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Take-home message

George E.P. Box (1987)
“Essentially, all models are wrong, but some are useful”
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Large scale scenarios?

n large or d large

Both n large and d large: need to be more defined. . .

Large number of models: often a consequence of n or d large
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Parametric mixture model (reminder)

Parametric assumption:
pk(x1) = p(x1;αk)

thus

p(x1) = p(x1;θ) =
K∑

k=1

πkp(x1;αk)

Mixture parameter:

θ = (π,α) with α = (α1, . . . ,αK )

Model

It includes both the family p(·;αk) and the number of groups K

m = {p(x1; θ) : θ ∈ Θ}

The number of free continuous parameters is given by

ν = dim(Θ)
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Importance of model selection: example

Too simple model: bias

classe 1
classe 2
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A model is (usually) not the true (unknown) distribution

True distribution:
∼ p(·)

Model distribution:

(xi , zi )
i.i.d.∼ p(·, ·;θ)

Gap between both:
θ∗ = arg min

θ∈Θ
KL(p, pθ)

where
KL(p, pθ) = E ′ [ln p( ′)− ln p( ′;θ)]
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Properties of the observed-data log-likelihood estimation of θ

Principle: MLE
θ̂ = arg max

θ∈Θ
ℓ(θ; )

with

ℓ(θ; ) =
n∑

i=1

ln

(
K∑

k=1

πkp(xi ;αk)

)

Properties: we have

θ̂
a.s.−→ θ∗ and

√
n(θ̂ − θ∗)

d−→ Nν

(
0, J−1

KJ
−1)

where

J = −EX1∇
2 ln p(X1;θ

∗)

K = VarX1∇ ln p(X1; θ
∗)
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Density estimation (reminder)

Clustering has been recasted as a density estimation (mixture distribution)

Thus, it makes sense to select models from the density point of view
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Bias/variance trade-off

Gap between true and model distributions: (remind)

θ∗
m = arg inf

θ∈Θm

KL(p, pθm
)

MLE:
θ̂m = argmax

θ∈Θ
ℓ(θ; )

Fundamental decomposition of KL(p, p
θ̂m

):

KL(p, p
θ̂m

)

=
{
KL(p, pθ∗

m
)− KL(p, p)

}
+
{
KL(p, p

θ̂m
)− KL(p, pθ∗

m
)
}

=
{
biasm

}
+
{
variancem

}

=
{
error of approximation

}
+
{
error of estimation

}

Family of models in competition:

M = {m}
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Illustration of the variance effect

30 samples from a bivariate mixture with two components

π1 = π2 = 0.5, µ1 = (0, 0)′, µ2 = (2, 2)′, Σ1 = Σ2 = I

M = {spherical, general}

n m Ê KL(pθ , pθ̂m
)

40 spherical 0.0760
general 0.1929

200 spherical 0.0116
general 0.0245
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APPROACH 1
Expected deviance

Expected deviance between p and p
θ̂m

:

Dm = E [2KL(p, p
θ̂m

)
︸ ︷︷ ︸
deviance

]

Related ideal model:
m

∗ ∈ arg min
m∈M

Dm

Approximating Dm: noting ν∗m = tr[KJ−1],

Dm = 2{ln p( ) − ℓ(θ̂m;D)}+ 2ν∗m + Op(
√
n)
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AIC-like criteria: genesis

NIC criterion (Network Information Criterion): retain m̂ maximizing

NICm = ℓ(θ̂m; ) − ν∗m︸︷︷︸
difficult

True model case:

p = pθ∗
m

⇒ K = J ⇒ ν∗m = νm

AIC criterion (An Information Criterion): if p = pθ∗
m
, retain m̂ maximizing

AICm = ℓ(θ̂m; ) − νm︸︷︷︸
easy

AIC/NIC:
Both are asymptotic approximations of Dm

AIC can be viewed as a crude but simple approximation of NIC
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AIC-like criteria: alternative

Alternative AIC3: Taylor expansion leading to Dm is not valid for m = K and the
following heuristics is sometimes given

AIC3m = ℓ(θ̂; ) − 1.5ν.

Alternative non asymptotic approximation: Cross Validation criterion

CVm =
n∑

i=1

ln p(xi ; θ̂{i}),

where θ̂{i} is the MLE of θ obtained from excepted the ith individual

Summary for expected deviance according to n/d

n large: NIC/AIC/AIC3 criteria

d large: CV criterion (but choice of the split is here quite arbitrary)
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AIC-like criteria: inconsistency

Inconsistency: AIC/AIC3/NIC/CV retain too complex models with non-null
probability, even asymptotically (but normal: their goal is prediction!)

Theoretical illustration: m1 ⊆ m2, m1 the true one, ∆ν = ν2 − ν1 > 0,
∆ℓ = ℓ(θ̂2; )− ℓ(θ̂1; )

2(AIC2 − AIC1) + 2∆ν = 2∆ℓ
d−→ χ2

∆ν ⇒ p(χ2
∆ν > 2∆ν) > 0

Numerical illustration: 30 samples of size n = 200 from a bivariate spherical
Gaussian model of two well-separated components

π1 = π2 = 0.5, µ1 = (0, 0)′ and µ2 = (3.3, 0)′, Σ1 = Σ2 = I
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APPROACH 2
Deviance

Related ideal model:
m̂

∗ ∈ arg min
m∈M

2KL(p, p
θ̂m

)

Decomposition:

KL(p, p
θ̂m

) = −ℓ(θ̂m; ) + ln p( )

+
{
KL(p, p

θ̂m
) − KL(p, pθ∗

m
)
}
+
{
ℓ(θ̂m; ) − ℓ(θm; )

}

+
{
KL(p, pθ∗

m
) − KL(p, p)

}
−
{
ln p( ) − ℓ(θm; )

}

= −ℓ(θ̂m; ) + constant

+
{
variancem

}
+
{

̂variancem
}

+
{
biasm

}
−
{
b̂iasm

}

Approximation:

KL(p, p
θ̂m

) ≈ −ℓ(θ̂m; ) + constant

+2
{

̂variancem
}

+0
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Slope heuristics: principle

SH (Slope Heuristics) criterion: retain m maximizing

SHm = ℓ(θ̂m; ) − 2 ̂variancem

Estimating the penalty: optimal penalty1 is linear in νm

2 ̂variancem = κνm + cst.

and also

2 ̂variancem = 2
{
ℓ(θ̂m; ) − p( )

}

︸ ︷︷ ︸
≈κνm+mboxcst

+ 2
{
p( ) − ℓ(θm; )

}

︸ ︷︷ ︸
bias≈ cst for too complex models

thus, for complex enough models, ℓ(θ̂m; ) behaves linearly with νm and the
corresponding slope is κ/2

capushe
2 (CAlibrated Penalty Using Slope HEuristics): κ/2 can be estimated by

a linear regression of ℓ(θ̂m; ) on κ
2 νm

1It is provided by non-asymptotic concentration inequality theory.
2http://cran.r-project.org/web/packages/capushe/
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Slope heuristics: illustration

−2 −1 0 1 2 3 4 5

−2

−1

0

1

2

3

x1

x2

1 2 3 4 5−720

−700

−680

−660

−640

−620

−600

−580

−560

−540

−520

Number of components

M
ax

im
um

 lo
g−

lik
el

ih
oo

d

Summary for deviance according to n/d

SH is valid for both n large and also for d large (no asymptotics)
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APPROACH 3
Integrated likelihood

Posterior likelihood of m:

p(m| ) ∝ p( |m) p(m)︸ ︷︷ ︸
prior on m

Ideal model in a Bayesian context:

m̂
∗ ∈ arg max

m∈M
p(m| )

Integrated likelihood: if p(m) = cst, it is equivalent to maximize

p( |m) =

∫

Θ
p( ; θ,m) p(θ|m)︸ ︷︷ ︸

prior on θ

dθ

Difficulties:
Choose the prior p(θ|m)
Evaluate the integral
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BIC criterion: genesis

Laplace-Metropolis approximation: under standard regularity conditions, we have

ln p( |m) = ℓ(θ̂;D)−
ν

2
ln(n) + Op(1)

BIC criterion (Bayesian Information Criterion): retain m maximizing

BICm = ℓ(θ̂m; ) −
νm
2

ln(n)
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BIC criterion: consistency3

Consistency: BIC asymptotically selects

m
∗ = arg inf

m∈M
KL(p, pθ∗

m
)

Misspecified model collection: BIC retains the closest to p
Well-specified model collection: BIC retains the true one

Theoretical illustration of consistency: m1 ⊆ m2, m1 being the true model,
∆ν = ν2 − ν1, ∆ℓ = ℓ(θ̂2; )− ℓ(θ̂1; ), we have

2(BIC2 − BIC1) +∆ν ln(n) = 2∆ℓ
d−→ χ2

∆ν

With µ = ∆ν and σ2 = 2∆ν the mean and the variance of χ2
∆ν

p(χ2
∆ν > ∆ν ln(n)) ≤ p(|χ2

∆ν − µ| > ∆ν ln(n) − µ) ≤
σ2

(∆ν ln(n) − µ)2
n→∞−→ 0

by using the Chebyschev inequality. Thus, asymptotically, BIC will select m1

3Some theoretical difficulties for consistency in K .
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Large n: BIC behaviour (1/2)

The mixture density is wrong (as all models)

Mixtures allow to estimate any distribution by increasing the number of
components (high flexibility)
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Large n: BIC behaviour (2/2)

Since BIC is consistent, as n grows, it adds components for improving the true
density estimation

24/76



Motivating model selection Density-focused criteria Clustering-focused criteria Co-clustering specificity Model multiplicity To go further

Exact Bayesian for the latent class model (1/4)

Use the latent structure:

p( ) =
∑

z∈Z

p(x, z) =
∑

z∈Z

∫

Θ
p(x, z;θ)p(θ)dθ

Non informative conjugate Jeffreys priors: Dirichlet priors

p(π) = DK (
1
2 , . . . ,

1
2 ) and p(αj

k) = Dmj (
1
2 , . . . ,

1
2 ).

Exact expression of p(x, z): independence between priors

p(x, z) =
Γ(K2 )

Γ( 12 )
g

∏K
k=1 Γ(nk + 1

2 )

Γ(n + K
2 )

K∏

k=1

d∏

j=1

Γ(
mj

2 )

Γ( 12 )
mj

∏mj

h=1 Γ
(
njhk + 1

2

)

Γ(nk +
mj

2 )

where nk = #{i : zik = 1} and n
jh
k = #{i : zik = 1, xjhi = 1}
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Exact Bayesian for the latent class model (2/4)

Problem: summing over Z
Importance sampling solution: importance sampling function I (z) is a pdf on z

which can depend on :
∑

z∈Z I (z) = 1 and I (z) ≥ 0

p̂( ) =
1

S

S∑

s=1

p( , z(s))

I (z(s))
with z

(1), . . . , z(S)
i.i.d.∼ I (z)

is a consistent and unbiased estimate with variation coefficient

cv [p̂( )] =

√
Var[p̂( )]

E[p̂( )]
=

√√√√√ 1

S

⎛

⎝
∑

z∈Z

p2(z| )

I (z)
− 1

⎞

⎠

Ideal importance sampling: this one minimizing the variance

I∗(z) = p(z| ) =

∫

Θ
p(z| ; θ)p(θ| )dθ
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Exact Bayesian for the latent class model (3/4)

Estimate of ideal importance sampling:

Î∗(z) = I (z) =
1

R#P(zl )

R∑

r=1

∑

ρ∈P(zl )

p(z| ; ρ(θ(r))),

where
the set P(zl ) denotes all label permutations of θ on the set {1, . . . ,K}\{k : zik = zlik}

of label permutations not already fixed by z
l

P(zl ) provides an importance density which is labelling invariant, like the ideal one

{θ(r)} are chosen to be independent realisations of p(θ| )
in practice, a (holed) Gibbs sampler can be used:

π|z ∼ DK (
1
2 + n1, . . . , 1

2 + nK )

α
j
k |x, z ∼ Dmj

( 1
2 + n

j1
k , . . . , 1

2 + n
jmj
k )

zi |xi , z
l
i ;θ ∼ MK (ti1(θ), . . . , tiK (θ))

ILbayes criterion:
resulting criterion with depends on both R and S
practical difficulties when K > 6 (combinatorics)
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Exact Bayesian for the latent class model (4/4)

20 samples, d = 6, m1 = . . . = m4 = 3 and m5 = m6 = 4, K = 4

π = (0.25 0.25 0.25 0.25)′ and α such that 11% (low) error rate
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K = 4, overlapping = 11%

 

 

Class 1
Class 2
Class 3
Class 4

n 320 1 600 3 200
BIC 3.0 3.5 4.0
ILbayes 3.4 4.0 4.0
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A seabird dataset

Data: n = 153 puffins divided into three subspecies described by the d = 5
plumage and external morphological characters

levels
variables 1 2 3 4 5
gender male female
eyebrowsa none . . . . . . . . . . . very pronounced
collara none . . . . . . . . . . . . . . . . . . . . . continuous
sub-caudal white black black & white black & WHITE BLACK & white
bordera none . . . many

a using a paper pattern
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Subalaris
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Dichrous (estimated)
Lherminieri (estimated)
Subalaris (estimated)

K̂
criteria 1 2 3 4 5 6
BIC -714.03 -711.14 -729.97 -754.58 -784.49 -814.61
ILbayes -712.08 -693.41 -692.88 -694.01 -695.21 -696.00

29/76



Motivating model selection Density-focused criteria Clustering-focused criteria Co-clustering specificity Model multiplicity To go further

Summary for integrated likelihood according to n/d

n large: BIC criterion

d large: ILbayes criterion
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Clustering (reminder)
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Use the clustering goal to build specific (and more efficient) model selection criteria!
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Bias/variance trade-off

Partition error rate: err(z1, z2) ≥ 0 a distance-like between two partitions z1, z2

Gap between true and model partition:

θ∗
m = arg min

θ∈Θm

err(z, z(θ))

MLE:
θ̂m = argmax

θ∈Θ
ℓ(θ; )

Fundamental decomposition of err(z, z(θ̂m):

err(z, z(θ̂m))

=
{
err(z, z(θ∗

m))− err(z, z)
}
+
{
err(z, z(θ̂m))− err(z, z(θ∗

m))
}

=
{
biasm

}
+
{
variancem

}

Caution: not necessarily the same optimal model as density estimation!
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Illustration of the variance effect

30 samples from a bivariate mixture with two components

π1 = π2 = 0.5, µ1 = (0, 0)′, µ2 = (2, 2)′, Σ1 = Σ2 = I

M = {spherical, general}

n m err(z, ẑm)
40 spherical 0.0967

general 0.1100
200 spherical 0.0840

general 0.0872
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Heuristics entropy-based criteria

A fundamental decomposition of ℓ(θ; x): for any “fuzzy partition” c = {cik}

ℓ(θ; x) =
n∑

i=1

K∑

k=1

cik ln{πkp(xi ;αk)} −
n∑

i=1

K∑

k=1

cik ln tik (θ)

= ℓ(θ; x, c) + ξ(θ; c)

= complete-data log-likelihood + entropy

NEC criterion (Normalized Entropy Criterion): retain m minimizing

NECK =

⎧
⎨

⎩

ξ(θ̂K ; t(θ̂K ))

ℓ(θ̂K ; x)− ℓ(θ̂1; x)
if K > 1

1 if K = 1

CL criterion (Completed Likelihood): retain m maximizing

CL = ℓ(θ̂; x, ẑ) = ℓ(θ̂; x)
︸ ︷︷ ︸

model adequacy

− ξ(θ̂; ẑ)
︸ ︷︷ ︸

partition evidence

Behaviour: not completely satisfactory but something happens. . .
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The ICL criterion: genesis

Revisiting the fundamental decomposition: if known, retain m maximizing

ln p(x, z|m)
︸ ︷︷ ︸

all data evidence

= ln p(x|m)
︸ ︷︷ ︸

data x evidence

+ ln p(z|x,m)
︸ ︷︷ ︸

partition z evidence

Thus models leading to overlapping groups are more penalized (low z evidence)

ICL criterion (Integrated Classification Likelihood): replace z by ẑ

ICL = ln p(x, ẑ|m)

BIC-like approximation of ICL:

ln p(x, z|m) = ln p(x, z|m; θ̂x,z) −
ν

2
ln n + Op(1)

In case of the right model m: θ̂x,z
a.s.→ θ∗ and θ̂x

a.s.→ θ∗. Thus, for n large

enough, θ̂x,z ≈ θ̂x. Then, we take ẑ = MAP(θ̂x) (or also ẑ = t(θ̂x)). It gives

ICLbic = ln p(x, ẑ; θ̂x)−
ν

2
ln n

= BIC− ξ(θ̂x; ẑ)

= CL−
ν

2
ln n
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The ICL criterion: robustness to model misspecification

A bivariate mixture of a uniform and a Gaussian cluster:
non-Gaussian component: π1 = 0.5, p1(x1) = 0.25 I[−1,1](x

1) I[−1,1](x
2)

Gaussian component: π2 = 0.5, µ2 = (3.3, 0)′, Σ2 = I

50 simulated data sets of size n = 200
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K 1 2 3 4 5
BIC . 60 . 32 8

ICLbic . 100 . . .
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The ICL criterion: consistency?

Assumption: true model with two groups and parameter θ∗
2

Theoretical result:
Preliminaries: δn = n(θ∗

2 − θ∗p
2 )′J(θ∗

2 )(θ
∗

2 − θ∗p
2 ), J(θ∗

2 ) the Fisher matrix for a data
unit calculated with the true parameter θ2 and θ∗p

2 its projected value on the parameter

subspace associated to the one component case, µn = E[χ2
∆ν

(δn)] = ∆ν + δn ,
σ2
n = Var[χ2

∆ν
(δn)] = 2(∆ν + δn)

Asymptotically: by Chebyshev inequality, with µn − ∆ν ln n − 2n ln 2 > 0

p(choose wrong model) = p(ICLbic2 < ICLbic1) ≤
σ2
n

(µn − ∆ν ln n − 2n ln 2)2

Thus it goes towards 0 for well-separated groups

Experimental result: 100 samples from a univariate Gaussian mixture

π1 = π2, µ1 = 0, µ2 = ∆µ, σ2
1 = σ2

2 = 1

∆µ 2.9 3.0 3.1 3.2 3.3
n BIC ICL BIC ICL BIC ICL BIC ICL BIC ICL

100 94 23 96 31 97 44 95 45 97 60
400 100 9 100 21 100 48 100 70 100 85
700 100 8 100 15 100 39 100 72 100 96
1 000 100 6 100 16 100 56 100 75 100 91
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The ICL criterion: a new contrast point of view

The (fuzzy) complete-data log-likelihood contrast: replace the log-likelihood

ℓ(θ; x, t(θ)) = ℓ(θ; x)− ξ(θ; t(θ))

New ICLbic-like criterion:

˜ICLbic = ℓ(θ̃; x, t(θ̃)) −
ν

2
ln n,

where
θ̃ = argmax

θ∈Θ
ℓ(θ; x, t(θ)).

Properties:
˜ICLbic consistent (only) from this new contrast point of view
˜ICLbic ≈ ICLbic so prefer ICLbic for simplicity

Variants: slope heuristics penalization
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The ICL criterion: exact value for the latent class model
ICL expression: non-informative conjuguate priors

ICL = ln p(x, ẑ) =

K∑

k=1

d∑

j=1

{ mj∑

h=1

ln Γ
(
n̂
jh
k + 1

2

)
− ln Γ(n̂k +

mj

2 )

}
− ln Γ(n + K

2 ) + ln Γ(K2 )

+K

d∑

j=1

{
ln Γ(

mj

2 )−mj ln Γ(
1
2 )
}
+

K∑

k=1

ln Γ(n̂k + 1
2 )− K ln Γ( 12 )

where n̂k = #{i : ẑik = 1} and n̂jhk = #{i : ẑik = 1, xjhi = 1}
Behaviour: six variables (d = 6) with numbers of levels m1 = . . . = m4 = 3 and
m5 = m6 = 4 and a two component mixture (K = 2) with unbalanced mixing
proportions π = (0.3 0.7)′
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g = 2, overlapping = 30%

 

 

Class 1
Class 2

n 320 1 600 3 200
Overlap (%) 5 10 20 5 10 20 5 10 20
ICLbic 2.0 1.5 1.0 2.0 2.0 1.0 2.0 2.0 1.0
ICL 2.0 1.9 1.0 2.0 2.0 1.0 2.0 2.0 1.0
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A seabird dataset (continuation)

Data: n = 153 puffins divided into three subspecies described by the d = 5
plumage and external morphological characters

levels
variables 1 2 3 4 5
gender male female
eyebrowsa none . . . . . . . . . . . very pronounced
collara none . . . . . . . . . . . . . . . . . . . . . continuous
sub-caudal white black black & white black & WHITE BLACK & white
bordera none . . . many

a using a paper pattern
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Dichrous (estimated)
Lherminieri (estimated)
Subalaris (estimated)

K̂
criteria 1 2 3 4 5 6
ICLbic -714.03 -727.33 -741.37 -774.01 -802.47 -830.83
ICL -712.08 -712.57 -711.81 -727.44 -737.46 -741.79

41/76



Motivating model selection Density-focused criteria Clustering-focused criteria Co-clustering specificity Model multiplicity To go further

Summary for integrated classification likelihood according to n/d

n large: ICLbic criterion

d large: ICL criterion
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Outline

1 Motivating model selection

2 Density-focused criteria

3 Clustering-focused criteria

4 Co-clustering specificity

5 Model multiplicity

6 To go further
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Co-clustering (reminder)

[Govaert, 2011]

n = 500, d = 10, K = 6, L = 4
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Models in competition

m = (K , L) typically, but not restricted to
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BIC criterion: two difficulties

Difficult 1: which BIC definition because of the double asymptotic on n and d?

Difficult 2: the observed log-likelihood value is intractable

ℓ(θ; ) =
∑

( , )∈Z×W

p( , , ;θ)

Could be estimated by harmonic mean but time consuming and high variance
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ICL criterion: overcome both difficulties

ICL uses complete likelihood thus no intractability

ICL = ln p(x , ẑ, ŵ) = ln p(x|ẑ, ŵ) + ln p(ẑ) + ln p(ŵ)

Multinomial case (m levels): [Keribin et al., 2014]

Derive an exact (non-asymptotic) ICL version
Deduce an asymptotic approximation of ICL

ICLbic = ℓc (θ̂; x, ẑ, ŵ) −
K − 1

2
ln(n) −

L − 1

2
ln(d) −

KL(m − 1)

2
ln(nd)

We can make a conjecture for the general case

ICLbic = ℓc(θ̂; x, ẑ, ŵ)−
K − 1

2
ln(n) −

L− 1

2
ln(d) −

KLναkl

2
ln(nd)
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ICL criterion: consistency

We can obtain a BIC expression from ICLbic

BIC = ICLbic− ln p(ẑ, ŵ|x; θ̂)

= ℓ(θ̂; x)
︸ ︷︷ ︸
difficult

−
K − 1

2
ln(n) −

L− 1

2
ln(d) −

KL(m − 1)

2
ln(nd)

[Brault et al., 2017] establish that asymptotically on n and d

“ℓ(θ̂; x) = ℓc(θ̂; x, ˆ, ˆ )”

Thus, since BIC is consistent, ICL is also consistent

Again the HD clustering blessing is here!
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Strategy to smart browsing of (K , L)

[Robert, 2017] Algorithm Bi-KM1
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MASSICCC platform for the BLOCKCLUSTER software

https://massiccc.lille.inria.fr/
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MASSICCC?

A high quality and easy to use web platform
where are transfered mature research clustering (and more) software

towards (non academic) professionals
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Here is the computer you need!

52/76



Motivating model selection Density-focused criteria Clustering-focused criteria Co-clustering specificity Model multiplicity To go further

Running BlockCluster
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Running BlockCluster
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Running BlockCluster
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Running BlockCluster
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Illustration: discuss the dimension (1/2)

SPAM E-mail Database4

n = 4601 e-mails composed by 1813 “spams” and 2788 “good e-mails”

d = 48 + 6 = 54 continuous descriptors5

48 percentages that a given word appears in an e-mail (“make”, “you’. . . )
6 percentages that a given char appears in an e-mail (“;”, “$”. . . )

Transformation of continuous descriptors into binary descriptors

xij =

{
1 if word/char j appears in e-mail i
0 otherwise

4https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/
5There are 3 other continuous descriptors we do not use
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Illustration: discuss the dimension (2/2)

Perform co-clustering with K = 2 and L = 5: ICLbic=-92,682, err=0.1984

Legend
0
1

Original Data Co−Clustered Data

Perform clustering6 with K = 2: ICLbic=-89,433, err=0.1837

Thus use preferably co-clustering in the HD setting, otherwise bias is a drawback!

6Equivalent to co-clustering with L = 54
58/76
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Outline

1 Motivating model selection

2 Density-focused criteria

3 Clustering-focused criteria

4 Co-clustering specificity

5 Model multiplicity

6 To go further
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Gaussian “variable selection”: reminder

Definition
[Raftery and Dean, 06], [Maugis et al., 09a], [Maugis et al., 09b]

p(x1;θ) =

{
K∑

k=1

πkp(x
S
1 ;µk ,Σk)

}

︸ ︷︷ ︸
clustering variables

×
{
p(xU1 ; a+ x

R
1 b,C)

}

︸ ︷︷ ︸
redundant variables

×
{
p(xW1 ; u,V)

}

︸ ︷︷ ︸
independent variables

where

all parts are Gaussians

S: set of variables useful for clustering

U: set of redondant clustering variables, expressed with R ⊆ S

W : set of variables independent of clustering

Trick
Variable selection is recasted as a particular variable role
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Gaussian “variable selection”: model selection

Model selection

Models in competition: m = (S,R,U,W ,K) → combinatorics

Use a backward stepwise algorithm guided by a model selection criterion: d ≈ 30

Use alternatively a lasso-like procedure for ranking quickly different sets of
clustering related and clustering independent variables [Sedki et al., 14]

critλ,ρ = ℓ(θ; x̄)− λ
K∑

k=1

d∑

j=1

|µkj |− ρ
K∑

k=1

d∑

(j,j′),j≠j′

|(Σ−1
k )jj′ |

where θ full Gaussian parameters, x̄ is x centered and (λ, ρ) are on a grid
A variable j is considered independent of clustering if µ̂kj (λ, ρ) = 0 for all k

Classical criteria are available
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Gaussian “variable selection” (cruder version): reminder

Definition
[Pan and Shen, 07], [Zhou et al., 09], [Meynet, 10]

p(x1θ) =

{
K∑

k=1

πkp(x
Jr
1 ;µk , σ

2
I)

}

︸ ︷︷ ︸
relevant variables

×
{
p(xJa1 ;µ,σ2

I)
}

︸ ︷︷ ︸
active variables

×
{
p(xJi1 ; 0,σ2

I)
}

︸ ︷︷ ︸
irrelevant variables

where

all parts are Gaussians

{Jr , Ja, Ji} is a partition of {1, . . . , d}

p(xJi1 ; 0,σ2I): “variance killer” (crude assumption)
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Gaussian “variable selection” (cruder version): model selection

models in competition: m = (Jr , Ja, Ji ,K) → combinatorics

Use a two step lasso-like procedure for ranking quickly different sets (Jr , Ja, Ji ),
for all regularization parameters values on a given grid

Use the slope heuristics criterion with two different penalties of ℓ(θ̂m; x):
linear penalty (moderate number of models): penalin = κν
logarithmic penalty (huge number of models): penalog = κ1ν(1 + κ2 ln(νmax/ν))
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Gaussian “variable selection” (cruder version): illustration (1/2)

Illustration
[Meynet, 10]

n = 200, d = 1000, K = 2, 20 samples

π1 = 0.85, π2 = 0.15, µ1 = 0,µ2 = ( 1.5, . . . , 1.5︸ ︷︷ ︸
Jr=Ja={1,...,50}

, 0)

criterion mean(true relevant,false relevant,false active) #(K̂ = 1, K̂ = 2, K̂ = 3)

AIC (50,15,68) (0,14,6)
BIC (50,4,22) (0,20,0)
SHlin (50,1,4) (0,20,0)
SHlog (49,0,1) (0,20,0)

Logarithmic penalty occurs

BIC overestimates: too crude approximation O(1)
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Gaussian “variable selection” (cruder version): illustration (2/2)
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Changing the data units

Principle of data units transformation u:

u : X = Xid −→ Xu

x = xid = id(x) .−→ xu = u(x)

u is a bijective mapping to preserve the whole data set information quantity

We denote by u−1 the reciprocal of u, so u−1 ◦ u = id

Thus, id is only a particular unit u

Often a meaningful restriction7 on u: it proceeds lines by lines and rows by rows

u(x) = (u(x1), . . . , u(xn)) with u(xi ) = (u1(xi1), . . . , ud (xid))

Advantage to respect the variable definition, transforming only its unit
u(xi ) means that u applied to the data set xi , restricted to the single individual i
uj corresponds to the specific (bijective) transformation unit associated to variable j

7Possibility to relax this restriction, including for instance linear transformations involved in PCA (principal
component analysis). But the variable definition is no longer respected.
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Revisiting units as a modelling component

Explicitly exhibiting the “canonical” unit id in the model

pm = {· ∈ X .→ p(·; θ) : θ ∈ Θm} = {· ∈ Xid .→ p(·; θ) : θ ∈ Θm} = pidm

Thus the variable space and the probability measure are embedded

As the standard probability theory: a couple (variable space,probability measure)!

Changing id into u, while preserving m, is expected to produce a new modelling

pum = {· ∈ Xu .→ p(·; θ) : θ ∈ Θm}.

A model should be systematically defined by a couple (u,m), denoted by pum
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Co-clustering: congressional Voting Records Data Set9

[Biernacki & Lourme, 2018]

Votes for each of the n = 435 U.S. House of Representatives Congressmen

Two classes: 267 democrats, 168 republicans

d = 16 votes with m = 3 modalities [Schlimmer, 1987]8:
“yea”: voted for, paired for, and announced for
“nay”: voted against, paired against, and announced against
“?”: voted present, voted present to avoid conflict of interest, and did not vote or
otherwise make a position known

1. handicapped-infants 9. mx-missile
2. water-project-cost-sharing 10. immigration
3. adoption-of-the-budget-resolution 11. synfuels-corporation-cutback
4. physician-fee-freeze 12. education-spending
5. el-salvador-aid 13. superfund-right-to-sue
6. religious-groups-in-schools 14. crime
7. anti-satellite-test-ban 15. duty-free-exports
8. aid-to-nicaraguan-contras 16. export-administration-act-south-africa

8Schlimmer, J. C. (1987). Concept acquisition through representational adjustment. Doctoral dissertation,
Department of Information and Computer Science, University of California, Irvine, CA.

9http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
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Co-clustering: allowed user meaningful recodings

“yea” and “nea” are arbitrarily coded (question dependent), not “?”

Example:

3. adoption-of-the-budget-resolution = “yes” ⇔ 3. rejection-of-the-budget-resolution = “no”

However, “?” is not question dependent

Thus, two different units considered for variable j ∈ {1, . . . , 16}
idj :

x
j
i =

⎧
⎨

⎩

(1, 0, 0) if voted “yea” to vote j by congressman i
(0, 1, 0) if voted “nay” to vote j by congressman i
(0, 0, 1) if voted “?” to vote j by congressman i

u = (u1, . . . , ud ): reverse the coding only for “yea” and “nea”

uj (x
j
i ) =

⎧
⎨

⎩

(0, 1, 0) if voted “yea” to vote j by congressman i
(1, 0, 0) if voted “nay” to vote j by congressman i
(0, 0, 1) if voted “?” to vote j by congressman i
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Co-clustering: select the whole coding u = (u1, . . . ,ud )

Fix gl = 2 (two individual classes) and gr = 2 (two variable classes)

Use co-clustering in a clustering aim: just interested in political party

Use a comprehensive algorithm to find the best u by ICLbic (216 = 65536 cases)

Original Data Co−Clustered Data

1.
0

1.
5

2.
0

2.
5

3.
0Scale Original Data Co−Clustered Data

1.
0

1.
5

2.
0

2.
5

3.
0Scale

initial unit id best unit u

ICLbic=5916.13 ICLbic=5458.156
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Co-clustering: SPAM E-mail Database11

[Biernacki & Lourme, 2018]

n = 4601 e-mails composed by 1813 “spams” and 2788 “good e-mails”

d = 48 + 6 = 54 continuous descriptors10

48 percentages that a given word appears in an e-mail (“make”, “you’. . . )
6 percentages that a given char appears in an e-mail (“;”, “$”. . . )

Transformation of continuous descriptors into binary descriptors

x
j
i =

{
1 if word/char j appears in e-mail i
0 otherwise

Two different units considered for variable j ∈ {1, . . . , 54}

idj : see the previous coding

uj (·) = 1 − (·): reverse the coding

uj (x
j
i ) =

{

0 if word/char j appears in e-mail i
1 otherwise

10There are 3 other continuous descriptors we do not use
11https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/
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Co-clustering: select the whole coding u = (u1, . . . ,ud )

Fix gl = 2 (two individual classes) and gr = 5 (five variable classes)

This time, too many u to be extensively browsed: 254 possibilities

Strategy to reduce the complexity

“the more two variables have similar values (globally on lines), the more a similar
optimal unit transformation could be expected for both”.
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Co-clustering: a two stage strategy

1 Perform a clustering of the variables (thus of the columns only, no clusters in
line): 14 clusters by ICLbic

2 Exhaustive browse of unit permutation clusterwise: 214 = 16384 models
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Co-clustering: result

Legend
0
1

Original Data Co−Clustered Data

Legend
0
1

Original Data Co−Clustered Data

initial unit id best unit u

ICLbic=92682.54 ICLbic=92524.57
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Outline

1 Motivating model selection

2 Density-focused criteria

3 Clustering-focused criteria

4 Co-clustering specificity

5 Model multiplicity

6 To go further
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Questions to be (carefully) addressed

Criteria validity far from asymptotics (d large)

Criteria validity in case of model multiplicity

Strategies to browse huge model collections
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