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Preamble

What is this course?
Understand key locks in clustering due to large data scenarios

Describe some clustering methods to overcome such locks

What is not this course?

Not an exhaustive list of clustering methods (and related bibliography)

Do not make specialists of clustering methods

This preamble is valid for both lessons:

1 Model-based clustering and co-clustering in high-dimensional scenarios

2 Model selection theory and considerations in large scale scenarios
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Lectures

General overview of data mining (contain some pretreatments before clustering):
Gérard Govaert et al. (2009). Data Analysis. Wiley-ISTE, ISBN: 978-1-848-21098-1.
https://www.wiley.com/en-fr/Data+Analysis-p-9781848210981

More advanced material on clustering:

Christian Hennig, Marina Meila, Fionn Murtagh, Roberto Rocci (2015). Handbook of Cluster Analysis. Chapman and
Hall/CRC, ISBN 9781466551886, Series: Chapman & Hall/CRC Handbooks of Modern Statistical Methods.

https://www.crcpress.com/Handbook-of-Cluster-Analysis/Hennig-Meila-Murtagh-Rocci/p/book/9781466551886
Christophe Biernacki. Mixture models. J-J. Droesbeke; G. Saporta; C. Thomas-Agnan. Choix de modèles et agrégation,
Technip, 2017.

https://hal.inria.fr/hal-01252671/document
Christophe Biernacki, Cathy Maugis. High-dimensional clustering. J-J. Droesbeke; G. Saporta; C. Thomas-Agnan. Choix
de modèles et agrégation, Technip, 2017.

https://hal.archives-ouvertes.fr/hal-01252673v2/document

Advanced material on co-clustering:
Gérard Govaert, Mohamed Nadif (2013). Co-Clustering: Models, Algorithms and Applications. Wiley-ISTE, ISBN-13:
978-1848214736.
https://www.wiley.com/en-fr/Co+Clustering:+Models,+Algorithms+and+Applications-p-9781848214736

Basic to more advanced R book: Pierre-Andre Cornillon, Arnaud Guyader, Francois Husson, Nicolas Jegou, Julie Josse, Maela
Kloareg, Eric Matzner-Lober, Laurent Rouvière (2012). R for Statistics. Chapman and Hall/CRC, ISBN 9781439881453.
https://www.crcpress.com/R-for-Statistics/
Cornillon-Guyader-Husson-Jegou-Josse-Kloareg-Matzner-Lober-Rouviere/p/book/9781439881453
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Keep-home message

High dimensional clustering is simple . . .
. . . in case of (essentially) relevant clustering variables
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Outline

1 High dimensional data

2 Model-based clustering

3 Curse or blessing?

4 Non-canonical models

5 Canonical models

6 Co-clustering for very HD

7 To go further
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Everything begins from data!
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Genesis of “Big Data”

The Big Data phenomenon mainly originates in the increase of computer and digital
resources at an ever lower cost

Storage cost per MB: 700$ in 1981, 1$ in 1994, 0.01$ in 2013
→ price divided by 70,000 in thirty years

Storage capacity of HDDs: ≈1.02 Go in 1982, ≈8 To today
→ capacity multiplied by 8,000 over the same period

Computeur processing speed: 1 gigaFLOPS1 in 1985, 33 petaFLOPS in 2013
→ speed multiplied by 33 million

1FLOP = FLoating-point Operations Per Second
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Digital flow

Digital in 1986: 1% of the stored information, 0.02 Eo2

Digital in 2007: 94% of the stored information, 280 Eo (multiplied by 14,000)

2Exabyte
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Societal phenomenon

All human activities are impacted by data accumulation

Trade and business: corporate reporting system , banks, commercial transactions,
reservation systems. . .

Governments and organizations: laws, regulations, standardizations ,
infrastructure. . .

Entertainment: music, video, games, social networks. . .

Sciences: astronomy, physics and energy, genome,. . .

Health: medical record databases in the social security system. . .

Environment: climate, sustainable development , pollution, power. . .

Humanities and Social Sciences: digitization of knowledge , literature, history ,
art, architecture, archaeological data. . .
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Data sets structure
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Large data sets (n)3

3S. Alelyani, J. Tang and H. Liu (2013). Feature Selection for Clustering: A Review. Data Clustering:
Algorithms and Applications, 29
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High-dimensional/HD data (d)4

4S. Alelyani, J. Tang and H. Liu (2013). Feature Selection for Clustering: A Review. Data Clustering:
Algorithms and Applications, 29
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More data for what?

Opportunity to improve accuracy of traditional questionings

Here is just illustrated the effect of n

In a later section will be illustrated the effect of d (be patient)
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HD data: domain dependency definition

Marketing: d ∼ 102

microarray gene expression: d ∼ 102–104

SNP data: d ∼ 106

Curves: depends on discretization but can be very high

Text mining

. . .
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HD data: Curve “cookies” example

The Kneading dataset comes from Danone Vitapole Paris Research Center and concerns the

quality of cookies and the relationship with the flour kneading process [Lévéder et al, 04]. There

are 115 different flours for which the dough resistance is measured during the kneading process for

480 seconds. One obtains 115 kneading curves observed at 241 equispaced instants of time in the

interval [0; 480]. The 115 flours produce cookies of different quality: 50 of them have produced

cookies of good quality, 25 produced medium quality and 40 low quality.
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HD data: Medline example

n = 2431 documents described by the frequency of d = 9275 unique words
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HD data: towards a theoretical definition (1/2)

An attempt in the non-parametric case

Dataset x = (x1, . . . , xn), xi described by d variables, where n = o
(
ed
)

Justifications:

To approximate within error ϵ a (Lipschitz) function of d variables, about (1/ϵ)d

evaluations on a grid are required [Bellman, 61]

Approximate a Gaussian distribution with fixed Gaussian kernels and with
approximate error of about 10% [Silverman, 86]

log10 n(d) ≈ 0.6(d − 0.25)

For instance, n(10) ≈ 7.105
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HD data: towards a theoretical definition (2/2)

An attempt in the parametric case

Dataset x = (x1, . . . , xn), xi described by d variables and a model m with ν
parameters, where n = o(g(ν)), with g a given function

Justification:

We consider the heteroscedastic Gaussian mixture with of true parameter θ∗ with
K∗ components. We note θ̂ the Gaussian MLE with K∗ components. We have g
linear from the following result [Michel, 08]: it exists constants κ, A and C such
that

Ex[Hellinger2(pθ∗ , pθ̂
K̂
)] ≤ C

[

κ
ν

n

{

2A ln d + 1− ln
(

1 ∧
[ν

n
A ln d

])}

+
1

n

]

.

But ν can be high since ν ∼ d2/2, combined with potentially large constants.
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HD data: consequences on features

Since it is now easy to collect many features, it favors also

data variety and/or mixed

data missing

data uncertainty (or interval data)

Mixed, missing, uncertain

? 0.5 ? 5
0.3 0.1 green 3
0.3 0.6 {red,green} 3
0.9 [0.25 0.45] red ?
↓ ↓ ↓ ↓

continuous continuous categorical integer
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HD data: full mixed/missing
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Coding for data

A set of n individuals
= { 1, . . . , n}

with i a set of (possibly non-scalar) d variables

i = { i1, . . . , id}

where ij ∈ Xj

A n-uplet of individuals
= ( 1, . . . , n)

with i a d-uplet of (possibly non-scalar) variables

i = ( i1, . . . , id ) ∈ X

where X = X1 × . . . . . .Xd

We will pass from a coding to another, depending of the practical utility
(useful for some calculus to have matrices or vectors for instance)
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1 High dimensional data

2 Model-based clustering

3 Curse or blessing?

4 Non-canonical models

5 Canonical models

6 Co-clustering for very HD

7 To go further
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Clustering?

Detect hidden structures in data sets
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Clustering everywhere5

5Rexer Analytics’s Annual Data Miner Survey is the largest survey of data mining, data science, and analytics
professionals in the industry (survey of 2011)
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Notations

Data: n individuals: x = {x1, . . . , xn} = {xO , xM} in a space X of dimension d

Observed individuals O

Missing individuals M

Aim: estimation of the partition z and the number of clusters K
Partition in K clusters G1, . . . ,GK : z = {z1, . . . , zn}, zi = (zi1, . . . , ziK )′

xi ∈ Gk ⇔ zih = I{h=k}

Complex: mixed – missing – uncertain – n large – d large

Mixed, missing, uncertain

Individuals x Partition z ⇔ Group
? 0.5 red 5 ? ? ? ⇔ ???
0.3 0.1 green 3 ? ? ? ⇔ ???
0.3 0.6 {red,green} 3 ? ? ? ⇔ ???
0.9 [0.25 0.45] red ? ? ? ? ⇔ ???
↓ ↓ ↓ ↓

continuous continuous categorical integer
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Popularity of K -means and hierarchical clustering

Even K -means was first proposed over 50 years ago, it is still one of the most widely
used algorithms for clustering for several reasons: ease of implementation, simplicity,
efficiency, empirical success. . .
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K -means: within-cluster inertia criterion

Select the partition z minimizing the criterion

WM(z) =
n∑

i=1

K∑

k=1

zik∥xi − x̄k∥2M

Look for compact clusters (indiv. of the same cluster are close from each other )

∥ · ∥M is the Euclidian distance with metric M in Rd

x̄k is the mean (or center) of the kth cluster

x̄k =
1

nk

n∑

i=1

zikxi

and nk =
∑n

k=1 zik indicates the number of individuals in cluster k
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K -means: limitations
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X2 clustering−→

ẑ = { 1̂, . . . , n̂}, K̂ clusters
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−2
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2
4

X1

X2
Clustering is an ill-posed problem
What is the precise definition of a cluster?
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Reformulate K -means: the hidden Gaussian assumption

WI(z) =
n∑

i=1

K∑

k=1

zik∥ i − µk∥2I

= −2
n∑

i=1

K∑

k=1

zik ln

⎡

⎢
⎢
⎢
⎣

1

K
︸︷︷︸

!

1

(2π)d/2|I|1/2
exp

(

−
1

2
( i − µk)

′
I( i − µk)

)

︸ ︷︷ ︸

Nd (µk ,I)

⎤

⎥
⎥
⎥
⎦
+ cst

Model

d-variate Gaussian with variance matrix I and same cluster sample size (see later)
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Gaussian mixture model

p(·;αk) = Nd (µk ,Σk) where αk = ( µk
︸︷︷︸

center

, Σk
︸︷︷︸

dispersion

)
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Parametric mixture model

Parametric assumption:
pk(x1) = p(x1;αk)

thus

p(x1) = p(x1;θ) =
K∑

k=1

πkp(x1;αk)

Mixture parameter:

θ = (π,α) with α = (α1, . . . ,αK )

Model: it includes both the family p(·;αk) and the number of groups K

m = {p(x1;θ) : θ ∈ Θ}

The number of free continuous parameters is given by

ν = dim(Θ)
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Mixture models: a probabilistic view of K -means
x = { 1, ..., n}

−2 0 2 4

−2
0

2
4

X1

X2

clustering−→
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Clustering becomes a well-posed problem

p(x|K ;θ) =
K∑

k=1

πkp(x|K ;αk) can be used for

⎧

⎪⎪⎨

⎪⎪⎩

x → θ̂ → p(z|x,K ; θ̂) → ẑ

x → p̂(K |x) → K̂

. . .

with θ = (πk , (αk))
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The clustering process in mixtures

1 Estimation of θ by θ̂

2 Estimation of the conditional probability that xi ∈ Gk

tik(θ̂) = p(Zik = 1|Xi = xi ; θ̂) =
π̂kp(xi ; α̂k )

p(xi ; θ̂)

3 Estimation of zi by maximum a posteriori (MAP)

ẑik = I{k=arg maxh=1,...,K tih(θ̂)}
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Estimation of θ by observe likelihood

Maximize the observe log-likelihood on θ

ℓ(θ; x) =
n∑

i=1

ln p(xi ;θ)

Convergence of θ̂, asymptotic efficiency, asymptotically unbiased

General algorithm for missing data: EM

Interpretation: it is a kind of fuzzy clustering
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Principle of EM

Initialization: θ0

Iteration noq:
Step E: estimate probabilities tq = {tik (θ

q)}
Step M: maximize θ

q+1 = arg maxθ ℓc (θ; x, t
q)6

Stopping rule: iteration number or criterion stability

Properties
⊕: simplicity, monotony, low memory requirement

⊖: local maxima (depends on θ0), linear convergence

6It is the so-called complete log-likelihood: ℓc (θ; x, z) =
∑n

i=1
∑K

k=1 zik ln {πk p(xi ;αk )}35/117
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Gaussian M-step

n
(q)
k =

n∑

i=nl+1

tik(θ
(q))

π(q+1)
k =

n
(q)
k

n

µ
(q+1)
k =

1

n
(q)
k

(
n∑

i=1

tik (θ
(q))xi

)

Σ
(q+1)
k =

1

n
(q)
k

(
n∑

i=1

tik (θ
(q))(xi − µ

(q+1)
k )(xi − µ

(q+1)
k )′

)
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Example of EM in the univariate case
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Note : low at the beginning but increase of the log-likelihood
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Categorical variables: latent class model

Categorical variables: d variables with mj modalities each, xji ∈ {0, 1}mj and

x
jh
i = 1 ⇔ variable j of xi takes level h

Conditional independence:

p( i ;αk) =
d∏

j=1

mj
∏

h=1

(αjh
k )

x
jh
i

and
αjh
k = p( jh

i = 1|zik = 1)

with αk = (αjh
k ; j = 1, . . . , d; h = 1, . . . ,mj )
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Integer: Poisson mixture model

integer variables: d variables x
j
i ∈ N

Intra conditional independence:

p(xinti ;αint
k ) =

d∏

j=1

(αj
k )

x
j
i

αj
k !

e−αj
k
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SPAM E-mail Database8

n = 4601 e-mails composed by 1813 “spams” and 2788 “good e-mails”

d = 48 + 6 = 54 continuous descriptors7

48 percentages that a given word appears in an e-mail (“make”, “you’. . . )
6 percentages that a given char appears in an e-mail (“;”, “$”. . . )

Transformation of continuous descriptors into binary descriptors

xji =

{
1 if word/char j appears in e-mail i
0 otherwise

7There are 3 other continuous descriptors we do not use
8https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/
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An EM run with a binary data set

Initial binary data
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An EM run with a binary data set

Iteration 1
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An EM run with a binary data set

Iteration 2
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An EM run with a binary data set

Iteration 3

44/117



High dimensional data Model-based clustering Curse or blessing? Non-canonical models Canonical models Co-clustering for very HD To go further

An EM run with a binary data set

Iteration 4
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An EM run with a binary data set

Iteration 5
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An EM run with a binary data set

Iteration 6
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An EM run with a binary data set

Iteration 7
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An EM run with a binary data set

Iteration 8
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An EM run with a binary data set

Iteration 9
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An EM run with a binary data set

Iteration 10
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An EM run with a binary data set

Iteration 11
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An EM run with a binary data set

Iteration 12
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An EM run with a binary data set

Iteration 13
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An EM run with a binary data set

Iteration 14
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An EM run with a binary data set

Iteration 15
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An EM run with a binary data set

Iteration 16
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An EM run with a binary data set

Iteration 17
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An EM run with a binary data set

Iteration 18
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An EM run with a binary data set

Iteration 19
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An EM run with a binary data set

Iteration 20
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Mixed data: classical approaches

Usually, unify data type by transformation :

Quantify continuous variables: loose some information

MCA of categorical variable: loose the meaning

. . .

Proposal
Model-based directly on raw data
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Mixed data: conditional independence everywhere9

The aim is to combine continuous, categorical and integer data

1 = ( cont
1 , cat

1 , int
1 )

The proposed solution is to mixed all types by inter-type conditional independence

p(x1;αk) = p(xcont1 ;αcont
k )× p(xcat1 ;αcat

k )× p(xint1 ;αint
k )

In addition, for symmetry between types, intra-type conditional independence

Only need to define the univariate pdf for each variable type!

Continuous: Gaussian

Categorical: multinomial

Integer: Poisson

9MixtComp software on the MASSICCC platform: https://massiccc.lille.inria.fr/
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Missing data: current solutions

X1 X2 X3 Cluster
1.23 ? 3.42 ?
? ? 4.10 ?

4.53 1.50 5.35 ?
? 5.67 ? ?

Discarded solutions

Suppress units and/or variables with missing data ⇒ loss of information

Imputation of the missing data by the mean or more evolved methods ⇒
uncertainty of the prediction not taken into account

Retained solution
Use an integrated approach which allows to take into account all the available
information to perform clustering
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Missing data: MNAR assumption and estimation

Assumption on the missingness mecanism

Missing At Randon (MAR): the probability that a variable is missing does not
depend on its own value given the observed variables.

Observed log-likelihood. . .

ℓ(θ; xO) =
n∑

i=1

log

(
K∑

k=1

πkp(
O
i ;αk )

)

= ln

⎡

⎢
⎢
⎢
⎣

K∑

k=1

πk

∫

xM
i

p(xOi , x
M
i ;αk)dx

M
i

︸ ︷︷ ︸

MAR assumption

⎤

⎥
⎥
⎥
⎦
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Missing data: SEM algorithm10

A SEM algorithm to estimate θ by maximizing the observed-data log-likelihood

Initialisation: θ(0)

Iteration nb q:

E-step: compute conditional probabilities p( M , | 0; θ(q))

S-step: draw ( M(q), (q)) from p( M , | 0;θ(q))

M-step: maximize θ
(q+1) = arg maxθ ln p(xO , M(q), (q); θ)

Stopping rule: iteration number

Properties: simpler than EM and interesting properties!
Avoid possibly difficult E-step in an EM

Classical M steps

Avoids local maxima

The mean of the sequence (θ(q)) approximates θ̂

The variance of the sequence (θ(q)) gives confidence intervals

10MixtComp software on the MASSICCC platform: https://massiccc.lille.inria.fr/
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Curse: HD density estimation

A two-component d-variate Gaussian mixture:

π1 = π2 =
1

2
, X1|z11 = 1 ∼ Nd (0, I), X1|z12 = 1 ∼ Nd (1, I)

Components are more and more separated when d grows: ∥µ2 − µ1∥I =
√
d. . .
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. . . but density estimation quality decreases with d
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Blessing: HD clustering (1/2)

Each variable provides equal and own separation information

(Same parameter setting as before)

Theoretical error decreases when d grows: errtheo = Φ(−
√
d/2). . .
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. . . and empirical error rate decreases also with d!
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Blessing: HD clustering (2/2)
FDA
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Curse: HD clustering (1/2)

Many variables provide no separation information

Same parameter setting except:

X1|z12 = 1 ∼ Nd ((1 0 . . . 0)′, I)

Groups are not separated more when d grows: ∥µ2 − µ1∥I = 1. . .
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. . . thus theoretical error is constant (= Φ(− 1
2 )) and empirical error increases with d
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Curse: HD clustering (2/2)

Many variables provide redundant separation information

Same parameter setting except:

X
j
1 = X

1
1 + N1(0, 1) (j = 2, . . . , d)

Groups are not separated more when d grows: ∥µ2 − µ1∥Σ = 1. . .
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. . . thus errtheo is constant (= Φ(− 1
2 )) and empirical error increases (less) with d
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The trade-off bias/variance

The fundamental statistical principle

Always minimize an error err between truth (z) and estimate (ẑ)

Gap between true (z) and model-based (Zp) partitions: z∗ = argmin˜∈Zp ∆(z, z̃)

Estimation ẑ of z∗ in Zp: any relevant method (bias, consistency, efficiency. . . )

Fundamental decomposition of the observed error err(z, ẑ):

err(z, ẑ) =
{

err(z, z∗)− err(z, z)
}

+
{

err(z, ẑ)− err(z, z∗)
}

=
{

bias
}

+
{

variance
}

=
{

error of approximation
}

+
{

error of estimation
}
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Bias/variance in HD: reduce variance, accept bias

A two-component d-variate Gaussian mixture with intra-dependency:

π1 = π2 =
1

2
, X1|z11 = 1 ∼ Nd (0,Σ), X1|z12 = 1 ∼ Nd (1,Σ)

Each variable provides equal and own separation information

Theoretical error decreases when d grows: errtheo = Φ(−∥µ2 − µ1∥Σ−1/2)

Empirical error rate with the (true) intra-correlated model worse with d

Empirical error rate with the (false) intra-independent model better with d!
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Intermediate conclusion

Blessing consequences

Perform clustering in the whole data space

Do not use “filter” methods where variable selection is performed before the
clustering task [Jouve and Nicoloyannis, 05]

Thus, prefer “wrapper” methods (see many examples later)

Curse consequences

Impose parsimony on models designed in this whole data space (see [Bouveyron

and Brunet, 14] for a review)

Two kinds of wrapper methods: parsimony in the canonical variable space, or not

Do not hesitate to introduce bias (it justifies somewhat conditional independence)
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Gaussian mixture of factor analysers11

Definition
[Ghahramani and Hinton, 97], [McLachlan et al., 03]

Σk = BkB
′
k + ωkΛk

where

Bk is a loadings d × q non-square real matrix (1 ≤ q ≤ qmax, qmax < d)

ωk is a positive real number

Λk is a d × d diagonal positive definite matrix such that |Λk | = 1

Interpretation X1 ∈ Rd is generated by a latent variable Y1 ∈ Rq

X1|Y1,Z1k=1 = Bk Y1
︸︷︷︸

factor

+µk + εk

where Y1 ⊥ εk , Y1 ∼ Nq(0, I) and εk ∼ Nd (0,ωkΛk)

Complexity (some more parsimonious versions exist)

ν = (K − 1) + Kd + Kq(d − (q − 1)/2) + Kd

11pgmm package: http://cran.r-project.org/web/packages/pgmm/index.html
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HD Gaussian models (1/2)12

Definition
[Bouveyron et al., 07]

Σk = Dk∆kD
′
k

where

Dk is the orthogonal matrix of the eigenvectors of Σk

∆k is a diagonal matrix containing the eigenvalues of Σk

∆k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ak1 0
. . .

0 akδk

0

0

bk 0
. . .

0 bk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫

⎬

⎭
δk

⎫

⎬

⎭
(d − δk )

with akj ≥ bk , for j = 1, ..., δk and δk < d

12Mixmod software on the MASSICCC platform: https://massiccc.lille.inria.fr/
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HD Gaussian models (2/2)

Complexity (some more parsimonious versions exist)

ν = (K − 1) + Kd +
K∑

k=1

δk [d − (δk + 1)/2] +
K∑

k=1

δk + 2K
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Functional data (1/4)13

[Jacques and Preda, 13]

Data: n data of ordered mi time-points {X (tis ), 0 ≤ s ≤ mi , tis∈[0,T ]} (i = 1, . . . , n)

Model:

n curves Yi = {Yi (t), t ∈ [0,T ]} discretized each in mi time-points
{Y (tis ), 0 ≤ s ≤ mi , tis∈[0,T ]}
a basis of d (B-splines) functions {φj}j=1,...,d

Yi (t) =
d∑

j=1

γijφj (t)

error on observation
Xi (tis ) = Yi (tis ) + εis

Estimation: regression
γ̂i = (Φ′

iΦi )
−1

Φ
′
iXi

where Φi = (φj (tis ))j,s and Xi = (Xi (ti0), . . . ,Xi (timi
))′

13FunClustering package: http://cran.r-project.org/web/packages/Funclustering/index.html
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Functional data (2/4)

Functional PCA:

Matrix of coefficients Γ = (γij ) n × d

Matrix of weights for centering curves T = 1
n
I

Matrix of centered coefficients Γ̃ of γ n × d

Matrix of the inner products W = (wjj′ ) =
∫ T
0 φj(t)φj′ (t)dt (1 ≤ j , j ′ ≤ d)

Principal components (centered): the jth principal component score Cj is the jth
eigenvector associated to the jth eigenvalue

Γ̃WΓ̃
′
TCj = αjCj

Trick: it is a kind of variable ordering

Gaussian process: if data {X (tis )} arise from a Gaussian process { (t), t ∈ [0,T ]}

p(xi ;α) ≈
q
∏

j=1
︸︷︷︸

indep.

p(Cj
i ; 0

︸︷︷︸

centered

,αj )

with p(·; 0,αj ) the univariate Gaussian of center 0 and variance αj
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Functional data (3/4)

Gaussian mixture model: for K groups, it is assumed the mixture

p(xi ;θ) =
K∑

k=1

πk

qk∏

j=1

p(Cj
ik ; 0,αjk)

where Cj
ik is a group conditional score

Parameter estimation: EM-like algorithm for maximizing the pseudo log-likelihood

E-step:
tik ∝ πkp(C

j
ik ; 0,αjk )

M-step:
Principal score upadate: weights Tk depends now on tik , also Γk

qk selection: a kind of elbow in the eigenvalues. . .
Parameters: πk as usual, αk from previous conditional PCA
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Functional data (4/4)
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Spherical and diagonal Gaussians14

Definition
[Celeux and Govaert, 95]

spherical: Σk = λk I or diagonal: Σk = λkBk

where λk = |Σk |1/d and Bk diagonal with |Bk| = 1

Complexity (more parsimonious versions exist)

Spherical : ν = (K − 1) + Kd + K , Diagonal : ν = (K − 1) + Kd + Kd

14Mixmod software on the MASSICCC platform: https://massiccc.lille.inria.fr/
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Latent class model15

[Goodman, 74]

Categorical variables: d variables with mj modalities each, xji ∈ {0, 1}mj and

x
jh
i = 1 ⇔ variable j of xi takes modality h

Conditional independence:

p(xi ;αk) =
d∏

j=1

mj
∏

h=1

(αjh
k )

x
jh
i

and
αjh
k = p(Xjh

i = 1|Zik = 1)

with αk = (αjh
k ; j = 1, . . . , d; h = 1, . . . ,mj )

Complexity (more parsimonious versions exist)

ν = (K − 1) + d

d∏

j=1

(mj − 1)

15Mixmod and MixtComp software on the MASSICCC platform: https://massiccc.lille.inria.fr/
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Mixed data model16

High dimensional can be mixed: categorical and continuous variables together

Model: combine (diagonal)parsimonious Gaussians and latent class model by
conditional independence

pk(x
cont , xcat) = pk(x

cont )× pk(x
cat )

Complexity
Still depend on d, thus not so parsimonious. . .

16Mixmod and MixtComp software on the MASSICCC platform: https://massiccc.lille.inria.fr/
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Gaussian “variable selection”1718

Definition
[Raftery and Dean, 06], [Maugis et al., 09a], [Maugis et al., 09b]

p(x1;θ) =

{
K∑

k=1

πkp(x
S
1 ;µk ,Σk)

}

︸ ︷︷ ︸

clustering variables

×
{

p(xU1 ; a+ x
R
1 b,C)

}

︸ ︷︷ ︸

redundant variables

×
{

p(xW1 ; u,V)
}

︸ ︷︷ ︸

independent variables

where

all parts are Gaussians

S: set of variables useful for clustering

U: set of redondant clustering variables, expressed with R ⊆ S

W : set of variables independent of clustering

Trick
Variable selection is recasted as a particular variable role

17selvarclust package: http://www.math.univ-toulouse.fr/∼maugis/SelvarClustHomepage.html
18selvarmix package: http://cran.r-project.org/web/packages/SelvarMix/index.html
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Gaussian “variable selection”: cruder version

Definition
[Pan and Shen, 07], [Zhou et al., 09], [Meynet, 10]

p(x1θ) =

{
K∑

k=1

p(xJr1 ;µk ,σ
2
I)

}

︸ ︷︷ ︸

relevant variables

×
{

p(xJa1 ;µ,σ2
I)
}

︸ ︷︷ ︸

active variables

×
{

p(xJi1 ; 0,σ2
I)
}

︸ ︷︷ ︸

irrelevant variables

where

all parts are Gaussians

{Jr , Ja, Ji} is a partition of {1, . . . , d}

p(xJi1 ; 0,σ2I): “variance killer” (crude assumption)
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Some alternatives for reducing variance

Limitation of previous models

They are often not parsimonious enough for (very) HD

For instance, difficult as soon as n < d

The most parsimonious versions are restricted to the Gaussian case

How to overcome these limitations?
Remember that clustering is a way for dealing with large n

Why not reusing this idea for large d?

Co-clustering
It performs parsimony of row clustering through variable clustering
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From clustering to co-clustering

[Govaert, 2011]
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Notations

i : the cluster of the row i

j : the cluster of the column j

( i ,wj ): the block of the element ij (row i , column j)

z = ( 1, . . . , n): partition of individuals in K clusters of rows

w = ( 1, . . . , d ): partition of variables in L clusters of columns

( ,w): bi-partition of the whole data set

Both space partitions are respectively denoted by Z and W

Restriction

All variables are of the same kind (see discussion at the end)
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The latent block model (LBM)

Generalization of some existing non-probabilistic methods

Extend the latent class principle of local (or conditional) independence

Thus xij is assumed to be independent once zi and wj are fixed (α = (αkl )):

p(x|z,w;α) =
∏

i,j

p(xij ;αzi wj )

π = (πk) : vectors of proba. πk that a row belongs to the kth row cluster

ρ = (ρk ) : vectors of proba. ρk that a row belongs to the lth column cluster

Independence between all zi and wj

Extension of the traditional mixture model-based clustering (α = (αkl )):

p(x; θ) =
∑

(z,w)∈Z×W

∏

i,j

πzi ρwj p(xij ;αziwj )
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Distribution for different kinds of data20

[Govaert and Nadif, 2014]

The pdf p(·;αziwj ) depends on the kind of data xij :

Binary data: xij ∈ {0, 1}, p(·;αkl ) = B(αkl )

Categorical data with m levels:
xij = {xijh} ∈ {0, 1}m with

∑m
h=1 xijh = 1 and p(·;αkl ) = M(αkl ) with αkl = {αkjh}

Count data: x
j
i ∈ N, p(·;αkl ) = P(µkνlγkl )

19

Continuous data: x
j
i ∈ R, p(·;αkl ) = N (µkl ,σ

2
kl )

19The Poisson parameter is here split into µk and νl the effects of the row k and the column l respectively and
γkl the effect of the block kl . Unfortunately, this parameterization is not identifiable. It is therefore not possible to
estimate simultaneously µk , νl and γkl without imposing further constraints. Constraints∑

k πkγkl =
∑

l ρlγkl = 1 and
∑

k µk = 1,
∑

l νl = 1 are a possibility.
20BlockCluster package on the MASSICCC platform: https://massiccc.lille.inria.fr/
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Extreme parsimony ability

Model Number of parameters
Binary dim(π) + dim(ρ) + KL

Categorical dim(π) + dim(ρ) + KL(m − 1)
Contingency dim(π) + dim(ρ) + KL
Continuous dim(π) + dim(ρ) + 2KL

Very parsimonious so well suitable for the (ultra) HD setting

nb. param.HD = nb. param.classic ×
L

d

Other advantage: stay in the canonical space thus meaningful for the end-user
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Binary illustration: easy interpretation

[Govaert, 2011]
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Binary illustration: user-friendly visualization

[Govaert, 2011]

n = 500, d = 10, K = 6, L = 4

98/117



High dimensional data Model-based clustering Curse or blessing? Non-canonical models Canonical models Co-clustering for very HD To go further

Other kind of data: ordinal (with missing values)

[Jacques and Biernacki, 2018]
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Other kind of data: functional
[Jacques, 2016]
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Other kind of data: image
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Particular case: graph clustering

Stochastic Block Model (SBM): adjacency matrix with n = d and K = L
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MLE estimation: log-likelihood(s)

Similar to clustering: first estimate θ, then deduce estimate of ( , )

Observed log-likelihood: ℓ(θ; ) = ln p( ; θ)

MLE:
θ̂ = arg max

θ
ℓ(θ; )

Complete log-likelihood:

ℓc(θ; x, z,w) = ln p( , , ;θ)

=
∑

i,k

zik log πk +
∑

k,l

wjl log ρl +
∑

i,j,k,l

zikwjl log p(x
j
i ;αkl )

Be careful with asymptotics. . .

If ln(d)/n → 0, ln(n)/d → 0 when n → ∞ and d → ∞, then the MLE is consistent
[Brault et al., 2017]
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MLE estimation: EM algorithm

E-step of EM (iteration q):

Q(θ, θ(q)) = E [ℓc (θ; x, z,w)| ; θ(q)]

=
∑

i,k

p(zi = k|x; θ(q))
︸ ︷︷ ︸

t
(q)
ik

lnπk +
∑

j,l

p(wi = l |x;θ(q))
︸ ︷︷ ︸

s
(q)
jl

ln ρl

+
∑

i,j,k,l

p(zi = k,wj = l |x;θ(q))
︸ ︷︷ ︸

e
(q)
ijkl

ln p(xij ;αkl )

M-step of EM (iteration q): classical. For instance, for the Bernoulli case, it gives

π(q+1)
k =

∑

i t
(q)
ik

n
, ρ(q+1)

l =

∑

j s
(q)
jl

d
, α(q+1)

kl =

∑

i,j e
(q)
ijkl xij

∑

i,j e
(q)
ijkl
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MLE: intractable E step

e
(q)
ijkl is usually intractable. . .

Consequence of dependency between ijs (link between rows and columns)

Involve KnLd calculus (number of possible blocks)

Example: if n = d = 20 and K = L = 2 then 1012 blocks

Example (cont’d): 33 years with a computer calculating 100,000 blocks/second

Alternatives to EM

Variational EM (numerical approx.): conditional independence assumption

p(z,w|x;θ) ≈ p(z|x;θ)p(w|x; θ)

SEM-Gibbs (stochastic approx.): replace E-step by a S-step approx. by Gibbs

z|x,w; θ and w|x, z;θ
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MLE: variational EM (1/2)

Use a general variational result from [Hathaway, 1985]

Maximizing ℓ(θ; ) on θ is equivalent to maximize ℓ̃c(θ; , e) on (θ, e)

ℓ̃c(θ; , e) =
∑

i,k

tik lnπk +
∑

j,l

sjl ln ρl +
∑

i,j,k,l

eijkl ln p(xij ;αkl )

where e = (eijkl ), eijkl ∈ {0, 1},
∑

k,l eijkl = 1, tik =
∑

j,l eijkl , sjl =
∑

i,k eijkl

Of course maximizing ℓ(θ; ) or ℓ̃c (θ; , e) are both intractable

Idea: restriction on e to obtain tractability eijkl = tik sjl

New variables are thus now t = (tik ) and s = (sjl )

As a consequence, it is a maximization of a lower bound of the max. likelihood

max
θ

ℓ(θ; ) ≥ max
θ,t,s

ℓ̃c (θ; , e)
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MLE: variational EM (2/2)

Approximated E-step

Q(θ, θ(q)) ≈
∑

i,k

t
(q)
ik lnπk +

∑

j,l

s
(q)
jl ln ρl +

∑

i,j,k,l

t
(q)
ik s

(q)
jl ln p(xij ;αkl )

We called it now VEM

Also known as mean field approximation

Consistency of the variational estimate [Brault et al., 2017]
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MLE: local maxima

More local maxima than in classical mixture models

It is a consequence of many more latent variables (blocks)

Thus: either many VEM runs, or use the SEM-Gibbs algorithm
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MLE: SEM-Gibbs

We have already seen the SEM algorithm earlier (thus we do not detail more)

It limits dependency to starting point, so it limits local maxima

The S-step: a draw ( (q), (q)) ∼ p( , | ;θ(q)) instead an expectation

But it is still intractable, thus use a Gibbs algorithm to approx. this draw

Approximated S-step
Two easy draws

(q) ∼ p( | (q−1), ; θ(q))

and
(q) ∼ p( | (q), ; θ(q))

Rigorously speaking, many draws within the S-step should be performed

Indeed, Gibbs has to reach a stochastic convergence

In practice it works well while saving computation time
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Block estimation: estimate

Once we have a parameter estimate θ̂, we need to have a block estimate (ˆ, ˆ )

But MAP not directly available because of the following maximization difficulty

(ˆ, ˆ ) = arg max
( , )

p( , | ; θ̂)
︸ ︷︷ ︸

intractable

Instead the following (easily, as classical mixtures) estimates are usually retained

ˆ = argmax p( | ; θ̂) and ˆ = argmax p( | ; θ̂)
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Block estimation: consistency

[Mariadassou and Matias, 12]

θ̂
n,d→∞−→ θ∗

︸ ︷︷ ︸

we have seen that. . .

⇒ p(ẑ = z
∗, ŵ = w

∗|x; θ̂) n,d→∞−→ 1
︸ ︷︷ ︸

exact bi-partition retrieval!

Thus we retrieve the HD clustering blessing. . .
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Block estimation: non asymptotic properties (1/2)

Binary case: marginals seems so simple mixtures! [Brault, 14]
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Block estimation: non asymptotic properties (2/2)
[Brault, 14]

Probability of xij with no regard to the column membership is Bernoulli

p(xij = 1|zik = 1) = τk =
L∑

l=1

αklρl

Thus marginal distribution of xij is a mixture (indep. of xij cond. zik = 1)

⎛

⎝
∑

j

xij

⎞

⎠ |zik = 1 ∼ B(d, τk)

Control of error on this partition mixture estimate ẑmix of binomial distributions

p(ẑmix ≠ z
∗) ≤ 2n exp

{

−
1

8
d
[

min
k≠k′

|τk − τk′ |
︸ ︷︷ ︸

overlap

]}

+ K(1−min
k

πk)
n

We retrieve also partition consistency for very high dimension with constraint

ln(n) = o(d)
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Illustration: document clustering (1/2)

Mixture of 1033 medical summaries and 1398 aeronautics summaries

Lines: 2431 documents

Columns: present words (except stop), thus 9275 unique words

Data matrix: cross counting document×words

Poisson model
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Illustration: document clustering (2/2)

Results with 2×2 blocks

Medline Cranfield
Medline 1033 0
Cranfield 0 1398

Experiment illustrates previous theory: HD clustering is blessing
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Outline

1 High dimensional data

2 Model-based clustering

3 Curse or blessing?

4 Non-canonical models

5 Canonical models

6 Co-clustering for very HD

7 To go further
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Co-clustering of mixed data

Same partitions in lines, disjoint partitions in columns

Example: data set TED talks, with talks × (terms,scores)
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