
HAL Id: hal-01949221
https://hal.science/hal-01949221v3

Submitted on 25 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep neural networks algorithms for stochastic control
problems on finite horizon: numerical applications

Achref Bachouch, Côme Huré, Nicolas Langrené, Huyen Pham

To cite this version:
Achref Bachouch, Côme Huré, Nicolas Langrené, Huyen Pham. Deep neural networks algorithms for
stochastic control problems on finite horizon: numerical applications. Methodology and Computing
in Applied Probability, In press. �hal-01949221v3�

https://hal.science/hal-01949221v3
https://hal.archives-ouvertes.fr

Deep neural networks algorithms for stochastic control

problems on finite horizon: numerical applications∗

Achref Bachouch † Côme Huré ‡ Nicolas Langrené § Huyên Pham ¶

January 25, 2020

Abstract

This paper presents several numerical applications of deep learning-based algorithms

for discrete-time stochastic control problems in finite time horizon that have been in-

troduced in [Hur+18]. Numerical and comparative tests using TensorFlow illustrate

the performance of our different algorithms, namely control learning by performance

iteration (algorithms NNcontPI and ClassifPI), control learning by hybrid iteration

(algorithms Hybrid-Now and Hybrid-LaterQ), on the 100-dimensional nonlinear PDEs

examples from [EHJ17] and on quadratic backward stochastic differential equations

as in [CR16]. We also performed tests on low-dimension control problems such as an

option hedging problem in finance, as well as energy storage problems arising in the

valuation of gas storage and in microgrid management. Numerical results and compa-

risons to quantization-type algorithms Qknn, as an efficient algorithm to numerically

solve low-dimensional control problems, are also provided.

Keywords: Deep learning, policy learning, performance iteration, value iteration, Monte

Carlo, quantization.

∗We are grateful to both referees for helpful comments and remarks.
†Department of Mathematics, University of Oslo, Norway. The author’s research is carried out with

support of the Norwegian Research Council, within the research project Challenges in Stochastic Control,

Information and Applications (STOCONINF), project number 250768/F20 achrefb at math.uio.no
‡LPSM, University Paris Diderot hure at lpsm.paris
§CSIRO Data61, RiskLab Australia Nicolas.Langrene at data61.csiro.au
¶LPSM, University Paris-Diderot and CREST-ENSAE, pham at lspm.paris The work of this author is

supported by the ANR project CAESARS (ANR-15-CE05-0024), and also by FiME and the “Finance and

Sustainable Development” EDF - CACIB Chair

1

mailto:achrefb at math.uio.no
mailto:hure at lpsm.paris
mailto:Nicolas.Langrene at data61.csiro.au
mailto:pham at lspm.paris

1 Introduction

This paper is devoted to the numerical resolution of discrete-time stochastic control problem

over a finite horizon. The dynamics of the controlled state process X = (Xn)n valued in

Rd is given by

Xn+1 = F (Xn, αn, εn+1), n = 0, . . . , N − 1, X0 = x0 ∈ Rd, (1.1)

where (εn)n is a sequence of i.i.d. random variables valued in some Borel space (E,B(E)),

and defined on some probability space (Ω,F ,P) equipped with the filtration F = (Fn)n
generated by the noise (εn)n (F0 is the trivial σ-algebra), the control α = (αn)n is an

F-adapted process valued in A ⊂ Rq, and F is a measurable function from Rd × Rq × E
into Rd which is known by the agent. Given a running cost function f defined on Rd × Rq

and a terminal cost function g defined on Rd, the cost functional associated with a control

process α is

J(α) = E

[
N−1∑
n=0

f(Xn, αn) + g(XN)

]
. (1.2)

In this framework, we assume f and g to be known by the agent. The set A of admissible

controls is the set of control processes α satisfying some integrability conditions ensuring

that the cost functional J(α) is well-defined and finite. The control problem, also called

Markov decision process (MDP), is formulated as

V0(x0) := inf
α∈A

J(α), (1.3)

and the goal is to find an optimal control α∗ ∈ A, i.e., attaining the optimal value: V0(x0)

= J(α∗). Notice that problem (1.1)-(1.3) may also be viewed as the time discretization of a

continuous time stochastic control problem, in which case, F is typically the Euler scheme

for a controlled diffusion process.

It is well-known that the global dynamic optimization problem (1.3) can be reduced to

local optimization problems via the dynamic programming (DP) approach, which allows to

determine the value function in a backward recursion by

VN (x) = g(x), x ∈ Rd,
Vn(x) = inf

a∈A
Qn(x, a), (1.4)

with Qn(x, a) = f(x, a) + E
[
Vn+1(Xn+1)

∣∣Xn = x, αn = a
]
, (x, a) ∈ Rd × A.

Moreover, when the infimum is attained in the DP formula (1.4) at any time n by a∗n(x)

∈ arg mina∈AQn(x, a), we get an optimal control in feedback form (policy) given by: α∗ =

(a∗n(X∗n))n where X∗ is the Markov process defined by

X∗n+1 = F (X∗n, a
∗
n(X∗n), εn+1), n = 0, . . . , N − 1, X∗0 = x0.

The practical implementation of the DP formula may suffer from the curse of dimen-

sionality and large complexity when the state space dimension d and the control space

2

dimension are high. In [Hur+18], we proposed algorithms relying on deep neural net-

works for approximating/learning the optimal policy and then eventually the value function

by performance/policy iteration or hybrid iteration with Monte Carlo regressions now or

later. This research led to three algorithms, namely algorithms NNcontPI, Hybrid-Now and

Hybrid-LaterQ that are recalled in Section 2, and which can be seen as a natural extension

of actor-critic methods, developed in the reinforcement learning community for stationary

stochastic problem ([SB98]), to finite-horizon control problems. Note that for stationary

control problem, it is usual to use techniques such as temporal difference learning, which

relies on the fact that the value function and the optimal control do not depend on time, to

improve the learning of the latter. Such techniques do not apply to finite horizon control

problems. In Section 3, we perform some numerical and comparative tests to illustrate the

efficiency of our different algorithms, on 100-dimensional nonlinear PDEs examples as in

[EHJ17] and quadratic Backward Stochastic Differential equations as in [CR16], as well

as on high-dimensional linear quadratic stochastic control problems. We present numerical

results for an option hedging problem in finance, and energy storage problems arising in the

valuation of gas storage and in microgrid management. Numerical results and comparisons

to quantization-type algorithms Qknn, introduced in this paper as an efficient algorithm

to numerically solve low-dimensional control problems, are also provided. Finally, we con-

clude in Section 4 with some comments about possible extensions and improvements of our

algorithms.

2 Algorithms

We introduce in this section four neural network-based algorithms for solving the discrete-

time stochastic control problem (1.1)-(1.3). The convergence of these algorithms have been

analyzed in detail in our companion paper [Hur+18], and for self-contained purpose, we

recall in this section the description of these algorithms and the convergence results. We also

introduce at the end of this section a quantization and k-nearest-neighbor-based algorithm

(Qknn) that will be used as benchmark when testing our algorithms on low-dimensional

control problems.

We are given a class of deep neural networks (DNN) for the control policy represented

by the parametric functions x ∈ Rd 7→ A(x;β) ∈ A, with parameters β ∈ Rq, and a class of

DNN for the value function represented by the parametric functions: x ∈ Rd 7→ Φ(x; θ) ∈ R,

with parameters θ ∈ Rp. Recall that these DNN functions A and Φ are compositions of

linear combinations and nonlinear activation functions, see [GBC16].

Additionally, we shall be given a sequence of probability measures on the state space

Rd, that we call training measure and denoted (µn)N−1
n=0 , which should be seen as dataset

providers to learn the optimal strategies and the value functions at time n = 0, . . . , N − 1.

Remark 2.1 (Training sets design) The choice of the training sets is critical for nu-

merical efficiency. This problem has been largely investigated in the reinforcement learning

community, notably with multi-armed bandits algorithms [ACBF02], and more recently in

the numerical probability literature, see [LM19], but remains a challenging issue. Here, two

3

cases are considered for the choice of the training measure µn used to generate the training

sets on which the estimates at time n will be computed. The first one is a knowledge-based

selection, relevant when the controller knows with a certain degree of confidence where the

process has to be driven in order to optimize her cost functional. The second case is when

the controller has no idea where or how to drive the process to optimize the cost functional.

(1) Exploitation only strategy

In the knowledge-based setting, there is no need for exhaustive and expensive (in time

mainly) exploration of the state space, and the controller can take a training measure µn
that assigns more points in the region of the state space that is likely to be visited by the

optimally-driven process.

In practice, at time n, assuming we know that the optimal process is likely to lie in a

region D, we choose a training measure in which the density assigns a lot of weight to the

points of D, for example U(D), the uniform distribution in D.

(2) Explore first, exploit later When the controller has no idea where or how to

drive the process to optimize the cost functional, we suggest to build the training measures

as empirical measures of the process, driven by estimates of the optimal control computed

using alternative methods.

(i) Explore first: Use an alternative method to obtain good estimates of the optimal strategy.

In high-dimension: one can for example think of approximating the control at all time

by neural network, and obtain a good estimate of the optimal control by performing a

global optimization of the function:

J(θ0, . . . , θN+1) := E

[
N−1∑
n=0

f(Xn, A(Xn; θn)) + g(XN)

]
,

where X is the process controlled by the feedback control A(.; θn) at time n.

(ii) Exploit later: Take the training measures µn := PXn , for n = 0, . . . , N − 1, where X is

driven using the optimal control estimated in step (i); and apply the procedure (1). Such

an idea has been recently exploited in [KPX18].

Remark 2.2 (Choice of Neural Networks) Unless otherwise specified, we use feed-

forward Neural Networks with two or three hidden layers and d+10 neurons per hidden

layer, since we noticed empirically that these parameters were enough to approximate the

relatively smooth objective functions considered here. We tried sigmoid, tanh, ReLU and

ELU activation functions and noticed that ELU is most often the one providing the best

results in our applications. We normalize the input data of each neural network in order

to speed up the training of the latter. 2

Remark 2.3 (Neural Networks Training) We use the Adam optimizer, as implemented

in TensorFlow, with initial learning-rate set to 0.001 or 0.005, which are the default va-

lues in TensorFlow, to train by gradient-descent the optimal strategy and the value

4

function defined in the algorithms described later. TensorFlow takes care of the Adam

gradient-descent procedure by automatic differentiation when the function to optimize is

an expectation of TensorFlow functions, such as the usual differentiable activation func-

tions sin, log, exp but also popular non-differentiable activation functions such as ReLu:

x 7→ max(0, x).

In order to force the weights and biases of the neurons to stay small, we use an L2

regularization with parameter mainly set to 0.01, but the value can change in order to

make sure that the regularization term is neither too strong or too weak when added to

the loss when training neural networks.

We consider a large enough number of mini-batches of size 64 or 128 for the training,

depending essentially empirically on the dimension of the problem. We use at least 10

epochsa and stop the training when the loss computed on a validation set of size 100 stops

decreasing. We noticed that taking more than one epoch really improves the quality of the

estimates. 2

Remark 2.4 (Constraints) The proposed algorithms can deal with state and control

constraints at any time, which is useful in several applications:

(Xα
n , αn) ∈ S a.s., n ∈ N,

where S is some given subset of Rd × Rq. In this case, in order to ensure that the set of

admissible controls is not empty, we assume that the sets

A(x) :=
{
a ∈ Rq : (F (x, a, ε1), a) ∈ S a.s.

}
are non empty for all x ∈ S, and the DP formula now reads

Vn(x) = inf
a∈A(x)

[
f(x, a) + P aVn+1(x)

]
, x ∈ S.

From a computational point of view, it may be more convenient to work with unconstrained

state/control variables, hence by relaxing the state/control constraint and introducing into

the running cost a penalty function L(x, a): f(x, a) ← f(x, a) + L(x, a), and g(x) ←
g(x) + L(x, a). For example, if the constraint set S is in the form: S = {(x, a) ∈ Rd ×Rq :

hk(x, a) = 0, k = 1, . . . , p, hk(x, a) ≥ 0, k = p + 1, . . . , q}, for some functions hk, then one

can take as penalty functions:

L(x, a) =

p∑
k=1

µk|hk(x, a)|2 +

q∑
k=p+1

µk max(0,−hk(x, a)).

where µk > 0 are penalization coefficients (large in practice). 2

2.1 Control Learning by Performance Iteration

We present in this section Algorithm 1, which combines an optimal policy estimation by

neural networks and the dynamic programming principle. We rely on the performance

iteration procedure, i.e. paths are always recomputed up to the terminal time N .

aWe denote by epoch one pass of the full training set.

5

2.1.1 Algorithm NNContPI

Our first algorithm, referred to as NNContPI, is well-designed for control problems with

continuous control space such as Rq or a ball in Rq. The main idea is:

1. Represent the controls at time n = 0, . . . , N −1 by neural networks in which the acti-

vation function for the output layers takes values in the control space. For example,

one can take the identity function as activation function for the output layer if the

control space is Rq; or the sigmod function if the control space is [0, 1].

2. Learn sequentially in time, and in a backward way, the optimal parameters β̂n for the

representation of the optimal control. In particular, notice that the learning of the

optimal control at time n highly relies on the accuracy of the estimates of the optimal

controls at time k = n+ 1, . . . , N − 1, computed previously.

Algorithm 1: NNContPI

Input: the training distributions (µn)N−1
n=0 ;

Output: estimates of the optimal strategy (ân)N−1
n=0 ;

for n = N − 1, . . . , 0 do
Compute

β̂n ∈ argmin
β∈Rq

E

[
f
(
Xn, A(Xn;β)

)
+

N−1∑
k=n+1

f
(
Xβ
k , âk

(
Xβ
k

))
+ g
(
Xβ
N

)]
(2.1)

where Xn ∼ µn and where
(
Xβ
k

)N
k=n+1

is defined by induction as:{
Xβ
n+1 = F

(
Xn, A

(
Xn;β

)
, εn+1

)
Xβ
k+1 = F

(
Xβ
k , âk

(
Xβ
k

)
, εk+1

)
, for k = n+ 1, . . . , N − 1.

Set ân = A(.; β̂n).

. ân is the estimate of the optimal policy at time n

2.1.2 Algorithm ClassifPI

In the special case where the control space A is finite, i.e., Card(A) = L < ∞ with A =

{a1, . . . , aL}, a classification method can be used: consider a DNN that takes state x as

input and returns a probability vector p(x;β) = (p`(x;β))L`=1 with parameters β. Such a

usual DNN can be build using k hidden layers with ReLu activation functions, an output

layer with L neurons, and a Softmaxb activation function for the output layer. Algorithm

2, presented below, is based on this idea, and is called ClassifPI.

bThe Softmax function is defined as follows: x 7→
(

eβ1x∑L
k=1

eβkx
, . . . , eβ1x∑L

k=1
eβkx

)
where β1, . . . , βL are part

of the parameters that will be learned by gradient-descent.

6

Algorithm 2: ClassifPI

Input: the training distributions (µn)N−1
n=0 ;

Output: estimates of optimal strategies (ân)N−1
n=0 and probabilities pl(.; β̂n);

for n = N − 1, . . . , 0 do
Represent the discrete control at time n by neural network with parameter βn:

an(x) = a`n(x) with `n(x) ∈ argmax
`=1,...,L

p`(x;βn),

and compute the optimal parameter:

β̂n ∈ argmin
β∈Rq

E

[
L∑
`=1

p`(Xn;β)
(
f(Xn, a`) +

N−1∑
k=n+1

f
(
X`
k, âk(X

`
k)
)

+ g(X`
N)
)]

,

(2.2)

where Xn ∼ µn on Rd, X`
n+1 = F (Xn, a`, εn+1), X`

k+1 = F (X`
k, âk(X

`
k), εk+1),

for k = n+ 1, . . . , N − 1 and ` = 1, . . . , L;

Set ân(.) = aˆ̀
n(.) with ˆ̀

n(x) ∈ argmax`=1,...,L p`(x; β̂n);

. ân is the estimate of the optimal policy at time n

Note that, when using Algorithms 1 and 2, the estimate of the optimal strategy at time

n highly relies on the estimates of the optimal strategy at time n+ 1, . . . , N − 1, that have

been computed previously. In particular, the practitioner who wants to use Algorithms 1

and 2 needs to keep track of the estimates of the optimal strategy at time n+ 1, . . . , N − 1

in order to compute the estimate of the optimal strategy at time n.

Remark 2.5 In practice, for n = N − 1, ..., 0, one should minimize the expectations (2.1)

and (2.2) by stochastic gradient-descent, where mini-batches of finite number of paths

(Xβ
k)Nk=n+1 are generated by drawing independent samples under µn for the initial position

at time n, and independent samples under εk, for k = n + 1, . . . , N . The convergence of

Algorithms 1 and 2 is analyzed in [Hur+18] in terms of the error approximation of the

optimal control by neural networks, and in terms of the estimation error by stochastic

gradient descent methods, see their Theorem 4.7. 2

2.2 Control and value function learning by double DNN

We present in this section two algorithms, which in contrast with Algorithms 1 or 2, only

keep track of the estimates of the value function and optimal control at time n+ 1 in order

to build an estimate of the value function and optimal control at time n.

2.2.1 Regress Now (Hybrid-Now)

The Algorithm 3, refereed to as Hybrid-Now, combines optimal policy estimation by neural

networks and dynamic programming principle, and relies on an hybrid procedure between

value and performance iteration.

7

Algorithm 3: Hybrid-Now

Input: the training distributions (µn)N−1
n=0 ;

Output:

– estimate of the optimal strategy (ân)N−1
n=0 ;

– estimate of the value function (V̂n)N−1
n=0 ;

Set V̂N = g;

for n = N − 1, . . . , 0 do
Compute:

β̂n ∈ argmin
β∈Rq

E
[
f
(
Xn, A(Xn;β)

)
+ V̂n+1(Xβ

n+1)
]

(2.3)

where Xn ∼ µ, and Xβ
n+1 = F

(
Xn, A(Xn;β)

)
, εn+1);

Set ân = A(.; β̂n); . ân is the estimate of the optimal policy at time n

Compute

θ̂n ∈ argmin
θ∈Rp

E
[(

(f(Xn, ân(Xn)) + V̂n+1(X β̂n
n+1)− Φ(Xn; θ)

)2
]
. (2.4)

Set V̂n = Φ(.; θ̂n); . V̂n is the estimate of the value function at time n

Remark 2.6 One can combine different features from Algorithms 1, 2 and 3 to solve spe-

cific problems, as it has been done for example in Section 3.5, where we designed Algorithm

6 to solve a smart grid management problem. 2

2.2.2 Regress Later and Quantization (Hybrid-LaterQ)

The Algorithm 4, called Hybrid-LaterQ, combines regress-later and quantization methods

to build estimates of the value function. The main idea behind Algorithm 4 is to first

interpolate the value function at time n + 1 by a set of basis functions, which is in the

spirit of the regress-later-based algorithms, and secondly regress the interpolation at time

n using quantization. The usual regress-later approach requires the ability to compute

closed-form conditional expectations, which limits the stochastic dynamics and regression

bases that can be considered. The use of quantization avoids this limitation and makes the

regress-later algorithm more generally applicable.

Let us first recall the basic ingredients of quantization. We denote by ε̂ a K-quantizer

of the Rd-valued random variable εn+1 ∼ ε1 (typically a Gaussian random variable), that

is a discrete random variable on a grid Γ = {e1, . . . , eK} ⊂ (Rd)K defined by

ε̂ = ProjΓ(ε1) :=

K∑
`=1

e`1ε1∈C`(Γ),

where C1(Γ), . . ., CK(Γ) are Voronoi tesselations of Γ, i.e., Borel partitions of the Euclidian

space (Rd, |.|) satisfying

C`(Γ) ⊂
{
e ∈ Rd : |e− e`| = min

j=1,...,K
|e− ej |

}
.

8

The discrete law of ε̂ is then characterized by

p̂` := P[ε̂ = e`] = P[ε1 ∈ C`(Γ)], ` = 1, . . . ,K.

The grid points (e`) which minimize the L2-quantization error ‖ε1− ε̂‖2 lead to the so-called

optimal K-quantizer, and can be obtained by a stochastic gradient descent method, known

as Kohonen algorithm or competitive learning vector quantization (CLVQ) algorithm, which

also provides as a byproduct an estimation of the associated weights (p̂`). We refer to

[PPP04] for a description of the algorithm, and mention that for the normal distribution,

the optimal grids and the weights of the Voronoi tesselations are precomputed on the

website http://www.quantize.maths-fi.com.

Algorithm 4: Hybrid-LaterQ

Input:

– the training distributions (µn)N−1
n=0 ;

– The grid {e1, . . . , eK} of K points in Rd, with weights p1, . . . , pK for the

quantization of the noise εn;

Output:

– estimate of the optimal strategy (ân)N−1
n=0 ;

– estimate of the value function (V̂n)N−1
n=0 ;

Set V̂N = g;

for n = N − 1, . . . , 0 do
Compute:

β̂n ∈ argmin
β∈Rq

E
[
f
(
Xn, A(Xn;β)

)
+ V̂n+1(Xβ

n+1)
]

(2.5)

where Xn ∼ µn, and Xβ
n+1 = F

(
Xn, A(Xn;β)

)
, εn+1);

Set ân = A(.; β̂n); . ân is the estimate of the optimal policy at time n

Compute

θ̂n+1 ∈ argmin
θ∈Rp

E
[(
V̂n+1(X β̂n

n+1)− Φ(Xn+1; θ)
)2
]

(2.6)

and set Ṽn+1 = Φ(.; θ̂n+1);

. interpolation at time n+ 1

Set

V̂n(x) = f(x, ân(x)) +

K∑
`=1

p`Ṽn+1

(
F (x, ân(x), e`)

)
;

. V̂n is the estimate by quantization of the value function at time n

Quantization is mainly used in Algorithm 4 to efficiently approximate the expectations:

recalling the dynamics (1.1), the conditional expectation operator for any functional W is

equal to

P â
M
n (x)W (x) = E

[
W (X

âMn
n+1)|Xn = x

]
= E

[
W (F (x, âMn (x), ε1))

]
, x ∈ Rd,

9

http://www.quantize.maths-fi.com

that we shall approximate analytically by quantization via:

P̂ â
M
n (x)W (x) := E

[
W (F (x, âMn (x), ε̂))

]
=

K∑
`=1

p̂`W
(
F (x, âMn (x), e`)

)
.

Observe that the solution to (2.6) actually provides a neural network Φ(.; θ̂n+1) that

interpolates V̂n+1. Hence the Algorithm 4 contains an interpolation step, and moreover,

any kind of distance in Rd can be chosen as a loss to compute θ̂n+1. In (2.6), we decide to

take the L2-loss, mainly because it is the one that worked the best in our applications.

Remark 2.7 (Quantization) In dimension 1, we used the optimal grids and weights with

K = 21 points, to quantize the reduced and centered normal law N (0, 1); and took 100

points to quantize the reduced and centered normal law in dimension 2, i.e. N2(0, 1). All

the grids and weights for the optimal quantization of the normal law in dimension d are

available in http://www.quantize.maths-fi.com for d = 1, . . . , 100. 2

2.2.3 Some remarks on Algorithms 3 and 4

As in Remark 2.5, all the expectations written in our pseudo-codes in Algorithm 3 and 4

should be approximated by empirical mean using a finite training set. The convergence of

these algorithms has been analyzed in [Hur+18] in terms of the approximation error of the

optimal control and value function by neural networks, in terms of the estimation error by

stochastic gradient descent methods, and in terms of the quantization error (for Algorithm

4, see their Theorems 4.14 and 4.19).

Algorithms 3 or 4 are quite efficient to use in the usual case where the value function

and the optimal control at time n are very close to the value function and the optimal

control at time n+ 1, which happens e.g. when the value function and the optimal control

are approximations of the time discretization of a continuous in time value function and an

optimal control. In this case, it is recommended to follow this two-step procedure:

(i) initialize the parameters (i.e. weights and bias) of the neural network approximations of

the value function and the optimal control at time n to the ones of the neural network

approximations of the value function and the optimal control at time n+ 1.

(ii) take a very small learning rate parameter, for the Adam optimizer, that guarantees the

stability of the parameters’ updates from the gradient-descent based learning procedure.

Doing so, one obtains stable estimates of the value function and optimal control, which is

desirable. We highlight the fact that this stability procedure is applicable here since the

stochastic gradient descent method benefits from good initial guesses of the parameters

to be optimized. It is an advantage compared to alternative methods proposed in the

literature, such as classical polynomial regressions.

2.3 Quantization with k-nearest-neighbors (Qknn-algorithm)

Algorithm 5 presents the pseudo-code of an algorithm based on the quantization and

k-nearest neighbors methods, called Qknn, which will be the benchmark in all the low-

10

http://www.quantize.maths-fi.com

dimensional control problems that will be considered in Section 3 to test NNContPI, Clas-

sifPI, Hybrid-Now and Hybrid-Later. Also, comparisons of Algorithm 5 to other well-known

algorithms on various control problems in low-dimension are performed in [Bal+19], which

show in particular that Algorithm 5 works very well to solve low-dimensional control prob-

lems. Actually, in our experiments, Algorithm 5 always outperforms the other algorithms

based either on regress-now or regress-later methods whenever the dimension of the problem

is low enough for Algorithm 5 to be feasible.

As done in Section 2.2.2, we consider a K-optimal quantizer of the noise εn, i.e. a

discrete random variable ε̂n valued in a grid {e1, . . . , eK} of K points in E, and with

weights p1, . . . , pK . We also consider grids Γn, n = 0, . . . , N of points in Rd, which are

assumed to properly cover the region of Rd that is likely to be visited by the optimally

driven process X at time n = 0, . . . , N − 1. These grids can be viewed as samples of well-

chosen training distributions where more points are taken in the region that is likely to be

visited by the optimally driven controlled process (see Remark 2.1 for details on the choice

of the training measure).

Algorithm 5: Qknn

Input:

– Grids Γk, k = 0, . . . , N in Rd;
– Grid {e1, . . . , eK} of K points in E, with weights p1, . . . , pK for the quantization of

εn
Output:

– estimate of the optimal strategy (ân)N−1
n=0 ;

– estimate of the value function (V̂n)N−1
n=0 ;

Set V̂N = g;

for n = N − 1, . . . , 0 do
Compute for (z, a) ∈ Γn ×A,

Q̂n(z, a) = f(z, a) +
K∑
`=1

p`V̂n+1

(
ProjΓn+1

(
F (z, a, e`)

))
, (2.7)

where ProjΓn+1 is the Euclidean projection over Γn+1;

. Q̂n is the approximated Q-valuec at time n

Compute the optimal control at time n

Ân(z) ∈ argmin
a∈A

[
Q̂n(z, a)

]
, ∀z ∈ Γn; (2.8)

. use classical optimization algorithms of deterministic functions for this step

Set V̂n(z) = Q̂n
(
z, Ân(z)

)
, ∀z ∈ Γn;

. V̂n is the estimate by quantization of the value function

cThe Q-value at time n, denoted by Qn, is defined as the function that takes the couple state-action

(x, a) as argument, and returns the expected optimal reward earned from time n to time N when the process

X is at state x and action a is chosen at time n; i.e. Qn : Rd × Rq ∈(x, a) 7→ f(x, a) + Ean,x[Vn+1(Xn+1)].

11

Remark 2.8 The estimate of the Q-value at time n given by (2.7) is not continuous w.r.t.

the control variable a, which might cause some stability issues when running Qknn, espe-

cially during the optimization procedure (2.8). We refer to Section 3.2.2. in [Bal+19] for

a detailed presentation of an extension of Algorithm 5 where the estimates of the Q value

function Qn is continuous w.r.t. the control variable. 2

3 Numerical applications

In this section, we test the Neural-Networks-based algorithms presented in Section 2 on

different examples. In high-dimension, we first took the same example as already consid-

ered in [EHJ17] so that we can directly compare our results to theirs, and take another

example from linear quadratic control problem with explicit analytic solution that is served

as reference value. In low-dimension, we compared the results of our algorithms to the ones

provided by Qknn, which has been introduced in Section 2 as an excellent benchmark for

low-dimensional control problems.

3.1 A semilinear PDE

We consider the following semilinear PDE with quadratic growth in the gradient:
∂v

∂t
+ ∆xv − |Dxv|2 = 0, (t, x) ∈ [0, T)× Rd,

v(T, x) = g(x), x ∈ Rd.
(3.1)

By observing that for any p ∈ Rd, -|p|2 = infa∈Rd [|a|2 +2a.p], the PDE (3.1) can be written

as a Hamilton-Jacobi-Bellman equation
∂v

∂t
+ ∆xv + inf

a∈Rd

[
|a|2 + 2a.Dxv] = 0, (t, x) ∈ [0, T)× Rd,

v(T, x) = g(x), x ∈ Rd,
(3.2)

hence associated with the stochastic control problem

v(t, x) = inf
α∈A

E
[∫ T

t
|αs|2ds+ g(Xt,x,α

T)

]
, (3.3)

where X = Xt,x,α is the controlled process governed by

dXs = 2αsds +
√

2dWs, t ≤ s ≤ T, Xt = x,

W is a d-dimensional Brownian motion, and the control process α is valued in A = Rd.
The time discretization (with time step h = T/N) of the control problem (3.3) leads to the

discrete-time control problem (1.1)-(1.2)-(1.3) with

Xα
n+1 = Xα

n + 2αnh+
√

2hεn+1 =: F (Xα
n , αn, εn+1), n = 0, . . . , N − 1,

where (εn)n is a sequence of i.i.d. random variables with law N (0, Id), and the cost func-

tional

J(α) = E

[
N−1∑
n=0

h|αn|2 + g(Xα
N)

]
.

12

On the other hand, it is known that an explicit solution to (3.1) (or equivalently (3.2)) can

be obtained via a Hopf-Cole transformation (see e.g. [CR16]), and is given by

v(t, x) = − ln
(
E
[

exp
(
− g(x+

√
2WT−t)

)])
, (t, x) ∈ [0, T]× Rd. (3.4)

We choose to run tests on two different examples that have already been considered in the

literature:

Test 1 Some recent numerical results have been obtained in [EHJ17] (see Section 4.3 in

[EHJ17]) when T = 1 and g(x) = ln(1
2(1 + |x|2)) in dimension d = 100 (see Table 2 and

Figure 3 in [EHJ17]). Their method is based on neural network regression to solve the

BSDE representation associated with the PDE (3.1), and provide estimates of the value

function at time 0 and state 0 for different values of a coefficient γ. We plotted the results

of the Hybrid-Now algorithm in Figure 1. Hybrid-Now took one hour to achieves a relative

error of 0.11%, using a 4-cores 3GHz intel Core i7 CPU. We want to highlight the fact

that the algorithm presented in [EHJ17] only needed 330 seconds to provide a relative

error of 0.17%. However, in our experience, it is difficult to reduce the relative error from

0.17% to 0.11% using their algorithm. Also, we believe that the computation time of our

algorithm can easily be reduced; some ideas in this direction are discussed in Section 4.

The main trick that can be used is the transfer learning (also referred to as pre-training

in the literature): we rely on the continuity of the value function and the optimal control

w.r.t. time to claim that the value function and the optimal control at time n are very

close to the ones at time n+ 1. Hence, one can initialize the weights of the value function

and optimal control at time n with the optimal ones estimated at step n + 1, reduce the

learning rate of the optimizer algorithm, and reduce the number of steps for the gradient

descent algorithm. All this procedure really speeds up the learning of the value function

and the optimal control, and insures stability of the estimates. Doing so, we were able to

reduce the computation time from one hour to twenty minutes.

We also considered the same problem in dimension d = 2, for which we plotted the first

component of X w.r.t. time in Figure 2, for five different paths of the Brownian motion,

where for each ω, the agent follows either the naive (α = 0) or the Hybrid-Now strategy.

One can see that both strategies are very similar when the terminal time is far; but the

Hybrid-Now strategy clearly forces X to get closer to 0 when the terminal time gets closer,

in order to reduce the terminal cost.

Let us provide further implementation details on the algorithms presented in Test 1:

• As one can guess from the representation of v in (3.3), it is probably optimal to drive

the process X around 0. Hence we decided to take µn := (nTN)1/2Nd(0, Id) as a training

measure at time n to learn the optimal strategy and value function at time n, for n =

0, . . . , N − 1.

• We tested the algorithm with 1, 2 and 3 layers for the representation of the value function

and the optimal control by neural networks, and noticed that the quality of the estimate

significantly improves when using more than one layer, but does not vary significantly

when considering more than 3 layers.

13

Figure 1: Relative error of the Hybrid-Now estimate of the value function at time 0 w.r.t the

number of mini-batches used to build the Hybrid-Now estimators of the optimal strategy. The

value functions have been computed running three times a forward Monte Carlo with a sample of

size 10,000, following the optimal strategy estimated by the Hybrid-Now algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0

0.5

0.0

0.5

1.0

1.5

2.0

X_
1

opt
bench

Figure 2: Five forward simulations of the first component of X w.r.t. time, when the agent follows

the optimal strategy estimated by the Hybrid-Now (opt in blue) and the naive strategy α = 0 (bench

in red). We consider the problem in dimension d=2. Observe that the optimal strategy (estimated

by Hybrid-Now) is to do nothing when the terminal time is far in order to avoid any running cost,

i.e. αopt = 0; and push X toward 0 when the terminal time is close, in order to minimize the

terminal cost.

Test 2 Tests of the algorithms are proposed in dimension 1 with the terminal cost g(x) =

−xγ10≤x≤1 − 11≤x and γ ∈ (0, 1). This problem was already considered in [Ric10], where

the author proposed an algorithm based on a smart temporal discretization of the BSDE

representation of the PDE (3.1) in order to deal with the quadratic growth of the driver

14

of the BSDE, and usual projection on basis functions techniques for the approximation

of conditional expectations that appear in the dynamic programming equation associated

with the BSDE. We refer to equations (13),(14),(15) in [Ric11] for details on the proposed

algorithm, and its Theorem 4.14 for the convergence result. Their estimates of the value

function at time 0 and state 0, when γ = 1, 0.5, 0.1, 0, are available in [Ric10], and have

been reported in the column Y&R of Table 1. Also, the exact values for the value function

have been computed for these values of γ by Monte Carlo using the closed-form formula

(3.4), and are reported in the column Bench of Table 1. Tests of the Hybrid-Now and

Hybrid-LaterQ algorithms have been run, and the estimates of the value function at time

0 and state x = 0 are reported in the Hybrid-Now and Hybrid-LaterQ columns. We also

tested Qknn and reported its results in column Qknn. Note that Qknn is particularly well-

suited to 1-dimensional control problems. In particular, it is not time-consuming since the

dimension of the state space is d=1. Actually, it provides the fastest results, which is not

surprising since the other algorithms need time to learn the optimal strategy and value

function through gradient-descent method at each time step n = 0, . . . , N − 1. Moreover,

Table 1 reveals that Qknn is the most accurate algorithm on this example, probably because

it uses local methods in space to estimate the conditional expectation that appears in the

expression of the Q-value.

Table 1: Value function at time 0 and state 0 w.r.t. γ, computed with the Y&R, Hybrid-Now,

Hybrid-Later and Qknn algorithms. Bench reports the MC estimates of the closed-form formula

(3.4).

γ Y&R Hybrid-LaterQ Hybrid-Now Qknn Bench

1.0 -0.402 -0.456 -0.460 -0.461 -0.464

0.5 -0.466 -0.495 -0.507 -0.508 -0.509

0.1 -0.573 -0.572 -0.579 -0.581 -0.586

0.0 -0.620 -1.000 -1.000 -1.000 -1.000

We end this paragraph by giving some implementation details for the different algo-

rithms as part of Test 2:

• Y&R: The algorithm Y&R converged only when using a Lipschitz version of g. The

following approximation was used to obtain the results in Table 1:

gN (x) =

{
g(x) if x 6∈ [0, N

−1
1−γ]

−Nx otherwise.

• Hybrid-Now: We used N = 40 time steps for the time-discretization of [0, T]. The value

functions and optimal controls at time n = 0, . . . , N − 1 are estimated using neural

networks with 3 hidden layers and 10+5+5 neurons.

• Hybrid-LaterQ: We used N = 40 time steps for the time-discretization of [0, T]. The

value functions and optimal controls at time n = 0, . . . , N − 1 are estimated using neu-

ral networks with 3 hidden layers containing 10+5+5 neurons; and 51 points for the

quantization of the exogenous noise.

15

• Qknn: We used N = 40 time steps for the time-discretization of [0, T]. We take 51 points

to quantize the exogenous noise, εn ∼ N (0, 1), for n = 0, . . . , N ; and decided to use the

200 points of the optimal grid of N2(0, 1) for the state space discretization.

The main conclusion regarding the results in this semilinear PDE problem is that

Hybrid-Now provides better estimates of the solution to the PDE in dimension d=100

than the previous results available in [EHJ17] but requires more time to do so.

Hybrid-Now and Hybrid-Later provide better results than those available in [Ric11] to

solve the PDE in dimension 2; but are outperformed by Qknn, which is arguably very

accurate.

3.2 A linear quadratic stochastic test case

We consider a linear controlled process with dynamics in Rd according to

dXt = (BXt + Cαt)dt+

p∑
j=1

DjαtdW
j
t , (3.5)

where W j , j = 1, . . . , p, are independent real-Brownian motion, the control process α ∈ A
is valued in Rm, and the constant coefficients B ∈ Rd×d, C,Dj ∈ Rd×m, j = 1, . . . , p. The

value function of the linear quadratic stochastic control problem is

v(t, x) = inf
α∈A

E
[∫ T

t
(Xt,x,α

s .QXt,x,α
s + λ|αt|2)dt+Xt,x,α

T .PXt,x,α
T

]
, (t, x) ∈ [0, T]× Rd,

where Xt,x,α is the solution to (3.5) starting from x at time t, given a control process α

∈ A, P,Q are nonnegative symmetric d × d matrices, and λ > 0. The Bellman equation

associated with this stochastic control problem is a fully nonlinear equation in the form

∂v

∂t
+ x.Qx+ inf

a∈R

[
(Bx+ Ca).Dxv + aᵀ

(
λIm +

p∑
j=1

Dᵀ
jD

2
xvDj

2

)
a
]

= 0, on [0, T)× Rd,

v(T, x) = x.Px, x ∈ Rd,

and it is well-known, see e.g. [YZ99], that an explicit solution is given by

v(t, x) = x.K(t)x, (3.6)

where K(t) is a nonnegative symmetric d× d matrix, solution to the Riccati equation

K̇ +BᵀK +KB +Q−KC(λIm +

p∑
j=1

Dᵀ
jKDj)

−1CᵀK = 0, K(T) = P, (3.7)

while an optimal feedback control is equal to

a∗(t, x) = −
(
λIm +

p∑
j=1

Dᵀ
jK(t)Dj

)−1
CᵀK(t)x, (t, x) ∈ [0, T)× Rd. (3.8)

16

We numerically solve this problem by considering a time discretization (with time step

h = T/N), which leads to the discrete-time control problem with dynamics

Xα
n+1 = Xα

n + (BXα
n + Cαn)h+Dαn

√
hεn+1 =: F (Xα

n , αn, εn+1), n = 0, . . . , N − 1,

where (εn)n is a sequence of i.i.d. random variables with law N (0, 1), and cost functional

J(α) = E

[
N−1∑
n=0

(
Xα
n .QX

α
n + λ|αn|2)h + Xα

N .PX
α
N

]
.

For the numerical tests, we take m = 1, p = d, and the following parameters:

T = 1, N = 20, B = Id, C = 1d, Dj = (0, . . . , 1︸︷︷︸
j-th term

, . . . , 0)>, j = 1, . . . , p,

Q = P = Id, λ = 1,

where we denote 1d := (1, . . . , 1︸ ︷︷ ︸
d times

)>.

Numerical results We implement our algorithms in dimension d = 1, 10, 100, and com-

pare our solutions with the analytic solution via the Riccati equation (3.7) solved by Mat-

labd.

• For d = 1, we plotted the estimates of the optimal control at time n = 0, . . . , N − 1 in

Figure 3 and the value function in Figure 4. Observe that, as expected, the estimated

optimal control is linear and the estimated value function is quadratic at each time.

• For d = 10, we reported in Table 2 the estimates of v(0, X0), computed by running

forward simulations of X using the estimated optimal strategy. “Riccati” is v(0, X0)

computed by solving (3.7) with Matlab. We set the initial position to X0 = 1d. We also

plotted in Figure 5 a forward simulation of the components of X optimally controlled.

Observe that NNContPI is more accurate than Hybrid-Now. Notice that the estimates

provided by the algorithms are biased, which is due to the time discretization.

• For d = 100, we reported in Table 3 the estimates of the value function, computed

by running forward simulations of X using the estimated optimal strategy. “Riccati” is

v(0, X0) computed by solving (3.7) with Matlab. We set the initial position to X0 = 0.11d
and X0 = 0.51d. Once again, NNContPI is slightly more accurate than Hybrid-Now, and

the estimates provided by the latter are biased due to the time discretization.

Implementation details: We implemented Hybrid-Now and NNContPI using training

sets from the distribution µn := Nd(0, 1) for n = 0, . . . , N − 1. We represented the value

function and optimal control at time n, n = 0, . . . , N−1 using two hidden layers with d+20

and d+10 neurons, and 1 neuron for the output layers. We used Elu as activation function

for the hidden layers, and identity for the output layer.

dWe solved (3.7) with the Matlab method ode45.

17

−3 −2 −1 0 1 2 3 4

x

−6

−4

−2

0

2

4

α̂
op
t

optimal decision at time n=

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 3: Optimal decision estimated by Hybrid-Now at time n = 0, . . . , N − 1. We took d = 1,

N = 20. We observe that the estimates are linear, as expected given the closed-form formula (3.8)

for the optimal control.

−3 −2 −1 0 1 2 3 4

x

0

5

10

15

20

25

30

35

40

V̂

value function at time n=

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 4: Value function w.r.t. x, estimated by Hybrid-Now at time n = 0, . . . , N − 1. We took

d = 1, N = 20. We observe that the estimates are quadratic, as expected given the closed-form

formula (3.6) for the value function.

18

Comments on the algorithms: Hybrid-Now behaved similarly as for the SemiLinear PDE

example, and we can make the same remarks. NNContPI is much slower than Hybrid-Now,

because the data have to go through the N−n−1 neural networks that represent the optimal

controls at time n+ 1, . . . , N − 1, in order to estimate the optimal control at time n.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x

component
0
1
2
3
4
5

6
7
8
9
bench

Figure 5: Forward simulation of X w.r.t. time, when X0 = 1d and d = 10, driven optimally

using Hybrid estimates. The first ten curves represent the ten components of X. The bench curve

represents one of the identical component of X when it is driven using the strategy α = 0. One can

see that the optimal control tends to reduce the norm of each component of X.

Table 2: Estimate of v(0, X0) obtained by forward simulation of the process controlled by the op-

timal strategy estimated by Hybrid-Now and NNContPI. “Riccati” is v(0, X0) computed by solving

(3.7) with Matlab. We took d = 10, and X0 = 1d. Mean and standard deviation are computed on

10 sets of 10,000 simulations each.

Mean std

Hybrid-Now 56.0 0.6

NNContPI 54.3 0.1

Riccati 57.1 -

19

Table 3: Estimate of v(0, X0) obtained by forward simulation of the process controlled by the op-

timal strategy estimated by Hybrid-Now and NNContPI. “Riccati” is v(0, X0) computed by solving

(3.7) with Matlab. We took d = 100, and initial position X0 = 0.51d and X0 = 0.11d. Mean and

standard deviation are computed on 10 sets of 10,000 simulations each.

Mean std

Hybrid-Now 5.7 7e-3

NNContPI 5.4 7e-3

Riccati 5.7 -

Case X0 = 0.11d

Mean std

Hybrid-Now 137.1 1.3e-1

NNContPI 137.4 1.4e-1

Riccati 142.7 -

Case X0 = 0.51d

3.3 Option hedging

Our third example comes from a classical hedging problem in finance. We consider an

investor who trades in q stocks with (positive) price process (Pn)n, and we denote by (αn)

valued in A ⊂ Rq the amount held in these assets over the period (n, n + 1]. We assume

for simplicity that the price of the riskless asset is constant equal to 1 (zero interest rate).

It is convenient to introduce the return process as: Rn+1 = diag(Pn)−1(Pn+1 − Pn), n =

0, . . . , N−1, so that the self-financed wealth process of the investor with a portfolio strategy

α, and starting from some capital w0, is governed by

Wα
n+1 = Wα

n + αn.Rn+1, n = 0, . . . , N − 1, Wα
0 = w0.

Given an option payoff h(PN), the objective of the agent is to minimize over her portfolio

strategies α her expected square replication error

V0 = inf
α∈A

E
[
`
(
h(PN)−Wα

N

)]
,

where ` is a convex function on R. Assuming that the returns Rn, n = 1, . . . , N are i.i.d,

we are in a (q + 1)-dimensional framework of Section 1 with Xα = (Wα, P) with εn = Rn
valued in E ⊂ Rq, with the dynamics function

F (w, p, a, r) =

{
w + a.r

p+ diag(p)r,
x = (w, p) ∈ R× Rq, a ∈ Rq, r ∈ E,

the running cost function f = 0 and the terminal cost g(w, p) = `(h(p) − w). We test

our algorithm in the case of a square loss function, i.e. `(w) = w2, and when there is no

portfolio constraints A = Rq, and compare our numerical results with the explicit solution

derived in [BKL01]: denote by ν(dr) the distribution of Rn, by ν̄ = E[Rn] =
∫
rν(dr) its

mean, and by M̄2 = E[RnR
ᵀ
n] assumed to be invertible; we then have

Vn(w, p) = Knw
2 − 2Zn(p)w + Cn(p)

where the functions Kn > 0, Zn(p) and Cn(p) are given in backward induction, starting

from the terminal condition

KN = 1, ZN (p) = h(p), CN (p) = h2(p),

20

and for n = N − 1, . . . , 0, by

Kn = Kn+1

(
1− ν̄ᵀM̄−1

2 ν̄
)
,

Zn(p) =

∫
Zn+1(p+ diag(p)r)ν(dr)− ν̄ᵀM̄−1

2

∫
Zn+1(p+ diag(p)r)rν(dr),

Cn(p) =

∫
Cn+1(p+ diag(p)r)ν(dr)

− 1

Kn+1

(∫
Zn+1(p+ diag(p)r)rν(dr)

)ᵀ

M̄−1
2

(∫
Zn+1(p+ diag(p)r)rν(dr)

)
,

so that V0 = K0w
2
0 − 2Z0(p0)w0 +C0(p0), where p0 is the initial stock price. Moreover, the

optimal portfolio strategy is given in feedback form by α∗n = a∗n(W∗n, Pn), where a∗n(w, s) is

the function

a∗n(w, p) = M̄−1
2

[∫
Zn+1(p+ diag(p)r)rν(dr)

Kn+1
− ν̄w

]
,

and W∗ is the optimal wealth associated with α∗, i.e., W∗n = Wα∗
n . Moreover, the initial

capital w∗0 that minimizes V0 = V0(w0, p0), and called (quadratic) hedging price is given by

w∗0 =
Z0(p0)

K0
.

Test Take N = 6, and consider one asset q = 1 with returns modeled by a trinomial tree:

ν(dr) = π+δr+ + π0δ0 + π−δr− , π0 + π+ + π− = 1,

with r+ = 5%, r− = −5%, π+ = 60%, π− = 30%. Take p0 = 100, and consider the call

option h(p) = (p − κ)+ with κ = 100. The price of this option is defined as the initial

value of the portfolio that minimizes the terminal quadratic loss of the agent when the

latter follows the optimal strategy associated with the initial value of the portfolio. In this

test, we want to determine the price of the call and the associated optimal strategy using

different algorithms.

Remark 3.1 The option hedging problem is linear-quadratic, hence belongs to the class

of problems where the agent has ansatzes on the optimal control and the value function.

Indeed, we expect here the optimal control to be affine w.r.t. w and the value function to

be quadratic w.r.t. w. For these kind of problems, the algorithms presented in Section 2

can easily be adapted so that the expressions of the estimators satisfy the ansatzes. See

(3.9) and (3.10) for the option hedging problem. 2

Numerical results In Figure 6, we plot the value function at time 0 w.r.t w0, the initial

value of the portfolio, when the agent follows the theoretical optimal strategy (benchmark),

and the optimal strategy estimated by the Hybrid-Now or Hybrid-LaterQ algorithms. We

perform forward Monte Carlo using 10,000 samples to approximate the lower bound of the

21

w
0

0 1 2 3 4 5 6 7 8 9 10

V
(t

=
0

,W
0
=

w
0
)

0

2

4

6

8

10

12

14

16

18

20
0

Hybrid-Now
Hybrid-LaterQ
Opt

Figure 6: Estimates of the value function at time 0 w.r.t. w0 using Hybrid-Now (blue

line) or Hybrid-LaterQ (green dashes). We draw the value function in red for comparison.

One can observe that all the algorithms estimate the price to be 4.5, but Hybrid-LaterQ is

better than Hybrid-Now at reducing the quadratic risk.

value function at time 0 (see [HL17] for details on how to get an approximation of the upper-

bound of the value function via duality). One can observe that while all the algorithms

give a call option price approximately equal to 4.5, Hybrid-LaterQ clearly provides a better

strategy than Hybrid-Now to reduce the quadratic risk of the terminal loss.

We plot in Figure 7 three different paths of the value of the portfolio w.r.t the time n,

when the agent follows either the theoretical optimal strategy (red), or the estimated one

using Hybrid-Now (blue) or Hybrid-LaterQ (green). We set w0 = 100 for these simulations.

Comments on Hybrid-Now and Hybrid-LaterQ The Option Hedging problem be-

longs to the class of linear-quadratic control problems for which we expect the optimal

control to be affine w.r.t. w and the value function to be quadratic w.r.t. w. It is then

natural to consider the following classes of controls AM and functions FM to properly

approximate the optimal controls and the values functions at time n=0, . . . , N − 1:

AM :=
{

(w, p) 7→ A(x;β) ·
(
1, w

)ᵀ
; β ∈ Rp

}
, (3.9)

FM :=
{

(w, p) 7→ Φ(x; θ) ·
(
1, w, w2

)ᵀ
; θ ∈ Rp

}
, (3.10)

where β describes the parameters (weights+bias) associated with the neural network A

and θ describes those associated with the neural network Φ. The notation ᵀ stands for the

transposition, and · for the inner product. Note that there are 2 (resp. 3) neurons in the

output layer of A (resp. Φ), so that the inner product is well-defined in (3.10) and (3.9).

22

Hybrid-Now
Hybrid-LaterQ

Figure 7: Three simulations of the agent’s wealth w.r.t. time n when, for each ω, the latter follows

the theoretical optimal strategy (red), the estimated one using Hybrid-Now (blue) and the one

using Hybrid-LaterQ (green). We took w0 = 100. Observe that the process is driven similarly

to the optimally controlled process, when the agent follows the estimated optimal strategy using

Hybrid-LaterQ or Hybrid-Now.

3.4 Valuation of energy storage

We present a discrete-time version of the energy storage valuation problem studied in

[CL10]. We consider a commodity (gas) that has to be stored in a cave, e.g. salt domes or

aquifers. The manager of such a cave aims to maximize the real options value by optimizing

over a finite horizon N the dynamic decisions to inject or withdraw gas as time and market

conditions evolve. We denote by (Pn) the gas price, which is an exogenous real-valued

Markov process modeled by the following mean-reverting process:

Pn+1 = p̄(1− β) + βPn + ξn+1, (3.11)

where β < 1, and p̄ > 0 is the stationary value of the gas price. The current inventory in

the gas storage is denoted by (Cαn)n and depends on the manager’s decisions represented

by a control process α = (αn) valued in {−1, 0, 1}: αn = 1 (resp. −1) means that she

injects (resp. withdraws) gas with an injection (resp. withdrawal) rate ain(Cαn) (resp.

aout(C
α
n)) requiring (causing) a purchase (resp. sale) of bin(Cαn) ≥ ain(Cαn) (resp. bout(C

α
n)

≤ aout(C
α
n)), and αn = 0 means that she is doing nothing. The difference between bin and

ain (resp. bout and aout) indicates gas loss during injection/withdrawal. The evolution of

the inventory is then governed by

Cαn+1 = Cαn + h(Cαn , αn), n = 0, . . . , N − 1, Cα0 = c0, (3.12)

23

where we set

h(c, a) =


ain(c) for a = 1

0 for a = 0

−aout(c) for a = −1,

and we have the physical inventory constraint:

Cαn ∈ [Cmin, Cmax], n = 0, . . . , N.

The running gain of the manager at time n is f(Pn, C
α
n , αt) given by

f(p, c, a) =


−bin(c)p−K1(c) for a = 1

−K0(c) for a = 0

bout(c)p−K−1(c) for a = −1,

and Ki(c) represents the storage cost in each regime i = −1, 0, 1. The problem of the

manager is then to maximize over α the expected total profit

J(α) = E

[
N−1∑
n=0

f(Pn, C
α
n , αn) + g(PN , C

α
N)

]
, (3.13)

where a common choice for the terminal condition is

g(p, c) = −µp(c0 − c)+,

which penalizes for having less gas than originally, and makes this penalty proportional to

the current price of gas (µ > 0). We are then in the 2-dimensional framework of Section 1

with Xα = (P,Cα), and the set of admissible controls in the dynamic programming loop

is given by:

An(c) =
{
a ∈ {−1, 0, 1} : c+ h(c, a) ∈ [Cmin, Cmax], c ∈ [Cmin, Cmax]

}
, n = 0, . . . , N − 1.

Test We fixed the parameters as follows, to run our numerical tests:

ain(c) = bin(c) = 0.06, aout(c) = bout(c) = 0.25

Ki(c) = 0.01c

Cmax = 8, Cmin = 0, c0 = 4, p̄ = 5, β = 0.5, ξn+1 ; N (0, σ2) with σ2 = 0.05, and µ = 2

in the terminal penalty function, N =30.

Numerical results We plotted in Figure 8 the estimates of the value function at time

0 w.r.t. ain using Qknn, as well as the reward function (3.13) associated with the naive

do-nothing strategy α = 0 (see Bench in figure 8). As expected, the naive strategy performs

well when ain is small compared to aout, since, in this case, it takes time to fill the cave,

so that the agent is likely to do nothing in order to avoid any penalization at terminal

24

time. When ain is of the same order as aout, it is easy to fill up and empty the cave, so

the agent has more freedom to buy and sell gas in the market without worrying about the

terminal cost. Observe that the value function is not monotone, due to the fact that the C

component in the state space takes its value in a bounded and discrete set (see (3.12)).

a
in

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

V
(t

=
0
,C

0
=

4
)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Value Function w.r.t. a

in

Q
Bench

Figure 8: Estimate of the value function at time 0 w.r.t. ain, when the agent follows the optimal

strategy estimated by Qknn, by running a forward Monte Carlo with a sample of size 100,000 (blue).

We also plotted the cost functional associated with the naive passive strategy α = 0 (Bench). See

that for small values of ain such as 0.06, doing nothing is a reasonable strategy. Observe also that

the value function is not monotone w.r.t. ain which is due to the dynamics of C (3.12).

Table 4 provides the estimates of the value function using the ClassifPI, Hybrid-Now and

Qknn algorithms. Observe first that the estimates provided by Qknn are larger than those

provided by the other algorithms, meaning that Qknn outperforms the other algorithms.

The second best algorithm is ClassifPI, while Hybrid-Now performs poorly and clearly

suffers from instability, due to the discontinuity of the running rewards w.r.t. the control

variable.

Table 4: V (0, P0, C0) estimates for different values of ain, using the optimal strategy provided by

the ClassifPI , Hybrid-Now and Qknn algorithms, with aout = 0.25, P0 = 4 and C0 = 4.

ain Hybrid-Now ClassifPI Qknn α = 0

0.06 -0.99 -0.71 -0.66 -1.20

0.10 -0.70 -0.38 -0.34 -1.20

0.20 -0.21 0.01 0.12 -1.20

0.30 -0.10 0.37 0.37 -1.20

0.40 0.10 0.51 0.69 -1.20

Finally, Figures 9, 10, 11 provide the optimal decisions w.r.t. (P,C) at times 5, 10, 15,

20, 25, 29 estimated respectively by the Qknn, ClassifPI and Hybrid-Now algorithms.

25

Figure 9: Estimated optimal decisions at times 5, 10, 15, 20, 25, 29 w.r.t. (P,C) for the energy

storage valuation problem using Qknn. Injection (a=-1) in red, store (a=0) in black and withdraw

(a=1) in blue.

26

Figure 10: Estimated optimal decisions at times 5, 10, 15, 20, 25, 29 w.r.t. (P,C) for the energy

storage valuation problem using ClassifPI. Injection (a=-1) in purple, store (a=0) in blue and

withdraw (a=1) in yellow.

27

Figure 11: Estimated optimal decisions at times 5, 10, 15, 20, 25, 29 w.r.t. (P,C) for the energy

storage valuation problem using Hybrid-Now. Injection (a=-1) in purple, store (a=0) in blue and

withdraw (a=1) in yellow. Observe the instability in the decisions which come from the fact that

we did not pre-train the neural networks (see Section 2.2.3)

As expected, one can observe on each plot that the optimal strategy is to inject gas

28

when the price is low, to sell gas when the price is high, and to make sure to have a volume

of gas greater than c0 in the cave when the terminal time is getting closer to minimize the

terminal cost.

Let us now comment on the implementation of the algorithms:

• Qknn: Table 4 shows that once again, due to the low-dimensionality of the problem,

Qknn provides the best value function estimates. The estimated optimal strategies, shown

on Figure 9, are very good estimates of the theoretical ones. The three decision regions

on Figure 9 are natural and easy to interpret: basically it is optimal to sell when the

price is high, and to buy when it is low. However, a closer look reveals that the waiting

region (where it is optimal to do nothing) has an unusual triangular-based shape, due

essentially to the discreteness of the space on which the C component of the state space

takes its values. We expect this shape to be very hard to reproduce with the DNN-based

algorithms proposed in Section 2.

• ClassifPI: As shown on Figure 10, the ClassifPI algorithm manages to provide accurate

estimates for the optimal controls at time n = 0, . . . , N − 1. However, the latter is not

able to catch the particular triangular-based shape of the waiting region, which explains

why Qknn performs better.

• Hybrid-Now: As shown on Figure 11, Hybrid-Now only manages to provide relatively

poor estimates, compared to ClassifPI and Qknn, of the three different regions at time

n = 0, . . . , N − 1. In particular, the regions suffer from instability.

We end this paragraph by providing some implementation details for the different algo-

rithms we tested.

• Qknn: We used the extension of Algorithm 5 introduced in the paragraph “semi-linear

interpolation” of the Section 3.2.2. in [Bal+19] and used a projection of each state on its

k=2-nearest neighbors to get an estimate of the value function which is continuous w.r.t.

the control variable at each time n = 0, . . . , N − 1. The optimal control is computed

at each point of the grids using the Brent algorithm, which is a deterministic function

optimizer already implemented in Pythone.

• Implementation details for the neural network-based algorithms: We use neural networks

with two hidden layers, ELU activation functionsf and 20+20 neurons . The output layer

contains 3 neurons with softmax activation function for the ClassifPI algorithm and no

activation function for the Hybrid-Now one. We use a training set of size M=60,000 at

each time step. Note that given the expression of the terminal cost, the ReLU activation

functions (Rectified Linear Units) could have been deemed a better choice to capture

the shape of the value functions, but our tests revealed that ELU activation functions

eWe could have chosen other algorithms to optimize the Q-value, but, in our tests, Brent was faster

than the other choices that we tried, such as GoldenSearch, and always provided accurate estimates of the

optimal controls.

fThe Exponential Linear Unit (ELU) activation function is defined as x 7→

{
exp(x)− 1 if x ≤ 0

x if x > 0
.

29

provide better results. At time n = 0, . . . , N−1, we took µn = U(Cmin, Cmax) as training

measure.

We did not use the pre-train trick discussed in Section 2.2.3, which explains the instability

in the decisions that can be observed in Figure 11.

The main conclusion of our numerical comparisons on this energy storage example

is that ClassifPI, the DNN-based classification algorithm designed for stochastic control

problems with discrete control space, appears to be more accurate than the more general

Hybrid-Now. Nevertheless, ClassifPI was not able to capture the unusual triangle-based

shape of the optimal control as well as Qknn did.

3.5 Microgrid management

Finally, we consider a discrete-time model for power microgrid inspired by the continuous-

time models developed in [Hey+18] and [JP15]; see also [Ala+19]. The microgrid consists

of a photovoltaic (PV) power plant, a diesel generator and a battery energy storage system

(BES), hence using a mix of fuel and renewable energy sources. These generation units are

decentralized, i.e., installed at a rather small scale (a few kW power), and physically close

to electricity consumers. The PV produces electricity from solar panels with a generation

pattern (Pn)n depending on the weather conditions. The diesel generator has two modes:

on and off. Turning it on consumes fuel, and produces an amount of power αn. The BES can

store energy for later use but has limited capacity and power. The aim of the microgrid

management is to find the optimal planning that meets the power demand, denoted by

(Dn)n, while minimizing the operational costs due to the diesel generator. We denote by

Rn = Dn − Pn,

the residual demand of power: when Rn > 0, one should provide power through diesel or

battery, and when Rn < 0, one can store the surplus power in the battery.

The optimal control problem over a fixed horizon N is formulated as follows. At any

time n = 0, . . . , N − 1, the microgrid manager decides the power production of the diesel

generator, either by turning it off: αn = 0, or by turning it on, hence generating a power αn
valued in [Amin, Amax] with 0 < Amin < Amax < ∞. There is a fixed cost κ > 0 associated

with switching from the on/off mode to the other one off/on, and we denote by Mα
n the

mode valued in {0 = off, 1 = on} of the generator right before time n, i.e., Mα
n+1 = 1αn 6=0.

When the diesel generator and renewable provide a surplus of power, the excess can

be stored into the battery (up to its limited capacity) for later use, and in case of power

insufficiency, the battery is discharged for satisfying the power demand. The input power

process Iα for charging the battery is then given by

Iαn = (αn −Rn)+ ∧ (Cmax − Cαn),

where Cmax is the maximum capacity of the battery with current charge Cα, while the

output power process Oα for discharging the battery is given by

Oαn = (Rn − αn)+ ∧ Cαn .

30

Here, we denote p+ = max(p, 0). Assuming for simplicity that the battery is fully efficient,

the capacity charge (Cαn)n of the BES, valued in [0, Cmax], evolves according to the dynamics

Cαn+1 = Cαn + Iαn −Oαn . (3.14)

The imbalance process defined by

Sαn = Rn − αn + Iαn −Oαn

represents how well we are doing for satisfying electricity supply: the ideal situation occurs

when Sαn = 0, i.e., perfect balance between demand and generation. When Sαn > 0, this

means that demand is not satisfied, i.e., there is missing power in the microgrid, and when

Sαn < 0, there is an excess of electricity. In order to ensure that there is no missing power,

we impose the following constraint on the admissible control:

Sαn ≤ 0, i.e. αn ≥ Rn − Cαn ,

but penalize the excess of electricity when Sαn < 0 with a proportional cost Q− > 0. We

model the residual demand as a mean-reverting process:

Rn+1 = R̄(1− %) + %Rn + εn+1,

where (εn)n are i.i.d., R̄ ∈ R, and % < 1. The goal of the microgrid manager is to find the

optimal (admissible) decision α that minimizes the functional cost

J(α) = E

[
N−1∑
n=0

`(αn) + κ1{Mα
n 6=Mα

n+1} +Q−(Sαn)−

]
,

where `(.) is the cost function for fuel consumption: `(0) = 0, and e.g. `(a) = Kaγ , with

K > 0, γ > 0. This stochastic control problem fits into the 3-dimensional framework of

Section 1 (see also Remark 2.4) with control α valued in A = {0} × [Amin, Amax], Xα =

(Cα,Mα, R), noise εn+1, starting from an initial value (Cα0 ,M
α
0 , R0) = (c0, 0, r0) on the

state space [0, Cmax]× {0, 1} × R, with dynamics function

F (x, a, e) =

 F 1(x, a) := c+ (a− r)+ ∧ (Cmax − c)− (r − a)+ ∧ c
1a6=0

R̄(1− %) + %r + e

 ,

for x = (c,m, r) ∈ [0, Cmax] × {0, 1} × R, a ∈ {0} × [Amin, Amax], e ∈ R, running cost

function

f(x, a) = `(a) + κ1m=1a=0 +Q−S(x, a)−,

S(x, a) = r − a+ (a− r)+ ∧ (Cmax − c)− (r − a)+ ∧ c,

zero terminal cost g = 0, and control constraint

An(x) =
{
a ∈ {0} × [Amin, Amax] : S(x, a) ≤ 0

}
=

{
a ∈ {0} × [Amin, Amax] : r − c ≤ a

}
.

31

Remark 3.2 The state/space constraint is managed in our NN-based algorithm by intro-

ducing a penalty function into the running cost (see Remark 2.4): f(x, a)← f(x, a)+L(x, a)

L(x, a) = Q+
(
r − c− a

)
+

with large Q+ taken much larger than Q−. Doing so, the NN-based estimate of the optimal

control learns not to take any forbidden decision. 2

The control space {0}∪ [Amin, Amax] is a mix between a discrete space and a continuous

space, which is challenging for algorithms with neural networks. We actually use a mixture

of classification and standard DNN for the control: (p0(x; θ), π(x;β)) valued in [0, 1] ×
[Amin, Amax], where p0(x; θ) is the probability of turning off in state x, and π(x;β) is the

amount of power when turning on with probability 1− p0(x; θ). In other words,

Xn+1 =

{
F (Xn, 0, εn+1) with probability p0(Xn; θn)

F (Xn, π(Xn;βn), εn+1) with probability 1− p0(Xn; θn)

The pseudo-code of this approach, specifically designed for this problem, is written in

Algorithm 6, and we henceforth refer to it as ClassifHybrid. Note in particular that it is

an Hybrid version of ClassifPI.

Algorithm 6: ClassifHybrid

Input: the training distributions (µn)N−1
n=0 ;

Output:

– estimate of the optimal strategy (ân)N−1
n=0 ;

– estimate of the value function (V̂n)N−1
n=0 ;

Set V̂N = g;

for n = N − 1, . . . , 0 do
Compute

(β̂0
n, β̂

1
n) ∈ argmax

β0,β1

E

[
p0(Xn;β0)

[
f(Xn, 0) + V̂n+1

(
f(X̂0

n+1

)]
+ (1− p0(Xn;β0))

[
f(Xn, π(Xn;β1)) + V̂n+1

(
X̂1,β1

n+1

)]]
,

where Xn ; µn, X̂0
n+1 = F (Xn, 0, εn+1), and X̂1,β1

n+1 = F (Xn, π(Xn;β1), εn+1);

Compute

θ̂n ∈ argmin
θ

E

[
p0

(
Xn; β̂0

n

) [
f(Xn, 0) + V̂n+1

(
f(X̂0

n+1

)
− Φ(.; θ)

]2

+
(
1− p0

(
Xn; β̂0

n

)) [
f(Xn, π(Xn;β1

n)) + V̂n+1

(
X̂

1,β̂1
n

n+1

)
− Φ(.; θ)

]2
]

;

Set V̂n = Φ(.; θ̂n); . V̂n is the estimate of the value function at time n

32

Test We set the parameters to the following values to compare Qknn and ClassifHybrid:

N = 30 or 200, R̄ = 0.1, % = 0.9, σ = 0.2,

Cmin = 0, Cmax = 1 or 4, C0 = 0, K = 2,

γ = 2, κ = 0.2, Q− = 10, R0 = 0.1,

Amin = 0.05, Amax = 10 Q+ = 1000.

Results Figure 12 shows the Qknn-estimated optimal decisions to take at times n =

1, 10, 28 in the cases where m = Mn = 0 and m = Mn = 1. If the generator is off at time

n, i.e. m = 0, the blue curve separates the region where it is optimal to keep it off and the

one where it is optimal to generate power. If the generator is on at time n, i.e. m = 1,

the blue curve separates the region where it is optimal to turn it off and the one where it

is optimal to generate power. A colorscale is available on the right to inform how much

power it is optimal to generate in both cases. Observe that the optimal decisions are quite

intuitive: for example, if the demand is high and the battery is empty, then it is optimal

to generate a lot of energy. Moreover, it is optimal to turn the generator off if the demand

is negative or if the battery is charged enough to meet the demand.

We plot in Figure 13 the estimated optimal decisions at times n = 1, 10, 28, using the

Hybrid-Now algorithm, with N = 30 time steps. See that the decisions are similar to the

ones given using Qknn.

Note that the plots in Figure 12 and 13 look much better than the ones obtained in [Ala+19]

in which algorithms based on regress-now or regress-later are used (see in particular Figure 4

in [Ala+19]); hence Qknn and ClassifHybrid seem more stable than the algorithms proposed

in [Ala+19].

We report in Table 5 the result for the estimates of the value function with N=30

time steps, obtained by running 10 times a forward Monte Carlo with 10,000 simulations

using the optimal strategy estimated using Qknn and ClassifHybrid algorithms. Observe

that Hybrid-Now performs better than Qknn. However, Qknn run in less than a minute

whereas Hybrid-Now needed seven minutes to run.

We also report in Table 6 the value function estimates with N=200 time steps, obtained by

running 20 times a forward Monte Carlo with 10,000 simulations using the Qknn-estimated

optimal strategy.

Table 5: Estimates of the value function at time 0 and state (C0 = 0,M0 = 0, R0 = 0.1), for N = 30

and Cmax = 1, using Qknn and ClassifHybrid algorithms. Note that ClassifHybrid achieved better

results than Qknn on this problem.

Mean std

ClassifHybrid 33.34 0.31

Qknn 35.37 0.34

Table 6: Qknn-estimates of the value function at time 0 and state (C0 = 0,M0 = 0, R0 = 0.1), for

N = 200.

Mean Standard Deviation

231.8 1.2

33

Figure 12: Estimated optimal decisions at time 1, 10 and 28, using Qknn, with N = 30 time steps.

The region under the blue line is the one where it is optimal to turn the generator off if m=1 (i.e.

the generator was on at time n-1), or keep it off if m = 0 (i.e. the generator was off at time n-1).

34

0.0 0.2 0.4 0.6 0.8 1.0
C

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

R

Decisions at time n=1 for m=0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
C

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

R

Decisions at time n=1 for m=1

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
C

1.5

1.0

0.5

0.0

0.5

1.0

1.5

R

Decisions at time n=10 for m=0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.0 0.2 0.4 0.6 0.8 1.0
C

1.5

1.0

0.5

0.0

0.5

1.0

1.5

R

Decisions at time n=10 for m=1

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0.0 0.2 0.4 0.6 0.8 1.0
C

1.5

1.0

0.5

0.0

0.5

1.0

1.5

R

Decisions at time n=28 for m=0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0
C

1.5

1.0

0.5

0.0

0.5

1.0

1.5

R

Decisions at time n=28 for m=1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 13: Estimated optimal decisions at time 1, 10 and 28, using ClassifHybrid, with N = 30

time steps.

35

0

1

2

3

C

0

1

M

0 25 50 75 100 125 150 175 200
n

1.0

0.5

0.0

0.5

R

0

1

2

3

C

0

1

M

0 25 50 75 100 125 150 175 200
n

1

0

1

R

Figure 14: Two simulations of (C,M,R) optimally controlled using Qknn, with N = 200 and

Cmax = 4.

36

Figure 14 shows two simulations of (C,M,R) controlled using the Qknn-estimated op-

timal strategy, where N = 200 has been chosen. Observe in particular the natural behavior

of the Qknn-decisions which consists in turning the generator on when the demand cannot

be met by the battery, and turn it off when the demand is negative or when the battery is

charged enough to meet the demand. Note that the plots are similar to the ones plotted in

Figure 9 of [Ala+19].

Comments on Qknn: Note that there is no need to use a penalization method with the

Qknn-algorithm to constrain the control to stay in An(x), where x is the state at time n,

since, for all state x, we can simply search for the optimal control associated in An(x),

using e.g. the Brent algorithm. For n = 0, . . . , N − 1, we took the training set as fol-

lows: Γn := ΓC × {0, 1} × ΓnR; where ΓC := {Cmin + i
50(Cmax − Cmin), i = 0, . . . , 50},

ΓnR := ρnR0 + σ 1−ρn
1−ρ Γ1 and where Γ1 is the optimal grid for the quantization of N (0, 1),

available in http://www.quantize.maths-fi.com, with 51 points. This choice of training

points for the C component corresponds to the exploration procedure discussed in Remark

2.1, whereas we chose the best grid with 51 points for the (uncontrolled) R component.

Comments on ClassifHybrid: We took 100 mini-batches of size 300 and took 100

epochs to run the algorithm. We chose the following training distribution at time n:

µn = U(Cmin, Cmax)×U({0, 1})×PRn , where PRn is the law of the (uncontrolled) residual

demand at time tn. Note that such a choice of training distribution means that we want

to explore all the available states for the controlled components of the controlled process

(C,M,R) in order to learn the optimal strategy globally.

The microgrid management problem is very challenging for our algorithms because

the control space {0} ∪ [amin, amax] is a mix of discrete and continuous space, moreover

the choice of the optimal control is subject to constraints. We designed ClassifHybrid,

an Hybrid version of ClassifPI, to solve this problem. ClassifHybrid provided very good

estimates and actually managed to perform better than Qknn.

4 Discussion and conclusion

Our proposed algorithms are well-designed and provide accurate estimates of optimal con-

trol and value function associated with various high-dimensional control problems. Also,

when tested on low-dimensional problems, they performed as well as the Monte Carlo-based

or quantization-based methods, which have shown their efficiency in low dimension, see e.g.

[Bal+19] and [Ala+19].

The presented algorithms suffer from a rather high time-consuming cost due to the

expensive training of 2(N − 1) neural networks to learn the value functions and optimal

controls at times n = 0, . . . , N−1. However, the agent can easily alleviate the computation

time. A first trick consists in reducing the number of neural networks by partially or totally

ignoring the dynamic programming principle (DPP), as it has been done e.g. in [EHJ17].

The use of one unique Recurrent Neural Networks (RNN) (in the case where the DPP

is totally ignored) or a few of them (in the partial-ignored case) can also be considered

to learn the optimal controls, either all at the same time (first case), or group by group

37

http://www.quantize.maths-fi.com

in a backward way (second case). We refer to [WNMW19] for algorithms in this spirit.

Another trick consists in learning faster the value functions and optimal controls at times

n = 0, . . . , N −1 by pre-training the neural networks. The way to proceed in that direction

is to initialize at time n the weights and bias of the value function estimator V̂n to the ones

of V̂n+1. We then rely on the continuity of the value function w.r.t. the time n to expect

that the weights will not change much from time n to n + 1, hence trainable very quickly

by reducing the learning rate of the Adam algorithm for the gradient descent, and using

an early-stop procedure as implemented in Kerasg. Another benefit from the pre-training

task is to get the stability of the estimates w.r.t. time, which is also a pleasant feature.

References

[ACBF02] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. “Finite-time Analysis

of the Multiarmed Bandit Problem”. In: Machine Learning 47.2 (2002),

pp. 235–256. issn: 1573-0565. doi: 10.1023/A:1013689704352. url: https:

//doi.org/10.1023/A:1013689704352.

[Ala+19] Clemence Alasseur, Alessandro Balata, Sahar Ben Aziza, Aditya Mahesh-

wari, Peter Tankov, and Xavier Warin. “Regression Monte Carlo for Micro-

grid Management”. In: ESAIM Proceedings and Surveys, CEMRACS 2017

(2019), pp. 46–67.

[Bal+19] Alessandro Balata, Côme Huré, Mathieu Laurière, Huyên Pham, and Isaque

Pimentel. “A Class of Finite-Dimensional Numerically Solvable McKean-

Vlasov Control Problems”. In: ESAIM Proceedings and Surveys, CEMRACS

2017 19 (2019), pp. 114–144.

[BKL01] Dimitris Bertsimas, Leonid Kogan, and Andrew W. Lo. “Hedging derivative

securities and incomplete markets: an ε-arbitrage approach”. In: Operations

Research 49.3 (2001), pp. 372–397.

[CL10] René Carmona and Mike Ludkovski. “Valuation of energy storage: an optimal

switching approach”. In: Quantitative Finance 26.1 (2010), pp. 262–304.

[CR16] Jean-Francois Chassagneux and Adrien Richou. “Numerical Simulation of

Quadratic BSDEs”. In: The Annals of Applied Probabilities 26.1 (2016),

pp. 262–304.

[EHJ17] Weinan E, Jiequn Han, and Arnulf Jentzen. “Deep learning-based numeri-

cal methods for high-dimensional parabolic partial differential equations and

backward stochastic differential equations”. In: Communications in Mathe-

matics and Statistics 5 5 (2017), pp. 349–380.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT

Press, 2016.

gSee EarlyStopping callback in Keras

38

https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352

[Hey+18] Benjamin Heymann, J. Frédéric Bonnans, Pierre Martinon, Francisco J.

Silva, Fernando Lanas, and Guillermo Jiménez-Estévez. “Continuous opti-

mal control approaches to microgrid energy management”. In: Energy Sys-

tems 9.1 (2018), pp. 59–77.

[HL17] Pierre Henry-Labordere. “Deep Primal-Dual Algorithm for BSDEs: Applica-

tions of Machine Learning to CVA and IM”. In: SSRN:3071506 (2017).

[Hur+18] Côme Huré, Huyên Pham, Achref Bachouch, and Nicolas Langrené. “Deep

neural networks algorithms for Stochastic Control Problems on finite horizon,

part I: convergence analysis”. In: arXiv:1812.04300 (2018).

[JP15] Daniel R. Jiang and Warren B. Powell. “An approximate dynamic program-

ming algorithm for monotone value functions”. In: Operations Research 63.6

(2015), pp. 1489–1511.

[KPX18] Steven Kou, Xianhua Peng, and Xingbo Xu. “A general Monte Carlo algo-

rithm with monotonicity for stochastic control problems”. 2018 IMS Annual

Meeting on Probability and Statistics. 2018.

[LM19] Michael Ludkovski and Aditya Maheshwari. “Simulation methods for stochas-

tic storage problems: a statistical learning perspective”. In: Energy Systems

(2019). issn: 1868-3975. doi: 10.1007/s12667-018-0318-4. url: https:

//doi.org/10.1007/s12667-018-0318-4.

[PPP04] Gilles Pagès, Huyên Pham, and Jacques Printems. “Optimal quantization

methods and applications to numerical problems in finance”. In: Handbook

of computational and numerical methods in finance (2004), pp. 253–297.

[Ric10] Adrien Richou. “Etude théorique et numérique des équations différentielles

stochastiques rétrogrades”. PhD thesis. Université de Rennes 1, 2010.

[Ric11] Adrien Richou. “Numerical Simulation of BSDEs with Drivers of Quadratic

Growth”. In: The Annals of Applied Probability 21.5 (2011), pp. 1933–1964.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. The MIT

Press, 1998.

[WNMW19] Quentin Chan Wai-Nam, Joseph Mikael, and Xavier Warin. “Machine Learn-

ing for semi linear PDEs”. In: Journal of Scientific Computing 79.3 (2019),

pp. 1667–1712.

[YZ99] Jiongmin Yong and Xunyu Zhou. Stochastic Controls Hamiltonian Systems

and HJB Equations. Springer, 1999.

39

https://doi.org/10.1007/s12667-018-0318-4
https://doi.org/10.1007/s12667-018-0318-4
https://doi.org/10.1007/s12667-018-0318-4

	Introduction
	Algorithms
	Control Learning by Performance Iteration
	Algorithm NNContPI
	Algorithm ClassifPI

	Control and value function learning by double DNN
	Regress Now (Hybrid-Now)
	Regress Later and Quantization (Hybrid-LaterQ)
	Some remarks on Algorithms 3 and 4

	Quantization with k-nearest-neighbors (Qknn-algorithm)

	Numerical applications
	A semilinear PDE
	A linear quadratic stochastic test case
	Option hedging
	Valuation of energy storage
	Microgrid management

	Discussion and conclusion

