
HAL Id: hal-01949320
https://hal.science/hal-01949320

Submitted on 10 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recent Advances on Stochastic and Noise Enhanced
Methods in Error Correction Decoders

Chris Winstead, Tasnuva Tithi, Emmanuel Boutillon, Fakhreddine Ghaffari

To cite this version:
Chris Winstead, Tasnuva Tithi, Emmanuel Boutillon, Fakhreddine Ghaffari. Recent Advances on
Stochastic and Noise Enhanced Methods in Error Correction Decoders. 10th International Symposium
on Turbo Codes & Iterative Information Processing (ISTC’2018), Dec 2018, Hong Kong, China. �hal-
01949320�

https://hal.science/hal-01949320
https://hal.archives-ouvertes.fr


Recent Advances on Stochastic and Noise
Enhanced Methods in Error Correction Decoders
Chris Winstead, Tasnuva Tithi

ECE Department
Utah State University

Logan, UT 84322-4120
email: chris.winstead@usu.edu
tasnuvatithi@aggiemail.usu.edu

Emmanuel Boutillon
Lab-STICC, UMR 6285

Université de Bretagne Sud
56321 Lorient, France

email: emmanuel.boutillon@univ-ubs.fr

Fakhreddine Ghaffari
ETIS, UMR-8051

Université de Cergy-Pontoise, France
email: fakhreddine.ghaffari@ensea.fr

Abstract—This paper offers a review of recent developments
in non-deterministic error correction decoding methods, which
can be described in two broad classes. The first class uses
stochastic computation to emulate the arithmetic operations of
conventional decoding algorithms. The second class achieves
noise enhancement by randomly perturbing the calculations of a
standard decoder. Stochastic decoders inherit analysis techniques
from the conventional algorithms they emulate, but the noise-
enhanced algorithms are newer, more difficult to explain, and
not yet fully understood. We describe a Markov chain analysis
technique to both explain and optimize noise enhancement in
these algorithms. Circuit implementation is also discussed, includ-
ing both conventional hardware architectures and circuits based
on memristor threshold logic, where memristor non-determinism
can be exploited for noise enhancement.

I. INTRODUCTION

Non-deterministic algorithms are well known in a variety of
fields (optimization, imaging, neuromorphic computing, etc),
in which the performance or efficiency is enhanced beyond
what could be obtained by a deterministic method. For many
years, there has been a corresponding interest in reliable or fault-
tolerant computing with non-deterministic physical components.
In this paper we survey a family of non-deterministic error
correction algorithms and circuit implementations that merge
these topics, providing a useful framework for noise enhance-
ment at the physical layer of data communication, memory and
storage. Most of the recent advances in this area focus on Low
Density Parity Check (LDPC) codes, a well known class of
error correction algorithms that are now included in numerous
data communication standards. The survey will therefore be
limited to the domain of LDPC codes, though the concepts are
by no means restricted to that class of codes.

LDPC codes are used to encode data by inserting redundant
parity bits in anticipation of corruption due to noisy commu-
nication channels or faulty memory cells. Error correction is
usually done using Bayesian Belief Propagation (BP) or related
algorithms. BP-based algorithms perform exceptionally well in
that they achieve very low error rates after decoding retrieved
data. An alternative class of Bit-Flipping (BF) algorithms is also
widely studied. BF decoders are much simpler to implement in
hardware, but achieve comparatively poor error rates. During
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Fig. 1: Stochastic variable node implementation based on a
Muller C-element with J/K flip-flop.

the past two decades, a great deal of research has been invested
into designing algorithms that optimize the tradeoff between
BP’s excellent performance and BF’s simplicity.

A. Review of stochastic decoding algorithms

LPDC decoders belong to a class of message-passing
algorithms defined on factor graphs. A message passing decoder
computes local probability or likelihood metrics at each node.
Local calculations are iterated until all parity-check constraints
are satisfied, indicating global convergence.

A typical BP-based decoder must perform a number of
integer additions, lookup table operations, or comparisons
to obtain a metric for every edge in the graph. In order to
reduce the hardware cost of these decoders, beginning in
2003 researchers considered stochastic computing methods
to emulate the required arithmetic [1]. The basic concept
is to compute probability metrics by filtering pseudorandom
bit sequences that model a Bernoulli process. A probability
value is directly encoded in the frequency of 1’s appearing
in the sequence. The hardware is often simpler than BP-
based decoders: adders are replaced by Muller C-element gates
(similar in function to J/K flip-flops). An example C-element
implementation is shown in Fig. 1. In the figure, the processor
receives two input Bernoulli streams, A and B, with statistics
pA and pB , respectively. It is well known that the output is a
sequence with statistic

pQ =
pApB

pApB + (1− pA) (1− pB)

which corresponds to the BP symbol node operation.
For an acyclic graph, a stochastic decoder has performance

equivalent to BP. Most code graphs are cyclic, and in this
case the stochastic algorithm becomes trapped in deterministic



patterns, resulting in uncorrectable error patterns along the
cyclic subgraphs. To resolve this problem, the variable node
implementation (Fig. 2) is modified to have non-deterministic
behavior [2]. The best performing modification is the family of
“edge memory” methods, which restore performance close to
BP [3]. An edge memory is a module that samples the statistics
of an input bit stream, and emits a separate, independent stream
with the same statistics. If an edge memory is inserted in every
cycle within the decoder, then deterministic loops are eliminated
while preserving the BP-based probability calculations.

B. Noise enhanced decoders

Arguably the first observation of non-deterministic enhance-
ment was in 2001, in the context of analog decoders where
device mismatch was observed to enhance performance in
some cases [4]. This phenomenon was explained by the sub-
optimality of BP on cyclic code graphs, which opened a
possibility for accidental improvement in randomly altered
designs. A more systematic approach to noise enhancement
appeared with probabilistic bit flipping (PBF) in 2005, where
Gallager-style bit-flipping algorithm was modified to flip bits
only with probability p (i.e. the algorithm’s normal bit flips
are suppressed with probability 1 − p) [5]. In 2009, noise
enhancement was observed for stochastic decoders implemented
with a mixture of permanent defects and transient errors
[6], where noise-induced upsets were found beneficial for
compensating permanent faults.

In 2012, dithered belief propagation was described, marking
the first explicit construction of a noise enhanced BP decoder
where decoding operations are deliberately perturbed by
artificial noise [7]. This was followed soon after by four
developments in 2014. First, noise enhancement was observed
for the BP-based Min-Sun (MS) algorithm on the binary
symmetric channel (BSC) [8]. In the same year, Noisy Gradient
Descent Bit Flipping (NGDBF) was described for the Gaussian
channel [9] and the related Probabilistic Gradient Descent Bit
Flipping (PGDBF) algorithm for the BSC [10]. These works
led to a number of algorithm and hardware improvements for
NGDBF [11]–[13] and PGDBF [14]–[17], along with potential
specialized applications in solid-state storage [18]. A related
approach, known as the Improved Differential Binary (IDB)
decoder, was also proposed in 2014 [19]. The IDB decoder
uses a combination of feedback (similar to the stochastic TFM)
and perturbed threshold operations.

The GDBF algorithm is based on sum-and-threshold oper-
ations, as shown in Fig. 2. First, a hard decision syndrome
vector is computed by the parity-check nodes. Then, for each
variable node, an “energy function” is computed (also called a
“reliability” or “flipping” function) by the expression

E(GDBF)
k = xkyk +

∑
j∈Mk

sj , (1)

where yk is the channel information, xk ∈ {+1,−1} is
the bipolar hypothesis decision, Mk is the parity-check
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Fig. 2: Typical variable node implementation for the NGDBF
algorithm based on a toggle flip-flop. Inputs are channel
information y, threshold θ, random perturbation q, and adjacent
parity-check messages sj .

neighborhood of the kth variable node, and the sj are bipolar
syndrome values (parity is satisfied when sj = +1 and violated
when sj = −1). In each iteration, the decision xk is flipped if
Ek < θ, where θ is a threshold that may vary from iteration
to iteration or, in some algorithms, from node to node.

In the NGDBF algorithm, the threshold operation is perturbed
by injected noise q:

E(NGDBF)
k = xkyk +

∑
j∈Mk

sj + q, (2)

In the PGDBF algorithm, the sum-and-threshold operation is
carried out using the GDBF rule (1), and if Ek < θ then the bit
is flipped only with probability pflip. In the NGDBF and PGDBF
algorithms, some kind of random number generator (RNG) is
needed to generate the non-deterministic behavior. For NGDBF,
Gaussian perturbations have generally been used, but other
distributions have also been used with a small performance
penalty [9]. There are now numerous variations on the NGDBF
and PGDBF algorithms, which differ mainly in the method
and scheduling of how θ is determined.

Besides bit-flipping and BP-based decoders, other types of
noise-enhanced decoders have been reported, such as a recent
stochastic BCH decoder [20] and a stochastic Chase algorithm
[21]. These are often described as stochastic decoders, however
they do not utilize the hardware techniques traditionally labeled
as “stochastic computing” and are arguably more similar
to noise-enhanced decoders than to the BP-based stochastic
decoders described in Sec. I-A, since they perform a discrete
codeword search aided by non-determinism. Research on noisy
BP-based decoders has also continued to advance, as with the
recent Noise-Against-Noise Decoder (NAND) algorithm [22].

II. THEORY

The development of noise-enhanced decoders was experi-
mentally driven, and significant performance enhancing effects
were discovered and optimized empirically prior to developing a
sound theoretical footing. The empirical approach nevertheless
realized a high degree of performance gain. One example is
shown in Fig. 3, which compares performance of stochastic
and NGDBF algorithms with ideal BP decoding on the AWGN
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Fig. 3: Example of noise-enhanced performance for stochastic,
IDB and NGDBF algorithms, applied to the IEEE 802.3an
10GBase-T standard. NGDBF allows a maximum of 600
iterations to decode a frame.

channel. Compared to noiseless GDBF, the leap in performance
due to solely to noise is particularly striking. A second
example is shown in Fig. 4, which shows performance of
a “decoder-dynamic shift” (DDS) PGDBF algorithm [23]
approaching maximum-likelihood performance on the BSC
when a large iteration limit is allowed. The noise gains depicted
in Figures 3 and 4 were discovered essentially by accident, and
theoretical explanations came later. To date, the most productive
explanation is that noise tends to disrupt trapping sets in
the GDBF decoder. Trapping set analysis aids in parametric
optimization for noisy decoders, but does not support ensemble
optimizations like the ones obtained with density evolution for
BP-based decoders.

LDPC codes are represented by compact graphs with many
cycles, which break the formal correctness of BP and related
algorithms. Certain error patterns can be difficult or impossible
to correct on cyclic subgraphs known as trapping sets. In the
case of BP-based algorithms, trapping sets are well known
as the cause of error floors. In the domain of bit-flipping
algorithms, trapping sets have proven useful for understanding
and optimizing noise enhancement effects.

A Markov process approach to trapping sets was previously
described [23], and is here illustrated by a simple example. We
consider a trapping set involving m variable nodes. Then there
are 2m possible binary states for the variable nodes involved in
the trapping set. Only one of these states is correct, and without
loss of generality we assume it is state 0. Since the decoding
algorithm is non-deterministic, in each iteration it may undergo
a transition from its present state si to any other allowed
state sj with probability pij , hence the decoding iterations
constitute a homogeneous Markov chain characterized by a
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Fig. 4: Example of ML-approaching performance for the
PGDBF algorithm on the Tanner code with N = 155. For
each algorihtm, the maximum allowed iterations per frame are
indicated in parentheses.

square transition matrix Γ of dimension 2m with entries pij .
For an initial erroneous state ~s0, the probability that the error

is corrected after L iterations is the zeroth element of ~s0ΓL.
Since Γ and s0 depend on the received channel information,
we use a Markov Chain Monte Carlo procedure to evaluate the
trapping set’s contribution to the error probability over many
frames. This procedure reveals that noise is essential for BF
algorithms to correct trapping set errors. Furthermore, since Γ

is dependent on various algorithms parameters (e.g. the noise
statistics and distribution, weighting or clipping of channel
samples, etc), these parameters can be adjusted and optimized
at design time [24].

III. IMPLEMENTATION

A. Conventional ASIC and FPGA architectures

ASIC implementations of stochastic and noise enhanced
BF decoders usually are fully parallel architectures that
precisely map the code’s factor graph topology. The circuit
implementations have few degrees of freedom for the variable
and check nodes, hence most design effort tends to focus on
generating and distributing random numbers or on the design
of efficient edge memories. Recent stochastic decoders proved
competitive with BP-based decoders in both performance and
silicon area [25]. More recent BF implementations require 2×
to 3× less area than stochastic decoders, with similar or better
decoding performance. The area reduction is explained by the
data flow architectures shown in Fig. 5. In every iteration,
stochastic decoders must compute two messages for every
edge in the factor graph, whereas the BF decoders need only
compute one message per node.



The normalized power consumption of BF decoders, reported
in Joules per bit, is the lowest among decoders implemented in
comparable technology. Due to their non-deterministic conver-
gence, stochastic and noisy BF decoders cannot guarantee the
same latency for all frames, and may require buffering frames
to accommodate occasional delays. The average throughput
is nevertheless high enough for major data communication
standards, such as IEEE 802.3an 10GBase-T [11], [25].

Non-deterministic BF decoders have been reported to per-
form well with a variety of non-ideal random number sources.
Where the earliest designs typically employed linear feedback
shift registers (LFSRs) to produce random numbers, it would
be prohibitive to include an LFSR in every variable node. This
motivated random sample reuse, where a large shift register
is used to distribute samples from a single RNG [9]. Simpler
approaches use no RNG at all, as random samples can be
pre-generated as initialization values for a circular shift register
[11]. Another LFSR-free approach uses an “intrinsic valued
random generator” to extract random numbers from switching
activity within the decoder [26].

For quasi-cyclic LDPC (QC-LDPC) codes, the recently de-
scribed Variable Node Shift Architecture (VNSA) implements
PGDBF without requiring any RNG [17]. In the VNSA, a
unique pre-generated noise sample is hard-coded into each
variable node. The code’s structure permits cyclically shifting
the variable node states after each iteration. With each iteration,
the variable nodes’ logical positions are shifted to new physical
locations, where they obtain an updated noise sample from the
local hardware instantiation. The VNSA decoder has hardware
area almost as low as GDBF, making it one of the most area
efficient decoder architectures.

B. Unconventional emerging devices: memristors

In the development of stochastic and noise-enhanced de-
coders, two central points emerged: first, deterministic logic
is fatal for stochastic decoders with cycles; second, non-
determinism is essential for performance gain in noise enhanced
decoders. In hardware implementation, non-determinism is usu-
ally provided using RNG circuits that incur substantial overhead
in area and power. There is now an interest in exploiting nano-
scale “native non-determinism” as a computational resource to
mitigate the hardware cost of RNGs.

Recent research points to resistance-switching devices,
commonly identified as a subclass of memristors, as having non-
deterministic switching statistics that can be modeled with some
precision, and can be adjusted by manipulating pulse timing
or amplitude in memristive logic circuits [27]. A memristor of
this type can be induced to switch between high-resistance and
low-resistance states by applying forward and reverse voltages
(respectively) in excess of the device’s threshold voltage. When
a lesser sub-threshold voltage is applied, the device’s switching
is a stochastic process. This phenomenon already attracted
interest from the neuromorphic circuits community, where
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Fig. 5: Comparison of iterative data flow in stochastic vs BF
architectures.

stochastic switching provides a model for neural networks
based on spike timing dependent plasticity (STDP) [27], [28].
Memristor circuits were previously considered for LDPC
decoders [29], and for stochastic computation [30].

A possible memristor-based randomness source is shown
in Fig. 6. The memristor is initialized in a high-resistance
state by applying a reverse pulse Vrst which exceeds the
memristor’s switching threshold. A train of sub-threshold
pulses are then applied at Vp. A sub-threshold pulse can
cause the memristor to switch to a low-resistance state with
probabiilty psw. The switching statistics are a function of the
pulse amplitude and width [27]. The memristor’s resistance
state is detected by monitoring the voltage in the resistor divider
circuit formed by R. Each time the memristor switches to a
low-resistance state, a reset cycle is required to restore the
memristor to its high-resistance condition. The digital output Q
is a true random Bernoulli sequence. Memristor-based random
generators therefore have the potential to produce random
perturbations with superior statistical features (i.e. true random
instead of pseudo-random sequences), with less circuit area
than traditional RNGs.

IV. CONCLUSION

This paper gave an abbreviated review of recent progress in
stochastic and noise-enhanced decoding, emphasizing advances
during the past five years. Progress in this topic appears to
be accelerating and there are now applications for commercial
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Fig. 6: A memristor-based randomness source.

standards. Better theoretical tools are still needed to understand
convergence behavior and optimize throughput, to establish
performance bounds, and to determine optimal code construc-
tions for use with these algorithms. With the introduction of
memristor circuits, new territory is now opened for continued
research and discovery bridging the physical and algorithmic
foundations of communication and memory.
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