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Deep neural networks algorithms for stochastic control

problems on finite horizon, Part 2: numerical applications

Achref BAcHOUCH * Coéme HURE T Nicolas LANGRENE ¥ Huyén PHAM #

December 12, 2018

Abstract

This paper presents several numerical applications of deep learning-based algorithms
that have been analyzed in [I1]. Numerical and comparative tests using TENSORFLOW
illustrate the performance of our different algorithms, namely control learning by per-
formance iteration (algorithms NNcontPI and ClassifPI), control learning by hybrid it-
eration (algorithms Hybrid-Now and Hybrid-LaterQ), on the 100-dimensional nonlinear
PDEs examples from [6] and on quadratic Backward Stochastic Differential equations
as in [5]. We also provide numerical results for an option hedging problem in finance,
and energy storage problems arising in the valuation of gas storage and in microgrid
management.

1 Introduction

This paper is devoted to the numerical resolution of discrete-time stochastic control problem
over a finite horizon. The dynamics of the controlled state process X = (X,,), valued in
R? is given by

Xny1 = F<Xnaan>€n+1)7 n=0,...,N—-1, Xo=x0 € Rdv (1'1)

where (e,,),, is a sequence of i.i.d. random variables valued in some Borel space (E, B(E)),
and defined on some probability space (€2, F,P) equipped with the filtration F = (F,),
generated by the noise (gy,), (Fo is the trivial o-algebra), the control o = (ay,), is an
F-adapted process valued in A C RY, and F is a measurable function from R? x R? x F
into R?. Given a running cost function f defined on R? x R? and a terminal cost function
g defined on R¢, the cost functional associated with a control process « is

N—1

J@) = E| Y f(Xaran) +9(xn)]. (1:2)
n=0
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The set A of admissible controls is the set of control processes « satisfying some integrability
conditions ensuring that the cost functional J(«) is well-defined and finite. The control
problem, also called Markov decision process (MDP), is formulated as

Vo(eo) = inf J(a), (13)

and the goal is to find an optimal control a* € A, i.e., attaining the optimal value: V()
= J(a*). Notice that problem — may also be viewed as the time discretization of a
continuous time stochastic control problem, in which case, F' is typically the Euler scheme
for a controlled diffusion process.

It is well-known that the global dynamic optimization problem can be reduced to
local optimization problems via the dynamic programming (DP) approach, which allows to
determine the value function in a backward recursion by

Vn(e) = gle), zeRY
Vo(x) = inf Qu(x,a), (1.4)
achA
with Qn(z,a) = f(z,a) +E[Vot1(Xnt1)|Xn = 2,000 = a], (z,0) € RY x A.

Moreover, when the infimum is attained in the DP formula (1.4)) at any time n by a} (x)
€ argmingep Qp(z,a), we get an optimal control in feedback form (policy) given by: o* =
(a} (X}))n where X* is the Markov process defined by

o= F(X5ai(XD),eni1), n=0,....N—1, X;=ao.

nr'n

The practical implementation of the DP formula may suffer from the curse of dimen-
sionality and large complexity when the state space dimension d and the control space
dimension are high. In [I1], we proposed algorithms relying on deep neural networks for
approximating/learning the optimal policy and then eventually the value function by perfor-
mance/policy iteration or hybrid iteration with Monte Carlo regressions now or later. This
research led to three algorithms, namely algorithms NNcontPI, Hybrid-Now and Hybrid-
LaterQ that are recalled in Section [2| In Section [3| we perform some numerical and com-
parative tests for illustrating the efficiency of our different algorithms, on 100-dimensional
nonlinear PDEs examples as in [6] and quadratic Backward Stochastic Differential equa-
tions as in [5]. We also provide numerical results for an option hedging problem in finance,
and energy storage problems arising in the valuation of gas storage and in microgrid man-
agement. Finally, we conclude in Section 4] with some comments about possible extensions
and improvements of our algorithms.

Remark 1.1 The proposed algorithms can deal with state and control constraints at any
time, which is useful in several applications:
(Xn,an) € S as., neN,

where S is some given subset of R x R?. In this case, in order to ensure that the set of
admissible controls is not empty, we assume that the sets

A(z) = {a eRY: (F(r,a,e1),a) €S a.s.}
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are non empty for all z € §, and the DP formula now reads

Vo(z) = inf [f(z,a)+ PVpii(z)], z€S.
a€A(x)

From a computational point of view, it may be more convenient to work with unconstrained
state/control variables, hence by relaxing the state/control constraint and introducing into
the running cost a penalty function L(z,a): f(z,a) < f(z,a) + L(z,a), and g(z) +
g(x) + L(z,a). For example, if the constraint set S is in the form: S = {(x,a) € R x R :
hig(z,a) =0,k =1,...,p, hg(xz,a) > 0,k =p+1,...,q}, for some functions hy, then one
can take as penalty functions:

P q
L(z,a) = Zﬂklhk(a:,a)\Q—i— Z pp max(0, —hg(x,a)).
k=1 k=p+1

where p1; > 0 are penalization coefficients (large in practice). O

2 Algorithms

This section recalls the DNN-based algorithms we propose to solve the discrete-time stochas-
tic control problem ———. These algorithms have been described and ana-
lyzed in detail in our companion paper [I1]. We also introduce a quantization and k-nearest-
neighbor-based algorithm (knn) to be used as benchmark when testing our algorithms on
low-dimensional control problems.

We are given a class of deep neural networks (DNN) for the control policy represented by
the parametric functions z € R — A(x;3) € A, with parameters 3 € R?, and a class of
DNN for the value function represented by the parametric functions: = € R? — O(x;0) € R,
with parameters § € RP. Recall that these DNN functions A and & are compositions of
linear combinations and nonlinear activation functions, see [§].

2.1 Control Learning by Performance Iteration (NINContPI & ClassifPI)

e For n = N —1,...,0, keep track of the approximated optimal policies ar, K = n +
1,..., N — 1, and compute the approximated optimal policy at time n by

A~

an, = A(.;pBp) with
) N-1

Bn € al;}gerﬂrg(i]nE[f(Xn,A(Xn;B))—k SRy an(X)) +9(xx)] (21)
k=n+1

where X, is distributed according to a training probability measure 1 on R?, and with
(X,f)fj:nJrl defined by induction, for m = 1,..., M, as:

{ X’r[j—&-l = F(XnvA(Xn;ﬁ)7€n+1)

X) = F(X],ar(X)58).p41), fork=n+1,...,N—1.

We later refer to this algorithm as the NNContPI algorithm.



Remark 2.1 In practice, we use the Adam algorithm, implemented in TensorFlow, to
compute 3, in |D and refer to section 3.3 of [11] for a discussion on the choice of the
training measure. O

Remark 2.2 (Case of finite control space) In the case where the control space A is finite,
ie., Card(A) = L < oo with A = {ay,...,ar}, a classification method can be used: consider
a DNN that takes state  as input and returns a probability vector p(x; 8) = (pe(z; 8))E_,
with parameters [; the algorithm reads:

e For n = N —1,...,0, keep track of the approximated optimal policies ar, kK = n +
1,..., N — 1, and compute the approximated optimal policy at time n by

an<m) = aén(x) with én(flj) € arggmaXLp@(x;Bn)

=1,...,

L N—-1
Bn € argminE[ZP@(Xn;ﬁ)U(Xmae)+ > F(XEar(XE) + Q(XJ{/))],
=1

peRa k=n+1
where X, is distributed according to a training probability measure x on R, and Xﬁ 11
= F(X,,a0,6p41), Xfoq = F(X§,ap(Xg),644q) fork=n+1,..., N—-1,¢=1,... L.

In the numerical applications of the next section, we refer to this classification-based algo-
rithm as the ClassifPI algorithm. O

2.2 Double DNN with Regress Now (Hybrid-Now)
e Initialize Vy = ¢
e Forn=N—-1,...,0,
(i) compute the approximated policy at time n
Gn = A(.;Bn) with

371 € argminE {f(Xn, A(X,; ﬁ)) + Vn+1(X5+1)] (2.2)
BERY

where X, is distributed according to a training probability measure 1 on R¢, and Xg 41
= F(Xn’ A(Xm ﬁ)) ) 8n—&—l)'
(ii) estimate the value function at time n

~

Vi, = ®(:0,) with

A ~ A 2
9n € argminE [f(Xna dn(Xn)) + VnJrl(XrﬁL«nkl) - (I)(Xm 9) . (23)
OcRP

Remark 2.3 Once again, we use the Adam algorithm, natively implemented in Tensor-
Flow, to compute 3, in 1} and 6, in 1' Once again, we refer to section 3.3 of [11] for
a discussion on the choice of the training measure. O



2.3 Double DNN with Regress Later and Quantization (Hybrid-LaterQ)

We are given in addition an L-optimal quantizer of the noise €, via a discrete random
variable &, valued in a grid {ej,...,er} of L points in E, and with weights p1,...,pr.

e Initialize Vy = ¢
e Forn=N-1,...,0,
(i) compute the approximated policy at time n

an = A(.;Bn) with

Bn € a%gexﬁinE[f(Xn,A(Xn;ﬁ))+Vn+1(X{fH)], (2.4)

where X, is distributed according to a training probability measure p on R? and
where XS)H = F(X,, A(X,; ), €p11)-

(ii) approximate the value function at time n + 1

~ A~

Vodr = @®(;6p41) with

~ ~ A A 2

boi1 € argminE[vnH(ij;l)—<1>(X§11;9)]. (2.5)
OcRp

(iii) estimate analytically by quantization the value function at time n:

L
Vo(z) = f(z,an(x)) + ZngnH (F(z,an(z),e0)).
=1

Remark 2.4 o We use the Adam algorithm to compute /3, in 1) and 0,1 in 1}

e Observe that step (ii) is an interpolation step, which means that all kind of loss functions
can be chosen to compute §n+1. In l , we decide to take the L?-loss, mainly because
of its smoothness.

e we refer to section 3.3 of [11] for a discussion on the choice of the training measure.

2.4 Quantization with k-nearest-neighbors (Qknn-algorithm)

We now present a simple version of the Qknn algorithm, based on the quantization and
k-nearest neighbors methods, which will be the benchmark for all the low-dimensional
control problems that will be considered in the next section. We refer to [2] for a detailed
presentation of a more sophisticated version of this algorithm, and comparisons to other
well-known algorithms on various control problems.

We are given an L-optimal quantizer of the noise €, via a discrete random variable &,
valued in a grid {e1,...,er} of L points in F, and with weights pi,...,pr; as well as grids
I, k=0,...,N of points in R? | which are assumed to cover the region of R? that is likely
to be visited by the optimally driven process X at time k =0,..., N — 1.



e Initialize Vy = g
e Forn=N—-1,...,0,

(i) compute the approximated Q-value at time n

L
Qu(z.a) = f(z0)+ > piVnsa (Projr,,, (F(z.a,e)), ¥(z.a) €Ty x A,
(=1

where Projr, ., is the Euclidean projection over I';, ;1.

n+1

(ii) compute the optimal control at time n

An(2) € argmin [Qn(z, a)], VzeTy,
acA
using classical algorithms for optimization of deterministic functions.

(iii) estimate analytically by quantization the value function:

~ ~

Va(z) = An(Z7An(Z)), Vzel,.

3 Numerical applications
3.1 A semilinear PDE

We consider the following semilinear PDE with quadratic growth in the gradient:

— + A0 — D = 0, (tz)€[0,T) xR,

3.1
o(T,z) = g(x), =R 3

By observing that for any p € R?, -|p|> = inf,cga[|a|? + 2a.p], the PDE (3.1)) can be written
as a Hamilton-Jacobi-Bellman equation

ov . 2 d
5+ Agv + alenllgd [la|* + 2a.Dyv] = 0, (t,z)€[0,T) x RY, (3.2)
o(T,x) = g(z), x€RY
hence associated with the stochastic control problem
T
v(t,z) = inf IE[/ ]a3]2d3+g(X§lx7a)}, (3.3)
acA t

where X = X% is the controlled process governed by
dX, = 2a.ds + V2dW,, t<s<T, X; =z,

W is a d-dimensional Brownian motion, and the control process « is valued in A = R,
The time discretization (with time step h = T'/N) of the control problem (3.3) leads to the

discrete-time control problem (|1.1))-([1.2))-(1.3)) with

X1 = Xy 4+ 2aph +V2hen = F(X,),0n,6n41), n=0,...,N—1,



where (g,), is a sequence of i.i.d. random variables of law N(0,1;), and a cost functional,

N-1
J@) = B[ hlanf? + g(X3)].
n=0
On the other hand, it is known that an explicit solution to (3.1]) (or equivalently (3.2))) can
be obtained via a Hopf-Cole transformation (see e.g. [5]), and is given by

v(t,x) = —In (E{exp (—glz+ ﬁWT—t))]), (t,z) € [0,T] x R<.

We choose to run tests on two different examples that have already been considered in the
literature:

Test 1 Some recent numerical results have been obtained in [6] (see Section 4.3 in [6])
when T'= 1 and g(z) = In(3(1 + |z|?)) in dimension d = 100 (see Table 2 and Figure 3 in
[6]). Their method is based on neural network regression to solve the BSDE representation
of the control problem, and provide estimations of the value function at time 0 and state 0
for different values of a coefficient v. We plotted the results of the Hybrid-Now algorithm
in Figure|ll Hybrid-Now achieves a relative error of 0,13% in a bit less than 2hours using a
4-cores 3GHz intel Core i7 CPU, which is very close to the result found by [6], and reaches
a relative error of 0,09% in a bit more than 4 hours. We want to highlight the fact that
the algorithm presented in [6] only needs hundreds of seconds to provide a relative error of
0,17%, which is not comparable to the time required by Hybrid-Now to converge. However,
we believe that the computation time can easily be alleviated; some ideas in that direction
are discussed in section [l

We also considered the same problem in dimension d = 2, for which we plotted the first
component of X w.r.t. time in Figure [2] for five different paths of the Brownian motion,
where for each w, the agent follows either the naive (a« = 0) or the Hybrid-Now strategy.
On can see that both strategies are very similar when the terminal time is far; but the
Hybrid-Now strategy clearly forces X to get closer to 0 when the terminal time gets closer,
in order to reduce the terminal cost.

Test 2 Tests of the algorithms have also been run in dimension 1 with the terminal cost
g(x) = —x"lp<z<1 — Li<y and v € (0,1). This problem has already been considered in
[13], where the author used the BSDE-based algorithm presented in [14]. Their results for
the value function estimation at time 0 and state 0, when v = 1,0.5,0.1,0, are available
in [I3], and have been reported in column Y &R of Table |1} Also, the exact values for the
value function have been computed for these values of -, using the closed-form formula and
running a Monte Carlo, and are reported in the column Bench of Table Tests of the
Hybrid-Now and Hybrid-LaterQ algorithms have been run, and the estimations of the value
function at time 0 and state = 0 are reported in the Hybrid-Now and Hybrid-LaterQ
columns. We also tested the Qknn algorithm based on quantization of the exogenous noise
(en) and k-nearest neighbors method, and reported the results in column Qknn. Qknn
does not regress on neural networks, but rather uses k-nearest neighbors (knn) estimates



Relative error w.r.t. size of training set
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Figure 1: Relative error of the Hybrid-Now estimation of the value function at time 0 w.r.t the
number of mini-batches used to build the Hybrid-Now estimators of the optimal strategy. The value
functions have been computed running three times a forward Monte Carlo with a sample of size 10
000, following the optimal strategy estimated by the Hybrid-Now algorithm.

Table 1: Value function at time 0 and state 0 w.r.t. «, computed with the Y&R, Hybrid-Now,
Hybrid-Later and Qknn algorithms. Bench reports the MC estimations from the exact closed-form
solution.

~ Y&R  Hybrid-LaterQ Hybrid-Now Qknn Bench
1.0 | -0.402 -0.456 -0.460 -0.461 -0.464
0.5 | -0.466 -0.495 -0.507 -0.508 -0.509
0.1 | -0.573 -0.572 -0.579 -0.581 -0.586
0.0 | -0.620 -1.000 -1.000 -1.000 -1.000

to approximate the @Q-value. See [2] for a presentation, more details and several different
tests of the Qknn algorithm. Note that Qknn is particularly well-suited to 1-dimensional
control problems. In particular, it is not time-consuming since the dimension of the state
space d is 1. Actually, it provides the fastest results, which is not surprising since the other
algorithms need time to learn the optimal strategies and value functions through gradient-
descent methods at each time step n =0,..., N — 1. Moreover, Table [1| reveals that Qknn
is the most accurate algorithm on this example, probably because it uses local methods in
space to estimate the conditional expectation that appears in the expression of the Q)-value.

We end this paragraph by giving some implementation details for the different algo-
rithms as part of Test 2.

o Implementation details of YER algorithm: Y&R algorithm requires to approximate the
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Figure 2: Pathwise comparison of the first component of X w.r.t. time when the agent follows
the optimal strategy estimated by the Hybrid-Now algorithm (opt) and the naive strategy o = 0
(bench). The dimension of the semilinear control problem has been set to d=2. Observe that, as
expected, the strategy designed by Hybrid-Now algorithm is not to influence the diffusion of X
when the terminal time is far in order to avoid any running cost, and try to make X small when
terminal time gets close in order to minimize the terminal cost.

control problem by using a Lipschitz version of g like the following;:

o) {g(a:) if 2 ¢ [0, N7

— Nz  otherwise.

o Implementation details of Hybrid-Now algorithm: We use N = 40 time steps for the
discretization of the time interval [0, 1]. The value functions and optimal controls at time
n =0,...,N —1 are estimated using neural networks with 3 hidden layers and 10+5+5
neurons.

e Implementation details of Hybrid-Later@ algorithm: We use N = 40 time steps for the
discretization of the time interval [0, 1]. The value functions and optimal controls at time
n =0,...,N — 1 are estimated using neural networks with 3 hidden layers containing
10+5+5 neurons; and 51 points for the quantization of the exogenous noise.

o Implementation details of Qknn algorithm: We use N = 40 time steps for the discretiza-
tion of the time interval [0,1]. We take 51 points to quantize the exogenous noise,
en ~ N(0,1), for n = 0,...,N; and 200 points for the space discretization. See [2] for
more details on the Qknn algorithm.

The main conclusion regarding the numerical implementations and comparisons of this
semilinear PDE is that the Hybrid-Now algorithm performs well in the control problem of
dimension d=100, and outperforms the Hybrid-Later@ algorithm in dimension d=2.



3.2 Option hedging

Our second example comes from a classical hedging problem in finance. We consider an
investor who trades in ¢ stocks with (positive) price process (P, )., and we denote by (ay,)
valued in A C R? the amount held in these assets on the period (n,n + 1]. We assume
for simplicity that the price of the riskless asset is constant equal to 1 (zero interest rate).
It is convenient to introduce the return process as: R,11 = diag(Pn) Y(Puy1 — Pn), n =
0,...,N—1, so that the self-financed wealth process of the investor with a portfolio strategy
«, and starting from some capital wy, is governed by

We, = We4anRui, n=0,...,N—1, WS = wy.

Given an option payoff h(Py), the objective of the agent is to minimize over her portfolio
strategies a her expected square replication error

Vo — ‘fE[ehP —W“},
b= BEE[EY) - WR)
where £ is a convex function on R. Assuming that the returns R,, n = 1,..., N are i.i.d,

we are in a (g + 1)-dimensional framework of Section [I| with X* = (W, P) with ¢, = R,
valued in FF C RY, with the dynamics function

w —+ a.r

+ diag(p) zr=(w,p) ERxRI, aeR rekE,
p lag(p)r,

F(w,p,a,7) = {

the running cost function f = 0 and the terminal cost g(w,p) = ¢(h(p) — w). We test
our algorithm in the case of a square loss function, i.e. ¢(w) = w?, and when there is no
portfolio constraints A = R?, and compare our numerical results with the explicit solution
derived in [3]: denote by v(dr) the distribution of R,, by v = E[R,] = [ rv(dr) its mean,
and by My = E[R, R!'] assumed to be invertible; we then have

Vn(wap) = an2 - 2Zn(p)w + Cn(p)

where the functions K,, > 0, Z,(p) and C,(p) are given in backward induction, starting
from the terminal condition

Ky =1, Zn(p) = h(p), Cn(p) = h*(p),
and forn = N —1,...,0, by
K, = Ky(1-9"M;'p),
2u(0) = [ Zusalp+ ding(pr)vldr) - 705 [ Zoss(p+ diag(p)r)ro(an),
Colp) = [ Cosalp + dingp)ryv(ar)

Kj—&-l (/Zn+1(13+ diag<p)T)TV(dT))TM2_1(/Zn+1(p+ diag(p)r)ry(dr)>7

10



so that Vp = Kowg — 270 (po)wo + Co(po), where pg is the initial stock price. Moreover, the
optimal portfolio strategy is given in feedback form by o = a) (W}, P,), where a} (w, s) is

the function

_ Zn di d
a;(w,p) _ M2—1 f +1(p + 1ag(p)r)7"lj( ’I”)
Kn—i—l

—rw|,
and W* is the optimal wealth associated with o, i.e., W} = W2 . Moreover, the initial

capital wg that minimizes Vo = Vj(wo, po), and called (quadratic) hedging price is given by

« _ Zo(po)
'LUO = KO .

Test Take N = 6, and consider one asset ¢ = 1 with returns modeled by a trinomial tree:
v(dr) = mybp, +mbo+ 76, moF+my T =1,

with ri = 5%, r— = —5%, 7 = 60%, 7— = 30%. Take pg = 100, and consider the call
option h(p) = (p — k)+ with kK = 100. The price of this option is defined as the initial
value of the portfolio that minimizes the terminal quadratic loss of the agent when the
latter follows the optimal strategy associated with the initial value of the portfolio. In this
test, we want to determine the price of the call and the associated optimal strategy using
different algorithms.

Numerical results In Figure[3] we plot the value function at time 0 w.r.t wq, the initial
value of the portfolio, when the agent follows the theoretical optimal strategy (benchmark),
and the optimal strategy estimated by the Hybrid-Now or Hybrid-LaterQ algorithms. We
perform forward Monte Carlo using 10,000 samples to approximate the lower bound of the
value function at time 0 (see [9] for details on how to get an approximation of the upper-
bound of the value function via duality). One can observe that while all the algorithms
give a call option price approximately equal to 4.5, Hybrid-LaterQ clearly provides a better
strategy than Hybrid-Now to reduce the quadratic risk of the terminal loss.

We plot in Figure [ three different paths of the value of the portfolio w.r.t the time
n, when the agent follows either the theoretical optimal strategy (red), or the estimated
one using the Hybrid-Now algorithm (blue) or Hybrid-LaterQ algorithm (green). We set
wo = 100 for these simulations. Note that for such a big value of wy, it is not obvious that
Hybrid-LaterQ is better than Hybrid-Now.

Comments on the Hybrid-Now and Hybrid-LaterQ algorithms The Option Hedg-
ing problem belongs to the class of the linear quadratic control problems for which we expect
the optimal control to be affine in w and the value function to be quadratic in w. It is
then natural to consider the following classes of controls Aj; and functions F; to properly
approximate the optimal controls and the values functions at time n=0,..., N — 1:

Ay = {(w,p) — A(z; B) - (l,w)T; B e ]Rp}, (3.4)

11
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Figure 3: Estimations of the value function at time 0 w.r.t. wg using the Hybrid-Now
algorithm (blue line), Hybrid-LaterQ algorithm (green dashes). We draw the value function
in red for comparison. One can observe that the price of the call given by all the algorithms
is approximately equals to 4.5, but Hybrid-LaterQ is better than Hybrid-Now at reducing
the quadratic risk.

Fur o= {(w,p) — ®(z;0) - (Lw,w?)T; 6 RV}, (3.5)

where [ describes the parameters (weights+ bias) associated with the neural network A
and 0 describes those associated with the neural network ®. The notation T stands for the
transposition, and - for the inner product. Note that there are 2 (resp. 3) neurons in the
output layer of A (resp. ®), so that the inner product is well-defined in and . It
is then natural to use gradient-descent-based algorithms to find the optimal parameter (3
(resp. ) for which A (resp. ®) coincides with the optimal control (resp. the value function)
at time n=0,..., N — 1.

Remark 3.1 The option hedging problem is linear quadratic, hence belongs to the class
of problems where the agent has ansatzes on the optimal control and the value function.
For these kind of problems, the algorithms presented in [11] can easily be adapted so that
the expressions of the estimators satisfy the ansatzes, see e.g. and . O

3.3 Valuation of energy storage

We present a discrete-time version of the energy storage valuation problem studied in [4].
We consider a commodity (gas) that has to be stored in a cave, e.g. salt domes or aquifers.
The manager of such a cave aims to maximize the real options value by optimizing over
a finite horizon N the dynamic decisions to inject or withdraw gas as time and market
conditions evolve. We denote by (P,) the gas price, which is an exogenous real-valued
Markov process modeled by the following mean-reverting process:

Pn+1 = ﬁ(lfﬁ)JrﬁPn?LfnJrlv (3'6)

12
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Figure 4: Three simulations of the agent’s wealth w.r.t. the time n when, for each w, the latter
follows the theoretical optimal strategy (red), and the estimated one using the Hybrid-Now (blue)
or Hybrid-LaterQ algorithm (green). We took wg = 100 for this simulation. Observe that for
such a big value of wg, the optimal strategy estimated by the Hybrid-LaterQ and the Hybrid-Now
algorithms are similar to the theoretical optimal strategy.

where 5 < 1, and p > 0 is the stationary value of the gas price. The current inventory in
the gas storage is denoted by (C¢),, and depends on the manager’s decisions represented
by a control process o = (ay,) valued in {—1,0,1}: «, = 1 (resp. —1) means that she
injects (resp. withdraws) gas with an injection (resp. withdrawal) rate a;,(C5) (resp.
aout(CY)) requiring (causing) a purchase (resp. sale) of bjn(CSY) > ain(CS) (resp. bout(CS)
< aout(CY)), and a,, = 0 means that she is doing nothing. The difference between b;,, and
ain (resp. byt and ayye) indicate gas loss during injection/withdrawal. The evolution of
the inventory is then governed by

w1 = Ch+h(Cy,ap), n=0,...,N—-1, Cf = co, (3.7)
where we set

ain(c)  for a=1
h(c,a) = 0 for a =0
—aput(c) for a=—1,

and we have the physical inventory constraint:

Cy € [Cminacmaz]a n:07...,N.

n

The running gain of the manager at time n is f(P,,CY, o) given by

—bin(c)p— Ki(c) for a=1
f(p,c,a) = —Ko(c) for a =0
bout(c)p — K—l(C) for a = —]_,

13



and K;(c) represents the storage cost in each regime ¢ = —1,0,1. The problem of the
manager is then to maximize over « the expected total profit

N—-1
J@) = E[ Y J(Pu Citian) + 9(Py,CR)).

n=0

where a common choice for the terminal condition is

g(p,e) = —pp(co—c)y,

which penalizes for having less gas than originally, and makes this penalty proportional to
the current price of gas (u > 0). We are then in the 2-dimensional framework of Section
with X% = (P,C?), and the set of admissible controls in the dynamic programming loop
is given by:

An(c) = {a € {—1,0, 1} e+ h(C, a) € [Cmin’cmaz]y ce [Cminycmaz]}a n = Oa . '7N -1

Test As in [4], we consider the example

ain(c) = bin(c) = 0.06, aout(€) = bour(c) = 0.25
Ki(c) = 0.01c

Craz = 8, Copin = 0, c0 =4, p =5, B = 0.5, &1 ~ N(0,02) with 02 = 0.05, and p = 2
in the terminal penalty function, N = 10, 20, 30.

Numerical results Figure [5| provides the value function estimates at time 0 w.r.t. a;,
using Qknn algorithm, compared to the benchmark (Bench) defined as the naive do-nothing
strategy a = 0. As expected, the naive strategy performs well when a;, is small, since, in
this case, it takes time to fill the cave, so that the agent is likely to do nothing so as not to
be penalized at terminal time. When a;, is large, it is easy to fill up the cave, so the agent
has more freedom to buy and sell gas in the market without worrying about the terminal
cost. Observe that the value function is not monotone, due to the fact that the state space
for the volume of gas in the cave is a bounded discrete set.

Table [2] provides the value function estimates obtained with the ClassifPI, Hybrid-
Now and Hybrid-LaterQ algorithms. Observe first that the estimations provided by the
Qknn algorithm are larger than those provided by the other algorithms, meaning that
Qknn outperforms the other algorithms. The second best algorithm is ClassifPI, while the
performance of Hybrid-Now is poor and clearly suffers from instability, due probably to the
discontinuity of the running rewards w.r.t. the control variable.

Finally, Figures @ provide the optimal decisions w.r.t. (P,C) at times 5, 10, 15,
20, 25, 29 estimated respectively by the Qknn, ClassifPI and Hybrid-Now algorithms. As
expected, one can observe on each plot that the optimal strategy is to inject gas when
the price is low, to sell gas when the price is high, and to make sure to have a volume of
gas greater than ¢y in the cave when the terminal time is getting closer to minimize the
terminal cost. Let us now comment on the implementation of algorithms:

14



Table 2: V(0, Py, Cy) estimates for different values of a;,, using the optimal strategy provided by
the ClassifPI | Hybrid-Now and Qknn algorithms, with a.,: = 0.25, Py = 4 and Cy = 4.

ain | Hybrid-Now ClassifPI Qknn o =0
0.06 | -0.99 -0.71 -0.66  -1.20
0.10 | -0.70 -0.38 -0.34  -1.20
0.20 | -0.21 0.01 0.12  -1.20
0.30 | -0.10 0.37 0.37  -1.20
0.40 | 0.10 0.51 0.69 -1.20

o Comments on the Qknn algorithm: Table [2] shows that once again, due to the low-
dimensionality of the problem, Qknn provides the best value function estimates. The
estimated optimal strategies, shown on Figure [6] are very good estimations of the the-
oretical ones. The three decision regions on Figure [f] are natural and easy to interpret:
basically it is optimal to sell when the price is high, and to buy when it is low. However,
a closer look reveals that the waiting region (where it is optimal to do nothing) has an
unusual triangular-based shape, which, while close to the theoretical one, can be expected
to be very hard to reproduce with the DNN-based algorithms proposed in [11].

o Comments on the ClassifPI algorithm: As shown on Figure [7] the ClassifPI algorithm
manages to provide stable estimates for the optimal controls at time n =0,..., N — 1.
However, the latter is not able to catch the particular triangular-based shape of the
waiting region, which explains why Qknn performs better.

o Comments on the Hybrid-Now algorithm: As shown on Figure |8 the Hybrid-Now algo-
rithm only manages to provide a weak estimation of the three different regions at time
n=0,...,N — 1. In particular, the regions suffer from instability.

We end this paragraph by providing some implementation details for the different algo-
rithms we tested.

o Implementation details for the Qknn algorithm: We recall that the Qknn algorithm is
based on the quantization and k-nearest neighbors methods to estimate the value func-
tions at time n = 0,..., N — 1. We take the k = 2 closest neighbors for the estimation
of the regression of the value functions, in order to insure continuity of the estimation
w.r.t. the pair (p,c) of state variables. The optimal control is computed at each point
of the grid using deterministic optimizers such as the Golden-section search or the Brent
algorithm, which are classical optimization routines available in many numerical libraries.

o Implementation details for the neural network-based algorithms: We use neural networks
with two hidden layers, ELU activation functiong]and 20+ 20 neurons . The output layer
contains 3 neurons with softmax activation function for the ClassifPI algorithm and no

exp(z) —1 ifz<0

#The Exponential Linear Unit (ELU) activation function is defined as z — { x>0
x if x
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Figure 5: Value functions estimates at time 0 w.r.t. a;,, when the agent follows the optimal
strategy estimated by the Qknn algorithm, by running a forward Monte Carlo with a sample of size
100,000 (blue). We also plotted the cost functional associated with the naive passive strategy o =
0 (Bench). See that for small values of a;,, such as 0.06, doing nothing is a reasonable strategy. In
this case, the naive strategy is a good benchmark to test the algorithms.

activation function for the Hybrid-Now one. We use a training set of size M = 60, 000 at
each time step. Note that given the expression of the terminal cost, the ReLLU activation
functions (Rectified Linear Units) could have been deemed a better choice to capture
the shape of the value functions, but our tests revealed that ELU activation functions
provide better results.

The main conclusion of our numerical comparisons on this energy storage example
is that ClassifPI, the DNN-based classification algorithm designed for stochastic control
problems with discrete control space, appears to be more accurate than the more general
Hybrid-Now. Nevertheless, ClassifPI was not able to capture the unusual triangle-based
shape of the optimal control as well as Qknn did.

3.4 Microgrid management

Finally, we consider a discrete-time model for power microgrid inspired by the continuous-
time models developed in [10] and [12]; see also [I]. The microgrid consists of a photovoltaic
(PV) power plant, a diesel generator and a battery energy storage system (BES), hence
using a mix of fuel and renewable energy sources. These generation units are decentralized,
i.e., installed at a rather small scale (a few kW power), and physically close to electricity
consumers. The PV produces electricity from solar panels with a generation pattern (Py),
depending on the weather conditions. The diesel generator has two modes: on and off.
Turning it on consumes fuel, and produces an amount of power «,. The BES can store
energy for later use but has limited capacity and power. The aim of the microgrid man-
agement is to find the optimal planning that meets the power demand, denoted by (Dy,)n,
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while minimizing the operational costs due to the diesel generator. We denote by
R, = D,— Pna

the residual demand of power: when R, > 0, one should provide power through diesel or
battery, and when R,, < 0, one can store the surplus power in the battery.

The optimal control problem over a fixed horizon N is formulated as follows. At any
time n = 0,..., N — 1, the microgrid manager decides the power production of the diesel
generator, either by turning it off: «,, = 0, or by turning it on, hence generating a power «,
valued in [Apin, Amaz] With 0 < Apin < Az < 00. There is a fixed cost k > 0 associated
with switching from the on/off mode to the other one off/on, and we denote by M the
mode valued in {0 = off, 1 = on} of the generator right before time n, i.e., My, ; = 14, 0.

When the diesel generator and renewable provide a surplus of power, the excess can
be stored into the battery (up to its limited capacity) for later use, and in case of power
insufficiency, the battery is discharged for satisfying the power demand. The input power
process Z for charging the battery is then given by

Iy = (an—Rn)s A (Craz — Cy),

where Cinq, is the maximum capacity of the battery with current charge C'*, while the
output power process O¢ for discharging the battery is given by

0% = (Ry—an)s ACY.

Here, we denote p; = max(p,0). Assuming for simplicity that the battery is fully efficient,
the capacity charge (C%),, of the BES, valued in [0, C,42], evolves according to the dynamics

w1 = Cy+I)—0;. (3.8)
The imbalance process defined by
Sy = Ry—ap+ZI7— 0y

n

represents how well we are doing for satisfying electricity supply: the ideal situation occurs
when S% = 0, i.e., perfect balance between demand and generation. When S5y > 0, this
means that demand is not satisfied, i.e., there is missing power in the microgrid, and when
So < 0, there is an excess of electricity. In order to ensure that there is no missing power,
we impose the following constraint on the admissible control:

SY <0, ie ap > Ry,—C2

but penalize the excess of electricity when S < 0 with a proportional cost Q— > 0.
We model the residual demand as a mean-reverting process:

Rop1 = R(1—0)+ oRn +éenta,
where (g,,), are i.i.d., R € R, and ¢ < 1. The goal of the microgrid manager is to find the
optimal (admissible) decision « that minimizes the functional cost

N-1
Ja) = E Zf(an)+H1{M3¢Mg+l}+Q_(Sg)— )

n=0
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where £(.) is the cost function for fuel consumption: ¢(0) = 0, and e.g. ¢(a) = Ka", with
K > 0, v > 0. This stochastic control problem fits into the 3-dimensional framework of
Section (1] (see also Remark with control o valued in A = {0} X [Amin, Amaz], X* =
(C*, M*, R), noise €41, starting from an initial value (C§, Mg, Ro) = (co,0,r9) on the
state space [0, Caz] X {0,1} x R, with dynamics function
Fl(z,a) :=c+ (a—1)+ AN (Craz —¢) — (r —a)y+ Ac
F(z,a,e) = Lao ,
R(1—0)+or+e

for x = (e,m,r) € [0,Chaz] X {0,1} X R, a € {0} X [Amin, Amaz), € € R, running cost
function

f(@ya) = la)+ Klp=1,_, + Q@ S(z,0a)-,
S(z,a) = r—a+(a—71)4 AN(Cpaz —¢) — (r—a); Ac,
zero terminal cost g = 0, and control constraint
An(@) = {a € {0} X [Amin, Ama] : S(z,0) <0}
_ {ae {0} X [Amin, Amaz] : 7 — ¢ < a}

Tests The state/space constraint is managed by introducing into the running cost a
penalty function (see Remark [1.1): f(x,a) < f(z,a) + L(x,a)

L(z,a) = Q*(T—c—a>+

with large Q™ > 0, much larger than Q. In practice we set Q™ = 1, 000.

The control space {0} U[Amin, Amax] 1S & mix between a discrete space and a continuous
space, which is challenging for algorithms with neural networks. We actually use a mixture
of classification and standard DNN for the control: (po(x;6),w(x;5)) valued in [0, 1] X
[Amin, Amaz|, where po(z;0) is the probability of turning off in state z, and 7w (z;3) is the
amount of power when turning on with probability 1 — po(x;6). In other words,

X B F(X,,0,en41) with probability po(Xy;0n)
T F(Xn, (X0 Ba)s€ns1)  with probability 1 — po(X,; 60
Our algorithm is then written as

e Forn=N-1,...,0, keep track of the optimal feedback control ax(.), k =n+1,..., N—1,
valued in {0} X [Apmin, Amaz|, and compute

(0.B) € argmaxE [po(X,:0) (£(X0.0) + Z PR, (X))
’ k=n+1

+ (1= po(Xs ) (£(Xo 7(X3 8)) + Y &)

k=n+1
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where X,, ~ 11, a training distribution, X0, =F(Xp,0,e041), X0 = F(XY, ak(Xk) Ekil)s
for k=n+1,...,N—1, while X}, = F(X,,, 7(Xp; 8), ens1), Xp 0y = F(Xp7 an(X7), 1),
fork:n+1,...,N—1.

e Update the optimal feedback control at time n:

. N 0 if po (a3 0n) >
an(x) B { 71—(:3;/@71) ipr(xSén) <

N[ N[

Numerical results The microgrid management problem, which can be seen as a problem
of dimension “almost” 2 as the M state component can only take two values 0 or 1, is
particularly easy to solve using Monte Carlo-based or quantization-based algorithms. In
[1], the authors propose several Monte Carlo-based methods to numerically solve a very
similar problem. We choose to use the Qknn algorithm here, since it also provides accurate
and fast results. We take the following parameters to test the Qknn algorithm:

N = 30 or 200, R = 0.1, o = 0.9, o = 0.2,
Cmin = 0, Cmax = 1lor3, Co = 0, K = 2

v = 2, k = 0.2, Q- = 10, Ry = 0.1,
Apin = 0.05, Apax = 10.

Note that there is no need to use a penalization method with the Qknn-algorithm to
constrain the control to stay in A, (x), where z is the state at time n, since we simply look
for the optimal control in A, (z), using a deterministic Brent or Golden Search algorithm.
Figure [10] shows the Qknn-estimated optimal decisions to take at times n = 1,10, 28 in the
cases where m = M, = 0 and m = M, = 1. If the generator is off at time n, i.e. m =
0, the blue curve separates the region where it is optimal to keep it off and the one where
it is optimal to generate power. If the generator is on at time n, i.e. m = 1, the blue
curve separates the region where it is optimal to turn it off and the one where it is optimal
to generate power. A colorscale is available on the right to inform how much power it is
optimal to generate in both cases. Observe that the optimal decisions are quite intuitive:
for example, if the demand is high and the battery is empty, then it is optimal to generate
a lot of energy. Moreover, it is optimal to turn the generator off if the demand is negative
or if the battery is charged enough to meet the demand. Note that, once again, the plots
in Figure are very similar to the ones obtained in [I]. For comparison, we also plot
in Figure the estimated optimal decisions at times n = 1,10, 28, using the NN-based
algorithm, with NV = 30 time steps.

Without tuning the parameters, we report in Table [3| the result for the estimation of
the value function with V=200 time steps, obtained by running 20 times a forward Monte
Carlo with 10 000 simulations using the Qknn-estimated optimal strategy. Figure [J] shows
two simulations of (C, M, R) controlled using the Qknn-estimated optimal strategy, where
N = 200 has been chosen. Observe in particular the natural behavior of the Qknn-decisions
which consists in turning the generator on when the demand cannot be met by the battery,
and turn it off when the demand is negative or when the battery is charged enough to meet
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Table 3: Qknn-estimations of the value function at time 0 and state (Cy = 0, My = 0, Ry = 0.1),
for N = 200.

Mean ‘ Standard Deviation
231.8 | 1.2

the demand. Note that the plots are very similar to the ones obtained in [I].

The microgrid management problem is very challenging for our algorithms because
the control space {0} U [amin, Gmax] 1S @ mix of discrete and continuous space, moreover the
choice of the optimal control is subject to constraints. As expected, our algorithms perform
well, but their results stay far from those obtained by the Qknn algorithm. Note that the
microgrid management problem is definitely not challenging in low dimension for algorithms
such as Qknn, so that we could provide easily very accurate results for the problem with
N=200 time steps.

4 Discussion and conclusion

Our proposed algorithms are well-designed and provide accurate estimates of optimal con-
trol and value function associated with various high-dimensional control problems. We also
tested their performances on low-dimensional problems, and concluded that they perform
well, but remain far from the Monte Carlo-based or quantization-based methods which have
proven their efficiency in low dimension, see e.g. [2] and [I]).

The presented algorithms suffer from a very high time-consumption due to the daunting
training task of 2(N — 1) neural networks to get approximation of the value functions and
optimal controls at times n = 0,..., N — 1. We suggest different ideas to overcome this
drawback: the first one is to reduce the number of neural networks to train by partially
or totally ignoring the programming dynamic principle (DPP). See [6] for a method where
the DPP is totally ignored. The use of one unique Recurrent Neural Networks (RNN) (in
the case where the DPP is totally ignored) or a few of them (in the other case) can also be
considered to learn the optimal controls, either all at the same time (first case), or group by
group in a backward way (second case). Another idea consists in learning faster the value
functions and optimal controls at times n = 0,..., N — 1 either by introducing Bayesian
methods such as Gaussian Processes (GPs) and learning optimal parameters for the latter
with neural networks methods, see [7] for more details in this direction; or by pre-training
the neural networks so that less data will be needed to train the neural networks. One idea
in that direction is to initialize at time n the weights and bias of value function estimator
V,, to the ones of Vj,.1, and rely on the continuity of the value function w.r.t. the time n
to make the training-task faster since it starts from a good guess.
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Figure 10: Estimated optimal decisions at time 1, 10 and 28, using the Qknn algorithm, with
N = 30 time steps. The region under the blue line is the one where it is optimal to turn the
generator off if m=1 (i.e. the generator was on at time n-1), or keep it off if m = 0 (i.e. the
generator was off at time n-1).
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Figure 11: Estimated optimal decisions at time 1, 10 and 28, using the NN-based algorithm, with
N = 30 time steps. The graphs on the left (resp. right) correspond to m = 0 (resp. m = 1). The
control intensity is divided into intervals of length 0.33, where the lightest region corresponds to

control taking values in [0, 0.33].
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