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Abstract

A generic method is introduced to visualize in a “Gaussian-like way”, and onto
R2, results of Gaussian or non-Gaussian based clustering. The key point is to ex-
plicitly force a visualization based on a spherical Gaussian mixture to inherit from
the within cluster overlap that is present in the initial clustering mixture. The re-
sult is a particularly user-friendly drawing of the clusters, providing any practitioner
with an overview of the potentially complex clustering result. An entropic measure
provides information about the quality of the drawn overlap compared to the true
one in the initial space. The proposed method is illustrated on four real data sets of
di↵erent types (categorical, mixed, functional and network) and is implemented on
the r package ClusVis.

Keywords: Dimension reduction, Gaussian mixture, factorial analysis, linear discriminant
analysis, model-based clustering, visualization.
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1 Introduction

Data analysis is the exploratory field of multivariate statistics. It essentially encompasses

the clustering and the visualization tasks. Both are often jointly involved: either visualiza-

tion is performed in the hope of revealing the “graphical evidence” of a cluster structure in

the data set; or clustering is performed first and the visualization task follows in the hope

of providing a better understanding of the estimated cluster structure. We are primarily

interested in the second scenario.

Clustering (Jajuga et al. 2002) serves to summarize (typically large) data sets by as-

sessing a partition among observations, the latter being thus summarized by (typically

few) characteristic classes. Model-based clustering (McLachlan & Peel 2004, McNicholas

2016, Biernacki 2017) achieves the clustering purpose in a probabilistic framework, usually

1



consisting of modeling the whole data distribution using a finite mixture model. Clas-

sical challenges can thereby be solved by using tools that rely on theoretical statistics,

e.g. estimating the partition using an EM algorithm (Dempster et al. 1977), selecting the

number of groups using information criteria such as BIC or ICL (Schwarz 1978, Biernacki

et al. 2000), dealing with missing values among observations (Larose 2015). Moreover,

this framework allows for the analysis of di↵erent types of data by “simply” adapting the

related cluster distribution: continuous data (Banfield & Raftery 1993, Celeux & Govaert

1995, McNicholas & Murphy 2008), categorical data (Goodman 1974, Celeux & Govaert

1991, Gollini & Murphy 2014, Marbac et al. 2016), mixed data (Kosmidis & Karlis 2015,

McParland & Gormley 2016, Punzo & Ingrassia 2016, Marbac et al. 2017, Mazo 2017),

functional data (Samé et al. 2011, Bouveyron & Jacques 2011, Jacques & Preda 2014),

networks data (Daudin et al. 2008, Zanghi et al. 2008, Ambroise & Matias 2012).

Once the clustering process has been performed, the next step is to provide a good

understanding of it to practitioners. However, a rendering based on a raw delivery of the

model parameters and/or the resulting partition (or the related conditional membership

probabilities) can be quite ine�cient: understanding of the parameters requires specific

knowledge of the model at hand the partition can be also hard to read since it is just a

numerical list the length of the sample size, which must be large enough to have initially

motivated the clustering process.

Visualization is designed to express, in a user-friendly manner, the estimated clustering

structure. Its general principle is to design a mapping of the data, or of other related

statistical results such as the cluster shape, within a “friendly” space (generally R2) while

maintaining some properties that the data, or the related statistical results, have in their

native space. The vast majority of proposed mapping relies on di↵erent variants of factorial

analysis or other distance-based methods (like multidimensional scaling). For a thorough
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list of visualization methods, see Section 2.2, and references therein. However, all standard

mappings waste most clustering information that is conveyed by the probabilistic approach,

except Scrucca (2010) which uses the full model-based approach for the mapping. However,

this approach is limited to continuous data.

This paper defends the key idea that only a so-called model-based visualization output

can exploit the model-based clustering input, since both involved objects are of the same

nature (probabilistic objects). More precisely, the mixture model used for the visualization

output will inherit from the overlap of the initial mixture model. In fact, this is similar to

defining a particular mapping but without any explicit distance design. This process has

the clear advantage of being straightforwardly suitable for any type of data without any

specific definition of the mixture output since only the conditional memberships need to be

estimated. In fact, the specificity of initial data has been taken into account by the initial

clustering modeling process. The mixture output involves spherical Gaussian components,

with the same number of components as the clustering mixture. This particular Gaussian

choice is informed by both some technical arguments and some user-friendly arguments.

The resulting drawing displays meaningful spherical cluster shapes in the bivariate continu-

ous space. Finally, accuracy of this drawing is assessed by comparing the apparent overlap

mixture on the graph and the overlap of the initial mixture. To have a good understanding

of our proposal, in particular its link with model-based clustering techniques, its general

outline can be summarized as follows:

1. select a model-based clustering technique for data at hand;

2. extract the whole distribution fo the classification probabilities from the fitted model;

3. fit a multivariate spherical Gaussian mixture respecting as far as possible the distri-

bution of the previous classification probabilities;
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4. (a) draw the spherical Gaussian mixture pdf on the most discriminative bivariate

map;

(b) draw a “pseudo” bivariate scatter plot representing the individual classification

probabilities on the most discriminative bivariate map.

This paper is organized as follows. Section 2 focuses on the context of model-based clus-

tering for mixed data and reviews the main existing visualization techniques of a clustering

result. Section 3 presents the central contribution of this work consisting of matching any

clustering mixture and a spherical multivariate Gaussian visualization mixture according to

their component overlap, and then describes in Section 4 how to draw this Gaussian mixture

in the most discriminative map. Like any visualization method, our proposition can intro-

duce a bias. However, because we propose a full model-based visualization approach, an

index measuring this bias (and thus the quality of the representation) is presented. Section 5

then proposes a means of displaying a kind of individual plotting on the same discriminative

map to access each individual data cluster membership positioning. Section 6 illustrates

in depth the Gaussian model-based proposition on three real data sets with di↵erent types

of features (mixed data, functional data and network data). Throughout this paper, the

proposition is also illustrated via a categorical running example. Section 7 concludes this

work.

2 Clustering: from modeling to visualizing

2.1 Model-based clustering of multi-type data

Clustering aims to estimate a partition z = (z1, . . . , zn), composed of K clusters, of a data

set x = (x1, . . . ,xn), composed of n observations. The component membership of each
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observation xi is given by zi = (zi1, . . . , ziK), with zik = 1 if xi arises from component k

and zik = 0 otherwise. Z denotes the space of any zi. In a very general situation, each

observation xi is defined on a space X described by dX variables which can be continuous,

categorical or functional.

Model-based clustering aims to solve the clustering task in a full probabilistic framework

by modeling the distribution of the full data set (x, z), z being considered as a latent part of

the data set. This framework has the decisive advantage of consolidating the exploratory

clustering result through the background of mathematical statistics (estimation, model

selection; see for instance McLachlan & Peel (2004), Biernacki (2017)). More precisely, all

couples (xi, zi) are assumed to independently arise from the distribution defined by the

probability density function (pdf)

f(xi, zi) =
KY

k=1

[⇡kfk(xi)]
zik (1)

where ⇡k is the proportion of the kth component (⇡k > 0 and
P

k ⇡k = 1) and fk is the pdf

of this component.

From such a modeling, two interesting by-product distributions are available. Firstly,

the (marginal) distribution of each xi corresponds to the so-called K component mixture

defined by the pdf f(xi) =
P

k ⇡kfk(xi). Secondly, under distribution f , the probability

that xi arises from component k, denoted by tik(f), is expressed by

tik(f) = p(zik = 1|xi; f) =
⇡kfk(xi)PK
`=1 ⇡`f`(xi)

. (2)

Thus, all information about the classification probabilities for observation xi can be stored

in a K � 1 continuous vector ti(f) (because
PK

k=1 tik(f) = 1) where

ti(f) = (ti1(f), . . . , ti(K�1)(f)). (3)
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Information about the classification probabilities of sample x is given by t(f) = (t1(f), . . . , tn(f)).

Traditionally, components fk are parametrized by finite dimensional vectors and an

EM algorithm, or one of its variants (Dempster et al. 1977), is used to provide an estimate

f̂ of f (the ⇡k’s and the parameters associated with the fk’s). Alternatively semi- or

non-parametric mixtures can be considered (Benaglia et al. 2009). Finally, an estimated

partition ẑ can be straightforwardly deduced from t(f̂) by using the rule of maximum a

posteriori (MAP) defined by ẑik = 1 iif k = argmax` ti`(f̂).

Thus, the key point to achieve this model-based clustering procedure is to define the

distributional space F where f stands for (f 2 F). In fact, only the space of components

fk has to be defined. Clearly, choosing component pdf fk depends on X . Many proposals

already exist such as multivariate Gaussian or multivariate t-distributions for continuous

data (McLachlan & Peel 2004, McNicholas 2016), a product of multinomial distributions

for categorical data (Goodman (1974); see also the running example later), a product

of Gaussian and multinomial distributions when mixing continuous and categorical data

(Moustaki & Papageorgiou 2005, see also numerical experiments in Section 6.1), specific

models for functional data or for network data (see respectively numerical experiments in

Section 6.2 and 6.3, with references therein).

However, because of their potential complexity, such previous mathematical features

may fail to provide a user-friendly clustering understanding. Indeed, it may be di�cult

to have a useful overview of individuals in clusters through ẑ (or through t(f̂)) if n or K

is too large. Similarly, it may be di�cult to get a useful overview of the whole clusters

(proportions, shapes, positioning, etc.) through f̂ if the space X involves many features

(d large) or involves features of complex types (like a mix of categorical and functional

features), a situation where the pdf of the components can be particularly hard to embrace

as a whole. As a matter of fact, the need for a user-friendly understanding of the math-
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ematical clustering results (at both individual and pdf levels) is the very reason for using

some specific visualization procedures.

2.2 Overview of clustering visualization

Mapping vs. drawing Visualization is probably one of the most appealing data analysis

tasks for practitioners since its fundamental purpose is to display some potentially complex

and technically demanding statistical objects (typically a data set or a pdf) on simple and

seamlessly accessible graphs (typically a scatter plot or an iso-density curve). The whole

process can be viewed as the achievement of two di↵erent successive steps. The mapping

step transforms the initial statistical object into a simpler statistical one typically through a

space dimension reduction of a data set or of a pdf (marginal pdf). It produces no graphical

output at all. The drawing step provides the final graphical display from the output of the

previous mapping step and usually entails the use of conventional graphical toolboxes. It

fine-tunes all the possible graphical parameters.

Individual mapping The clustering visualization task is probably thought as firstly as

visualizing simultaneously the data set x and its estimated partition ẑ. Typically, the

corresponding mapping, designated below by M ind, transforms the data set x, defined on

X , into a new data set y = (y1, . . . ,yn), defined on a new space Y , as follows:

M ind 2 Mind : x 2 X n 7! y = M ind(x) 2 Yn. (4)

Here Mind denotes a particular mapping family. This family varies according to the type

of data involved in X and also depending on whether they use only data x or additional

clustering information ẑ or t(f̂).

Methods relying on data x (thus discarding clustering information) are certainly the
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most frequent. In terms of continuous data, principal component analysis (PCA; Josse

et al. (2011), Verbanck et al. (2015), Audigier et al. (2016a)) serves to represent the data

on a map by focusing on their dispersion. Similarly, categorical data can be visualized

using multiple correspondence analysis (MCA; Van der Heijden & Escofier (2003), Josse

et al. (2012), Greenacre (2017)), a mix of continuous and categorical data can be visualized

using mixed factorial analysis (MFA; Chavent et al. (2012), Audigier et al. (2016b)) and

functional data can be visualized using functional principal component analysis (FPCA;

Ramsay & Silverman (2005), Zhou & Pan (2014), Chen & Lei (2015)). Multidimensional

scaling (MDS; Young (1987), Cox & Cox (2001)) is more general since it can be used to deal

with any type of data. It relies on dissimilarities between pairs of individuals for inputs

x and also for outputs y, the resulting coordinate matrix ŷ being obtained by minimizing

a loss function. However, dissimilarities have to be defined specifically in respect of the

type of data under consideration. For just illustrating this point, the Euclidean distance

is frequent for continuous data whereas the Hamming distance is more suitably for binary

data.

In an machine learning framework, methods such as self-organized map (SOM; Kohonen

(1982)) or generative topographic mapping (GTM; Bishop et al. (1998)) have been devel-

oped to summarize the data in terms of a set of reference points having a regular spatial

organization corresponding generally to a two-dimensional regular network. But, even if

nodes of the network are usually interpreted as clusters, these ones essentially serve as a

preprocessing step for limiting the number of prototypes to be considered at a second step

in a hierarchical clustering (Vesanto & Alhoniemi 2000).

Methods taking into account additional clustering information ẑ or t(f̂) are less com-

mon and are mostly restricted to continuous data. We can cite linear discriminant analysis

(LDA; Fisher (1936), Xanthopoulos et al. (2013)) which takes into account cluster sep-
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aration by defining the mapping through to a particular factorial analysis of the cluster

means. Also, in the specific case of continuous data, Hennig (2004), Scrucca (2010) and

Morris et al. (2013) defined a specific linear mapping between X and Y . In that case, the

distribution of y is itself a (less-dimensional) Gaussian mixture or a multivariate t-mixture,

with the same number of components and the same proportions, which can be expressed

as g =
P

k ⇡kgk. Finally, their method aims to preserve the related conditional member-

ship probabilities t(f̂) and t(g), namely the classification probabilities of x with f̂ and

the classification probabilities of y with g, respectively. In other words, the aim is to find

a linear mapping that preserves as far as possible, through the mapping mixture g, the

cluster separation occurring in the original mixture f . Somewhat the method we proposed

in this paper is related to this idea but it is not restricted to continuous distributions in

the mixture and it does not relay on a linear mapping.

Pdf mapping Many visualizations are in practice overlaid by additional information

relating to the corresponding mapping distribution. This mapping transforms the ini-

tial mixture f =
P

k ⇡kfk, defined on the distributional space F , into a new mixture

g =
P

k ⇡kgk, defined on the distributional space G. It can be expressed as the following

mapping, designated here by M pdf:

M pdf 2 Mpdf : f 2 F 7! g = M pdf(f) 2 G, (5)

where Mpdf denotes a particular mapping family. It is important to note that the pdf

mapping M pdf is rarely defined “from scratch” since it can be obtained as a “simple” by-

product from the previous individual mapping M ind. However, in practice, the resulting

mixture g can be particularly tedious to calculate (possibly no closed-form solution available

outside linear mappings), which can be partially overcome by displaying the empirical

mapping of a very large sample. But the resulting pdf can also have non-conventional
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iso-density shape per cluster (for instance clusters with disconnected parts), undermining

somewhat all the user-friendliness that is expected when using pdf visualization.

2.3 Running example

As a running example for this paper, we consider the data set of Schlimmer (1987). It

is composed of votes for each of the n = 435 U.S. House of Representatives Congressmen

on dX = 16 key votes. For each vote, three levels are considered: yea, nay or unknown

disposition. Data are clustered by a mixture of products of multinomial distributions

(Goodman 1974). Parameter estimation is performed by maximum likelihood and model

selection is done by the BIC (Schwarz 1978), which selects K = 4 components. The r

package Rmixmod (Lebret et al. 2015) is used for inference.

As an output of this estimation step, the user is provided with a partition and a pa-

rameter. It may be not really convenient to have a detailed look at the partition of 435

individuals. In regard to the parameters, the mixing proportions can be suitable for a

quick, but partial, understanding of the clustering result. However, going further into the

clustering understanding by analyzing the multinomial parameters can be very laborious

since it entails 192 = 16⇥ 3⇥ 4 values to be observed and compared.

It is also possible to analyze the clustering results graphically in a conventional way.

Figure 1 presents the scatter plot of the Congressmen and their partition on the first map

of the MCA, obtained by the r package FactoMineR (Lê et al. 2008). It appears that the

scatter plot provided by MCA is quite hard to read. Firstly, it is well-known that total

inertia is hard to interpret, and consequently the information about a possible relative

positioning of clusters can be questionable. Secondly, even if faithful, overlap between

components is not fully visible and thus does not allow for a straightforward interpretation

of f .
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Figure 1: Scatter plot of the Congressmen and their partition on the first MCA map.

3 Mapping clusters as spherical Gaussians

In this section, we focus our attention on the so-called pdf visualization, arguing that,

asymptotically on the sample size n, similar objects result from both pdf and individual vi-

sualization processes. However, we will hold a specific discussion on individual visualization

below.

3.1 Changing the mapping objects to be controlled

Traditional way: controlling the mapping family As described in Section 2.2, the

cornerstone of all traditional pdf visualization procedures is based on defining the mapping

family Mpdf (or more exactly Mind from which Mpdf is almost always deduced). As just
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an example, the reader can have in mind the classical linear mapping for the continuous

case. Then, the pdf family G of g is a simple by-product of Mpdf, and thus can be denoted

by G(Mpdf). Using the general mapping expression (5), G(Mpdf) is naturally expressed as

follows:

G(Mpdf) = {g : g = M pdf(f), f 2 F ,M pdf 2 Mpdf} . (6)

As an immediate consequence, the nature of G can depend to a great extent on the choice

of Mpdf, leading potentially to very di↵erent cluster shapes. Arguments that lead to tradi-

tionalMpdf (orMind) rely essentially on a combination of user-friendly and easy-to-compute

properties. For instance, in the continuous case, linear mappings are often retained (like

for PCA). In the categorical case, a continuous space Y is often targeted (like for MCA).

It is a similar situation for functional data with FPCA or also for mixed data with MFA or

MDS, even if MDS is a somewhat more complex procedure since it is not always defined in

closed-form. However, such choices may vary significantly from one statistician to another

one. For instance, MDS relies on defining dissimilarities both inside spaces X and Y and

changing them could significantly a↵ect the resulting mapping.

New proposed method: controlling the distribution family Alternatively, the

general mapping expression (5) can be seen as indexed by the distribution family G, the

mapping Mpdf being now obtained as a by-product, and thus now denoted by Mpdf(G).

This new point of view is straightforwardly expressed as:

Mpdf(G) = {M pdf : g = M pdf(f), f 2 F , g 2 G} . (7)

It corresponds to the reversed situation of (6) where G has to be defined instead of M pdf.

This new freedom indeed provides an opportunity to directly force G to be a user-friendly

mixture family.
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3.2 Constrained spherical Gaussians as matching candidates

Spherical Gaussians One of the most simple and natural candidate belonging to the

“user-friendly mixture family” is probably the spherical Gaussian mixture defined on Y =

RdY . Its pdf is defined for any y 2 RdY by

g(y;µ) =
KX

k=1

⇡k�dY (y;µk, I), (8)

where µ = (µ1, . . . ,µK) and �dY (.;µk, I) is the pdf of the Gaussian distribution with mean

µk = (µk1, . . . , µkdY ) 2 RdY and covariance matrix equal to identity I.

Because clustering visualization is the central task of this work, it is natural to require

that both mixtures f and g(·;µ) have the most similar clustering information. This infor-

mation is measured by the probabilities of classification (see (3)). We denote now pf as the

probability distribution function of the probabilities of classification under mixture f and

pg(·;µ) as the probability distribution function of the probabilities of classification under

mixture g(·;µ). In this manner, a quite natural way for measuring the di↵erence between

both f and g(·;µ) clustering property could be the following Kullback-Leibler divergence

(pf being the reference measure):

�KL(f, g(·;µ)) =
Z

T
pf (t) ln

pf (t)

pg(t;µ)
dt (9)

where T = {t : t = (t1, . . . , tK�1), tk > 0,
P

k tk < 1}. Then, the set G is defined as

G = {g : g = g(·;µ), g 2 argmin �KL(f, g), f 2 F} . (10)

Somewhere, it is mimicking the idea of Scrucca (2010) and Morris et al. (2013) which

imposes (as far as possible) the retention of the overlap of mixture distributions before and

after the mapping.
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More constrains on Gaussians Another natural requirement should be that pg(·;µ)

and g are linked by a one-to-one mapping, meaning that for one distribution f , there is

a unique distribution g(·;µ) which minimizes (9). This target is reached firstly by setting

dY = K � 1 and secondly by setting µK = 0, µkh = 0 if h > k, and µkk � 0. This

last restriction prevents any rotation and/or translation of y from providing the same

distribution pg(·;µ) but a di↵erent distribution g(·;µ).

For technical convenience, we consider now the following one-to-one mapping ⇤ between

t and a classical transformation of the t, which we express hereafter as t̃

⇤ : t = (t1, . . . , tK�1) 2 T 7! t̃ = (t̃1, . . . , t̃K�1) 2 [0,1)K�1 with t̃k =
tk

1�
PK�1

`=1 t`
. (11)

It is essential to note that, by considering mixture g(·;µ), there is also a one-to-one mapping

 between y and t̃

 (·;µ) : y 7! t̃ with  (y;µ) =

✓
⇡1�dY (y;µ1, I)

⇡K�dY (y;µK , I)
, . . . ,

⇡K�1�dY (y;µK�1, I)

⇡K�dY (y;µK , I)

◆
. (12)

Moreover, we have

 �1(t̃;µ) = M�1

0

BBB@

ln
⇣
t̃1

⇡K
⇡1

⌘
+ 1

2 ||µ1||2
...

ln
⇣
t̃K�1

⇡K
⇡K�1

⌘
+ 1

2 ||µK�1||2

1

CCCA
with M =

0

BBB@

µ0
1
...

µ0
K�1

1

CCCA
, (13)

where matrices M and M�1 are lower triangular.

3.3 Estimating the Gaussian centers

Invoking a log-likelihood From (10), we consider the distribution g(·;µ⇤) where the

centers µ⇤ are defined by µ⇤ = argmin �KL(f, g(·;µ)). Noting that |Jac⇤(t)|�1 =
PK�1

k=1 tk,

µ⇤ = argmin

Z

[0,1)K�1

p̃f (t̃) ln
p̃f (t̃)

p̃g(t̃;µ)

 
K�1X

k=1

tk

!
dt̃, (14)
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where p̃f (·) and p̃g(·;µ) denote the pdf of t̃ by considering distribution f and g(·;µ), re-

spectively. It is possible to explicitly and easily express the previous p̃g(·;µ) distribution by

using the change of variables theorem combined with the linear transformation (13), which

leads to the following term, obtained by noting that |Jac �1(·;µ)(t̃)|�1 =
QK�1

k=1 (µkk t̃k)�1,

p̃g(t̃;µ) = g( �1(t̃;µ);µ)
K�1Y

k=1

(µkk t̃k)
�1. (15)

Unfortunately, the Kullback-Leibler divergence defined in (14) has generally no closed-form.

However, it is easy to independently draw a sample of S ratios of conditional probabilities

t̃ = (t̃
(1)
, . . . , t̃

(S)
) from p̃f . This sample can be used to estimate the previous integral such

that maximizing the following normalized (observed-data) log-likelihood function

L(µ; t̃) =
1

S

SX

s=1

ln p̃g(t̃
(s)
;µ), (16)

is equivalent to solving (14) asymptotically on S.

Maximizing the log-likelihood The log-likelihood (16), combined with (15), entails

the pdf of a mixture model. Thus, it can be classically broken down into a normalized

complete-data log-likelihood Lcomp and a normalized entropy term E as follows (Hathaway

1986):

L(µ; t̃) = Lcomp(µ; t̃) + E(t̃), (17)

where, noting ⇤�1(t̃) = (⇤�1
1 (t̃), . . . ,⇤�1

K�1(t̃)) the inverse function of ⇤,

Lcomp(µ; t̃) = c�
K�1X

k=1

lnµkk �
1

2S

SX

s=1

K�1X

k=1

⇤�1
k (t̃

(s)
)|| �1(t̃

(s)
;µ)� µk||2, (18)

E(t̃) = � 1

S

SX

s=1

K�1X

k=1

⇤�1
k (t̃

(s)
) ln⇤�1

k (t̃
(s)
), (19)

15



with a constant term c = 1
S

PS
s=1

PK�1
k=1 ⇤�1

k (t̃
(s)
) ln ⇡k � 1

S

PS
s=1

PK�1
k=1 ln⇤�1

k (t̃
(s)
). Since

the normalized entropy does not depend on µ, an estimate µ̂ of µ⇤ is obtained only

via the maximization of the normalized complete-data likelihood. Note that this max-

imization is straightforward only if K = 2. In such case, we have µ̂1 2 R with µ̂1 =
�1+

q
1
S (

PS
s=1 ts1)(

PS
s0=1 ts01[ln(t̃s1

⇡2
⇡1

)]2)

1
2S

PS
s=1 t1s

. Thus, if the overlap between the two components in-

creases (i.e., ts1 ! 1
2 which lead that t̃s1 ! 1 and ⇡2

⇡1
! 1) then we have µ̂ ! 0. Moreover,

when the overlap between the two compoennts decreases, µ ! 0. Note that these remarks

stay valid for any model used for clustering.. If the number of components is more than

two, a standard Quasi-Newton algorithm should be run with di↵erent random initializa-

tions, in order to avoid possible local optima. In practice, we use S = 5000 which allows

for a fast estimation of the centers and stability of the results.

Remark It can be noticed that generative topographic mapping (Bishop et al. 1998)

(GTM) could have some similarities with our approach since it is also based on a spherical

Gaussian mixture model of the data, estimated through an EM algorithm. However, this

fitted distribution is a mixture where the position of the centers of the clusters on the latent

space (typically two-dimensional) are defined by advance on a regular grid avoiding any

clustering interpretation. Thus GTM is essentially a non-linear dimensionality reduction

where no particular clustering focus is taken into account.

4 Final visualization as bivariate spherical Gaussians

4.1 From a multivariate to a bivariate Gaussian mixture

Because g is defined on RK�1, it is inconvenient to draw this distribution if K � 4. There-

fore, we apply an LDA to g to represent this distribution on its most discriminative map

16



(i.e., eigen value decomposition of the covariance matrix computed on the centers µ̂ by con-

sidering the mixture proportions ⇡), leading to the following bivariate spherical Gaussian

mixture g̃:

g̃(ỹ; µ̃) =
KX

k=1

⇡k�2(ỹ; µ̃k, I), (20)

where ỹ 2 R2, µ̃ = (µ̃1, . . . , µ̃K) and µ̃k 2 R2. The (standard) percentage of inertia of

LDA serves to measure the quality of the mapping from g to g̃. In addition, the accuracy

of the mapping from the initial mixture f to the final “ready-to-be-drawn” mixture g̃ can

be easily compared through the following di↵erence between the normalized entropy of f

and the normalized entropy of g̃, namely

�E(f, g̃) = � 1

lnK

KX

k=1

⇢Z

X
tk(x; f) ln tk(x; f)dx�

Z

R2

tk(ỹ; g̃) ln tk(ỹ; g̃)dỹ

�
. (21)

Such a quantity can be easily estimated using empirical values. Its meaning is particularly

relevant: if �E(f, g̃) is close to zero then the component overlap conveyed by g̃ (over f) is

accurate; if it is close to one, then g̃ strongly underestimates the component overlap of f ;

if it is close to negative one, then g̃ strongly overestimates the component overlap of f .

Thus, �E(f, g̃) serves to evaluate the bias of the visualization.

Remark When the initial data set x is in the continuous space X = Rd and also when

the initial clustering relies on a Gaussian mixture f whose covariance matrices are identical,

then the proposed mapping is strictly equivalent to applying a LDA to the centers of f .

4.2 Proposal for drawing the bivariate Gaussian mixture

The aim is now to draw the pdf g̃ on the most discriminative map in a manner that

highlights as much as possible the overlap between components. Indeed, it is primarily

17



such information that acted as a guideline to transform f into g̃. The proposed graph will

display the following elements:

• Cluster centers: the locations of µ̃1, . . . , µ̃K are materialized by vectors.

• Cluster spread: the 95% confidence level is displayed by a black border which

separates the area outside the confidence level in white from the area inside the

confidence level in gray levels (i.e.,, the set ⌦ is in gray where ⌦ = {ỹ : g(ỹ; µ̃) > u↵}

with u↵ such that
R
⌦ g(ỹ; µ̃)dỹ = 1� ↵; by default plots are made with ↵ = 0.05).

• Cluster overlap: curves of iso-probability of the MAP classification are also dis-

played for di↵erent levels ` (associated with di↵erent gray levels), a curve being

composed of the set of ỹ such that

max
k=1,...,K

⇡k�2(ỹ; µ̃k)

g̃(ỹ; µ̃)
= `. (22)

• Mapping accuracy: the accuracy of this representation is given by the di↵erence

between entropies �E(f, g̃) and also by the percentage of inertia by axis.

4.3 Tutorial on the bivariate spherical Gaussians visualization

We o↵er here a tutorial for avoiding any misinterpretation of the proposed bivariate spher-

ical Gaussians visualization. It illustrates also its potential great interest for having a

fast, easy, unifying and faithful overview of the potentially complex underlying clustering

structure. The selected illustrative mixture corresponds to four bivariate Gaussians with

non-spherical covariance matrices and di↵erent mixing proportions. In this simple and

well-known scenario, many standard bivariate illustrations of Gaussians and/or a related

data set already exist, of which users are familiar with them. By this way, users would

easily understand how to properly analyze the new drawing we propose.
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The 1st bivariate (dX = 2) Gaussian layout (called hereafter “1st scenario”) is composed

of four components (K = 4) with mixing proportions ⇡1 = ⇡2 = 0.4 and ⇡3 = ⇡4 = 0.1,

with means ⌫1 = (�1, 3), ⌫2 = (3, 2), ⌫3 = (5,�3), ⌫4 = (2,�6) and with heteroscedastic

covariance matrices ⌃1 = ⌃3 =

2

4 1 0.5

0.5 1

3

5 and ⌃2 = ⌃4 =

2

4 1 �0.5

�0.5 1

3

5. Figure 2a dis-

plays isodensity curves of the related mixture provided by the classical R package mclust

(Scrucca et al. 2016). Just the component number has been manually overlayed on the

means. Many other packages are expected to o↵er similar visualization choices. Figure 2b

displays the proposed bivariate spherical Gaussian visualization associated to this 1st mix-

ture scenario. Note that this Gaussian representation is really spherical, even if it can

appear distorted due to the axes scaling. First of all the di↵erence between the entropies

has to be checked. Its low absolute value (0.03) indicates that the cluster overlap displayed

on the figure is globally accurate. Thus the following comments on the initial heteroscedas-

tic mixture we will make through this new spherical representation are valid:

• Axes meaning: the 1st axis is the most discriminative one provided by the LDA

mapping (66.09% of the discriminant power). The first two axes sum to 66.09 +

23.41 = 89.50% of the discriminant power, thus most of the discriminant information

is present on this two dimensional mapping.

• Mixing proportions: the confidence areas in gray color are directly related to the

mixing proportions. Thus it appears immediately that components 1 and 2 are more

populous than the two others.

• Cluster overlap: it clearly appears also that components 1 and 2 overlap much more

than components 3 and 4 do. This fact does not appear clearly at all on Figure 2a

since mixing proportions are not involved in the iso-density representation. More
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generally, separation of all couples of components appears to be faithful. For instance,

components 2 and 4 (and also components 1 and 3) are the most separated ones.
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(a) classical isodensity curves representation
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(b) proposed spherical-like representation

Figure 2: Representation of the clusters for the first scenario.

Figure 3 considers a similar case to 1st scenario but where components 1 and 2 are closer

with regards to their means, so their overlap has increased. Indeed, here ⌫1 = (1, 3), Fig-

ure 3b has now a lower displaying accuracy compared to Figure 2b since di↵erence between

the entropies is 0.15. However its absolute value is su�ciently close to zero and far from one

(its maximum theoretical value) to allow faithful interpretation of the overall components

displaying. Figure 3b clearly indicates that components 1 and 2 overlap significantly more,

what is really the fact in the underlying experimental design.

Figure 4 considers a similar case to 1st scenario but where components 3 and 4 are

closer with regards to their covariance matrices, so their overlap has increased. Indeed,

here ⌃4 =

2

4 1 0.5

0.5 1

3

5. This 3nd scenario is particularly interesting since the spherical
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Figure 3: Representation of the clusters for the second scenario.
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Figure 4: Representation of the clusters for the third scenario.

representation is unable to distort its covariance matrices (they are fixed to be spherical

and identical). Consequently, only means of these spherical Gaussians can be distorted

to faithfully represent the corresponding new overlap. Figure 4b shows that this means

adaptation was successfully enough since di↵erence between the entropies is very close

to zero. And it can be seen on the same figure that components 3 and 4 overlap very

significantly, as expected.

Finally, Figure 6 considers the same scenario that Figure 4 where the components

proportions are equal. It illustrates that the size of the gray areas around the centers

reflects the size of the components.

4.4 Continuation of the running example

We now illustrate the previous visualization proposition on the running example. Figure 5

is the component interpretation graph obtained for the congressional voting records. It
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Figure 5: proposed spherical-like representation for the fourth scenario.
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presents the Gaussian-like component overlap on the most discriminative map. In this way,

it provides in a more concise way than a traditional confusion table the overlap information

of the initial mixture f . Note that the mapping of f on this graph is accurate because

the di↵erence between entropies is almost zero (i.e., �E(f, g̃) = 0.01). For instance, this

figure also shows that the components with most observations (i.e., components three and

four) are composed of strongly di↵erent Congressmen. Indeed, the overlap between these

components is almost zero. Moreover, component one contains Congressmen which are

more moderated that Congressmen of components three and four.

Figure 6: Component interpretation graph of the congressional voting records.
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5 Proposal for drawing a pseudo bivariate scatter plot

5.1 From pdf visualization to individual visualization

We have limited our attention to the mapping of the initial cluster pdf f , described by (5),

intentionally discarding the mapping of the initial individual data set x, described by (4).

We have already discussed that the pdf mapping (5) can be a by-product of the individ-

ual mapping (4). However, the reverse is mathematically impossible, the distributional

information being weaker than the random variable information.

Nevertheless, a pseudo scatter plot y of x can be mapped onto RK�1 by transforming

the ratios of probabilities ⇤(ti(f)), associated with xi by f , into values yi through the

reverse application of  �1(·; µ̂) associated with g(·; µ̂), namely yi =  �1(⇤(ti(f)); µ̂) (i =

1, . . . , n). Then, each observation yi is projected on the LDA map, leading to a pseudo

scatter plot ỹ = (ỹ1, . . . , ỹn), with each ỹi 2 R2.

We use the term “pseudo” for ỹ (or for y) because some caution has to taken in order

to avoid misunderstanding. Indeed, the distribution of ỹ is expected to be di↵erent from

g(·; µ̃), the essential property of ỹ being to respect as far as possible the conditional prob-

abilities t(f) associated to x, not to respect as far as possible the distribution f itself. In

fact, only when f corresponds to a spherical Gaussian mixture do distributions of ỹ and of

g(·; µ̃) match.

Such remarks strongly a↵ect the related drawing we propose for the scatter plot ỹ:

• Data drawing: display ỹ on the LDA best discriminative map as dots of di↵erent

colors representing the partition membership z.

• Conditional probabilities: information about the uncertainty of classification is

given by the curves of iso-probability of classification.
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• Mapping accuracy: again, the accuracy of this representation is given by the dif-

ference between entropies �E(f, g̃) and also by the percentage of inertia by axis.

• No pdf overlay: do not display ỹ simultaneously with g̃(.; µ̃) to avoid misunder-

standing; therefore use another graph.

5.2 Tutorial on the pseudo bivariate scatter plot visualization

Figure 6a displays, in a classical way, a sample of size n=1000 from the 3rd scenario

described in Section 4.3. Figure 6b displays the related pseudo scatter plot we propose.

The LDA map is exactly the same between this figure and Figure 4b. However, some

comments are required for avoiding misinterpretation of this new plot.
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(b) proposed bivariate pseudo scatter plot

Figure 7: Scatter plot related to the 3nd scenario.

Here the scatter plot is not necessarily Gaussian (spherical or other), phenomenon that

appears clearly. Indeed, remember that the only property of the initial mixture which is

preserved through the procedure we propose is only the conditional membership distribu-
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tion (or in short its “overlapping”) under the constraint that this conditional distribution is

a by-product of a spherical Gaussian mixture. Thus, each data sample drawn on Figure 6b

has to be seen as a faithful representation of its conditional membership representation

under the spherical constraint, but absolutely not a faithful representation of its mixture

distribution. The interest is to quicky access to the membership uncertainty of each in-

dividual, what becomes also clearer by the borderlines displayed on the figure. Notice

obviously that this membership interpretation is accurate as soon as the di↵erence between

the entropies is not far from zero (in absolute value), what is the case for this particular

scenario.

5.3 Continuation of the running example

Figure 7 displays the scatter plot of the observation memberships obtained on the con-

gressional voting records. It overlays on the most discriminative map the curve of iso-

probabilities of classification and the cloud of observations. Three levels of probabilities

of classification are considered (0.95, 0.80 and 0.50) and observations are represented with

the label of the component maximizing the posterior probability of classification. This plot

serves to focus on specific observations and, for instance, to detect observations classified

with a high uncertainty of classification. Note that some points which are classified in

component two (the blue points) are located in the area containing the observations of

component three. This is a standard phenomenon in LDA. Indeed, in such a case, if the

maximum a posteriori rule is applied on the native space (i.e., RK�1) than its results can

be di↵erent to the results of maximum a posteriori rule when applied on the low-dimension

space (i.e., R2).
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Figure 8: Scatter plot of the observation memberships of the congressional voting records.

6 Numerical illustrations for complex data

We present applications of the visualization method on three real data sets composed of

complex features (mixed, functional and network data). They illustrate the ability of the

method to deal with extremely di↵erent kinds of data and of mixtures, without any new

specific development. Results are obtained by the r package ClusVis which implements

the visualization method.

6.1 Mixed data: Contraceptive method choice

Data This dataset x is a subset of the 1987 National Indonesia Contraceptive Prevalence

Survey (Lim et al. 2000). It described 1473 Indian women with two numerical variables
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(age and number of children) and eight categorical variables (education level, education

level of the husband, religion, occupation, occupation of the husband, standard-of-living

index and media exposure).

Model used to cluster These mixed data are clustered by a mixture f assuming that

variables are independent within components (Moustaki & Papageorgiou 2005). Within a

component, the continuous variables follow Gaussian distributions and categorical variables

follow multinomial distributions. Maximum likelihood inference is performed by the r

package Rmixmod (Lebret et al. 2015). Model selection is done by the BIC criterion

which detects six components.

Model drawing Figure 8 presents the component interpretation graph obtained for the

contraceptive method choice data. It shows overlaps between component one, two and

three. Moreover, components four and five are significantly di↵erent from component six.

Such a visualization is in accordance with a fine study of Table 1, which presents the

parameters of the continuous variables. Indeed, we can see that components one, two and

three are all composed of middle-age women who have many children. On the contrary,

components four and five are composed of young women who have few children. Finally,

component six is composed of the oldest women. Therefore, the first axis can be interpreted

as the age of the women (left side is composed of older women than on the right side).

Finally, the second axis distinguishes components two, four and six from the others. As

shown in Table 2, these three components have the same mode for the eight categorical

variables.

Scatter plot drawing The scatter plot of the observation memberships is presented in

Figure 9. The overlap between components one and three is obvious. Note that, on this
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Figure 9: Component interpretation graph of the Contraceptive method choice.

Age Number of children

Mean Variance Mean Variance

Component 1 35 30 4 4

Component 2 35 22 3 2

Component 3 40 42 5 9

Component 4 25 10 1 1

Component 5 24 13 2 1

Component 6 45 7 5 8

Table 1: Parameters of the continuous variables for the Contraceptive method choice.
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education husband’s religion occupation husband’s standard-of- media

level education level occupation living index exposure

Component 1 3 3 2 2 3 4 1

Component 2 4 4 2 2 1 4 1

Component 3 1 2 2 2 3 3 1

Component 4 4 4 2 2 1 4 1

Component 5 3 3 2 2 3 3 1

Component 6 4 4 2 2 1 4 1

Table 2: Modes of the categorical variables for the Contraceptive method choice.

figure, some observations classified under component one are projected on a location where

the MAP rule would classify them under component three. However, on the space R5, the

probabilities of classification are respected precisely. But this well-known phenomenon is

due to the projection of the observations yi from R5 to R2 when projecting a discriminative

rule.

6.2 Functional data: Bike sharing system

Data We consider now the study of the Bike sharing system data presented by Bouveyron

et al. (2015). We analyze station occupancy data collected over the course of one month on

the bike sharing system in Paris. The data were collected over 5 weeks, between February,

24 and March, 30, 2014, at 1 189 bike stations. The station status information, in terms of

available bikes and docks, were downloaded every hour during the study period for the seven

systems from the open-data APIs provided by the JCDecaux company. To accommodate

the varying stations sizes (in terms of the number of docking points), Bouveyron et al.

(2015) normalized the number of available bikes by station size and obtained a loading

profile for each station. The final data set contains 1 189 loading profiles, one per station,
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Figure 10: Scatter plot of the observation memberships of the Contraceptive method choice.

sampled at 1 448 time points. Note that the sampling is not perfectly regular; there is

one hour, on average, between the two sample points. The daily and weekly habits of

inhabitants introduce a periodic behavior in the BSS station loading profiles, with a natural

period of one week. It is thus natural to use a Fourier basis to smooth the curves, with

basis functions corresponding to sine and cosine functions of periods equal to fractions of

this natural period of the data. Using such a procedure, the profiles of the stations were

projected on the basis of 25 Fourier functions.

Model used to cluster We conduct a model-based clustering of these functional data

(Bouveyron et al. 2015) using the r package FunFEM (Bouveyron 2015) . The parameters

of the model presented by Bouveyron et al. (2015) (i.e., K = 10 and DFM[↵kj�] model) are
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estimated. Figure 10 presents the curves for the 10 components based on the MAP rule.

Model drawing Figure 11 presents the component interpretation graph obtained for the

bike sharing system data. The representation has good accuracy, because the di↵erence

between entropies is small (i.e., �E(f, g̃) = �0.03). It shows a strong similarity between

components three and four. In Figure 10, we can see that the curves classified in these

components are similar (high values with the same phase). Component two and six overlap

because they have a very low amplitude. Moreover, Figure 11 shows that component seven

is the most isolated one. This component corresponds to the group that Bouveyron et al.

(2015) called empty stations. Finally, components eight and nine are significantly di↵erent

because they have a phase opposition. Indeed, these components are at opposite locations

on this figure. The same remark applies for components one and eight as well. In fact,

the reader can easily “plays” with Figure 10 and Figure 11 for checking similarities and

di↵erences between all components.

Scatter plot drawing The scatter plot of the observation memberships is presented in

Figure 12. It confirms the interpretation of Figure 11. Indeed, the observations classified

in components three and four are well-mixed. Similarily, one can observe an overlap be-

tween components two and six. Finally, the observations classified in component seven are

isolated.

6.3 Network data: French political blogosphere

Data We consider the clustering of the French political blogosphere network (Zanghi et al.

2008). Data consist of a single day snapshot of over 1 100 political blogs automatically ex-

tracted on October, 14th, 2006 and manually classified by the “Observatoire Presidentielle”
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project. This project is the result of collaborative work by RTGI SAS and Exalead and

aims at analyzing the French presidential campaign on the web. In this data set, nodes

represent hostnames (a hostname contains a set of pages) and edges represent hyperlinks

between di↵erent hostnames. If several links exist between two di↵erent hostnames, Zanghi

et al. (2008) subsum them into a single one. Note that intra-domain links can be considered

if hostnames are not identical. Finally, in this experimentation we consider that edges are

not directed which is not realistic but which does not a↵ect the interpretation of the groups.

This network presents an interesting community-based organization due to the existence

of several political parties and commentators. We assume that authors of these blogs tend

to link, blogs with similar political positions as a result of their political a�nities.

Model used to cluster We use the graph clustering via Erdös-Rényi mixture proposed

by Zanghi et al. (2008) and implemented on the r package mixer. As proposed by these

authors, we consider K = 6 components. The confusion matrix between the component

memberships and the political party memberships is given in Table 3.

Model drawing Figure 13 presents the component interpretation graph obtained for

the French political blogosphere data. The graph slightly over-represents the component

overlaps (i.e., �E(f, g̃) = �0.216). Indeed, the (normalized) entropy of f is equal to 0.016

while the entropy of the projection of g into the most discriminative space is equal to

0.221. Note that this di↵erence between entropies is due to the projection of the data

from R5 to R2. Indeed, the entropy of g (in R5) is closed to those of f with a value of

0.004. The loss of information due to the data projection can also be detected by the

inertia, because only 56.76% of the inertia is represented by this most discriminative map.

Therefore, the components overlaps should be interpreted with more caution than in the
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Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6

Cap21 2 0 0 0 0 0

Commentateurs Analystes 10 0 0 1 0 0

FN - MNR - MPF 2 0 0 0 0 0

Les Verts 7 0 0 0 0 0

PCF - LCR 7 0 0 0 0 0

PS 31 0 0 0 26 0

Parti Radical de Gauche 11 0 0 0 0 0

UDF 1 1 0 30 0 0

UMP 2 25 11 2 0 0

liberaux 0 1 0 0 0 24

Table 3: Confusion matrix between the component memberships and the political party

memberships.

previous examples, where the di↵erences between entropies were close to zero.

The graph shows that components three and six overlap significantly. This result is

natural because component three mainly comprises UMP members (“French Republican”)

and component six is composed of supporters of economic-liberalism. Finally, component

one, which comprises politicians from di↵erent political parties, is the most isolated.

Scatter plot drawing Figure 14 presents the scatter plot of the observation member-

ships. It confirms the proximity between components three and six.
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7 Conclusion

We presented a generic method for visualizing the results of a model-based clustering in a

“Gaussian way”. This method allows for visualization of any model-based clustering made

on any type of data, because it is only based on the distribution of classification probabil-

ities. It permits to interpret the results of a model-based clustering but not to select the

best clustering method (choosing a clustering method has to be performed before through

a classical model selection process). In this way, it is not an exploratory visualization

method, as such methods are often dedicated to.

This method produces two graphs. The first graph allows for the component inter-

pretation through all component overlaps. The second graph represents a scatter plot of

the observations and many curves of iso-probabilities of classification. It serves to focus

on the classification of specific observations and to quantify the risk of misclassification.

Finally, the accuracy of the procedure can be measured by taking the di↵erence between

the normalized entropies obtained by the model used to cluster and by the model defined

on the visualization map.

The proposed procedure has been developed by considering that the model used to

visualize is a constrained Gaussian mixture. Obviously, other continuous distributions could

be considered. However, these distributions must define a one-to-one relation between the

space of the probability of classification and the continuous space. If several distributions

compete, then the best distribution could be the distribution that leads to minimization of

the Kullback-Leibler divergence �KL(f, g). Alternatively, because there is a step of LDA-

like projection, the best distribution could be the distribution that minimizes the di↵erence

between the normalized entropies obtained by f and by the projected distribution g̃, namely

�E(f, g̃). Finally, if non-Gaussian mixtures are considered, it is crucial that the resulting
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graph presenting the component overlaps is still meaningful and does not entail excessively

boring calculus. In particular, it could be meaningful to explore non-unimodal component

candidates.
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Samé, A., Chamroukhi, F., Govert, G. & Aknin, P. (2011), ‘Model-based clustering and

segmentation of time series with changes in regime’, Advances in Data Analysis Classi-

fication 5, 301–321.

Schlimmer, J. (1987), Concept acquisition through representational adjustment, PhD the-

sis, Department of Information and Computer Science, University of California.

Schwarz, G. (1978), ‘Estimating the dimension of a model’, The Annals of Statistics

6(2), 461–464.

Scrucca, L. (2010), ‘Dimension reduction for model-based clustering’, Statistics and Com-

puting 20(4), 471–484.

URL: http://dx.doi.org/10.1007/s11222-009-9138-7

Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. (2016), ‘mclust 5: clustering, clas-

sification and density estimation using Gaussian finite mixture models’, The R Journal

8(1), 205–233.

URL: https://journal.r-project.org/archive/2016-1/scrucca-fop-murphy-etal.pdf

42



Van der Heijden, P. & Escofier, B. (2003), ‘Multiple correspondence analysis with missing

data’, Analyse des correspondances. Recherches au cżur de l’analyse des donnees pp. 152–
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Figure 11: Partition among the 1 189 bike stations in Paris (each row corresponds to a

single component and gives the mean curve in bold and observations belonging to this

component in thin).
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Figure 12: Component interpretation graph of the bike sharing system.
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Figure 13: Scatter plot of the observation memberships of the bike sharing system.
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Figure 14: Component interpretation graph of the French political blogosphere.
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Figure 15: Scatter plot of the observation memberships of the French political blogosphere.
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