100 smaller than in the experiment.
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