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Abstract A generic method is introduced to visualize in a “Gaussian-like way”, and onto R2, results
of Gaussian or non-Gaussian based clustering. The key point is to explicitly force a visualization based
on a spherical Gaussian mixture to inherit from the within cluster overlap that is present in the ini-
tial clustering mixture. The result is a particularly user-friendly drawing of the clusters, providing any
practitioner with an overview of the potentially complex clustering result. An entropic measure provides
information about the quality of the drawn overlap compared to the true one in the initial space. The
proposed method is illustrated on four real data sets of different types (categorical, mixed, functional
and network) and is implemented on the r package ClusVis.

Keywords Dimension reduction · Gaussian mixture · factorial analysis · linear discriminant analysis ·
model-based clustering · visualization.

1 Introduction

Data analysis is the exploratory field of multivariate statistics. It essentially encompasses the clustering
and the visualization tasks. Both are often jointly involved: either visualization is performed in the hope
of revealing the “graphical evidence” of a cluster structure in the data set; or clustering is performed
first and the visualization task follows in the hope of providing a better understanding of the estimated
cluster structure. We are primarily interested in the second scenario.

Clustering (Jajuga et al. 2002) serves to summarize (typically large) data sets by assessing a partition
among observations, the latter being thus summarized by (typically few) characteristic classes. Model-
based clustering (McLachlan & Peel 2004, McNicholas 2016, Biernacki 2017) achieves the clustering
purpose in a probabilistic framework, usually consisting of modeling the whole data distribution using a
finite mixture model. Classical challenges can thereby be solved by using tools that rely on theoretical
statistics, e.g. estimating the partition using an EM algorithm (Dempster et al. 1977), selecting the
number of groups using information criteria such as BIC or ICL (Schwarz 1978, Biernacki et al. 2000),
dealing with missing values among observations (Larose 2015)... Moreover, this framework allows for
the analysis of different types of data by “simply” adapting the related cluster distribution: continuous
data (Banfield & Raftery 1993, Celeux & Govaert 1995, McNicholas & Murphy 2008), categorical data
(Goodman 1974, Celeux & Govaert 1991, Gollini & Murphy 2014, Marbac et al. 2016), mixed data
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(Kosmidis & Karlis 2015, Marbac et al. 2017, Mazo 2017), functional data (Samé et al. 2011, Bouveyron
& Jacques 2011, Jacques & Preda 2014), networks data (Daudin et al. 2008, Zanghi et al. 2008, Ambroise
& Matias 2012). . .

Once the clustering process has been performed, the next step is to provide a good understanding
of it to practitioners. However, a rendering based on a raw delivery of the model parameters and/or
the resulting partition (or the related conditional membership probabilities) can be quite inefficient:
understanding of the parameters requires specific knowledge of the model at hand and we have seen that
many different models can exist (see previous paragraph); the partition can be also hard to read since
it is just a numerical list the length of the sample size, which must be large enough to have initially
motivated the clustering process.

Visualization is designed to express, in a user-friendly manner, the estimated clustering structure. Its
general principle is to design a mapping of the data, or of other related statistical results such as the
cluster shape, within a “friendly” space (generally R2) while maintaining some properties that the data,
or their related statistical results, have in their native space. The vast majority of proposed mapping
relies on different variants of factorial analysis or other distance-based methods (like multidimensional
scaling). For a thorough list of visualization methods, see Section 2.2, and references therein. However,
all standard mappings waste most clustering information that is conveyed by the probabilistic approach,
except Scrucca (2010) which uses the full model-based approach for the mapping. However, this approach
is limited to continuous data.

This paper defends the key idea that only a so-called model-based visualization output can exploit the
model-based clustering input, since both involved objects are of the same nature (probabilistic objects).
More precisely, the mixture model used for the visualization output will inherit from the overlap of the
initial mixture model. In fact, this is similar to defining a particular mapping but without any explicit
distance design. This process has the clear advantage of being straightforwardly suitable for any type of
data without any specific definition of the mixture output since only the conditional memberships are
necessary to fix it. In fact, all features specificity of initial data has been taken into account by the initial
clustering modeling process. The mixture output involves spherical Gaussian components, with the same
number of components as the clustering mixture. This particular Gaussian choice is informed by both
some technical arguments and some user-friendly arguments. The resulting drawing displays meaningful
spherical cluster shapes in the bivariate continuous space. Finally, accuracy of this drawing is assessed
by comparing the apparent overlap mixture on the graph and the overlap of the initial mixture.

This paper is organized as follows. Section 2 focuses on the context of model-based clustering for mixed
data and reviews the main existing visualization techniques of a clustering result. Section 3 presents the
central contribution of this work consisting of matching any clustering mixture and a spherical multivari-
ate Gaussian visualization mixture according to their component overlap, and then describes in Section 4
how to draw this Gaussian mixture in the most discriminative map. Like any visualization method, our
proposition can introduce a bias. However, because we propose a full model-based visualization approach,
an index measuring this bias (and thus the quality of the representation) is presented. Section 5 then
proposes a means of displaying a kind of individual plotting on the same discriminative map to access
each individual data cluster membership positioning. Section 6 illustrates in depth the Gaussian model-
based proposition on three real data sets with different types of features (mixed data, functional data
and network data). Throughout this paper, the proposition is also illustrated via a categorical running
example. Section 7 concludes this work.

2 Clustering: from modeling to visualizing

2.1 Model-based clustering of multi-type data

Clustering aims to estimate a partition z = (z1, . . . ,zn), composed of K clusters, of a data set x =
(x1, . . . ,xn), composed of n observations. The component membership of each observation xi is given
by zi = (zi1, . . . , ziK), with zik = 1 if xi arises from component k and zik = 0 otherwise. Z denotes the
space of any zi. In a very general situation, each observation xi is defined on a space X described by dX
variables which can be continuous, categorical or functional...
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Model-based clustering aims to solve the clustering task in a full probabilistic framework by modeling
the distribution of the full data set (x, z), z being considered as a latent part of the data set. This
framework has the decisive advantage of consolidating the exploratory clustering result through the
background of mathematical statistics (estimation, model selection; see for instance McLachlan & Peel
(2004), Biernacki (2017)). More precisely, all couples (xi, zi) are assumed to independently arise from
the distribution defined by the probability density function (pdf)

f(xi, zi) =

K∏
k=1

[πkfk(xi)]
zik (1)

where πk is the proportion of the kth component (πk > 0 and
∑
k πk = 1) and fk is the pdf of this

component.
From such a modeling, two interesting by-product distributions are available. Firstly, the (marginal)

distribution of each xi corresponds to the so-called K component mixture defined by the pdf f(xi) =∑
k πkfk(xi). Secondly, under distribution f , the probability that xi arises from component k, denoted

by tik(f), is expressed by

tik(f) = p(zik = 1|xi; f) =
πkfk(xi)∑K
`=1 π`f`(xi)

. (2)

Thus, all information about the classification probabilities for observation xi can be stored in a K − 1
continuous vector ti(f) (because

∑K
k=1 tik(f) = 1) where

ti(f) = (ti1(f), . . . , ti(K−1)(f)). (3)

Information about the classification probabilities of sample x is given by t(f) = (t1(f), . . . , tn(f)).
Traditionally, components fk are parametrized by finite dimensional vectors and an EM algorithm,

or one of its variants (Dempster et al. 1977), is used to provide an estimate f̂ of f (the πk’s and
the parameters associated with the fk’s). Alternatively the semi- or non-parametric mixtures can be
considered (Benaglia et al. 2009). Finally, an estimated partition ẑ can be straightforwardly deduced

from t(f̂) by using the rule of maximum a posteriori (MAP) defined by ẑik = 1 iif k = arg max` ti`(f̂).
Thus, the key point to achieve this model-based clustering procedure is to define the distributional

space F where f stands for (f ∈ F). In fact, only the space of components fk has to be defined. Clearly,
choosing component pdf fk depends on X . Many proposals already exist such as multivariate Gaussian
or multivariate t-distributions for continuous data (McLachlan & Peel 2004, McNicholas 2016), a prod-
uct of multinomial distributions for categorical data (Goodman (1974); see also the running example
later), a product of Gaussian and multinomial distributions when mixing continuous and categorical
data (Moustaki & Papageorgiou 2005, see also numerical experiments in Section 6.1), specific models for
functional data or for network data (see respectively numerical experiments in Section 6.2 and 6.3, with
references therein).

However, because of their potential complexity, such previous mathematical features may fail to
provide a user-friendly clustering understanding. Indeed, it may be difficult to have a useful overview of
individuals in clusters through ẑ (or through t(f̂)) if n or K is too large. Similarly, it may be difficult to

get a useful overview of the whole clusters (proportions, shapes, positioning, etc.) through f̂ if the space
X involves many features (d large) or involves features of complex types (like a mix of categorical and

functional features), a situation where component pdf f̂ks can be particularly hard to embrace as a whole.
As a matter of fact, the need for a user-friendly understanding of the mathematical clustering results (at
both individual and pdf levels) is the very reason for using some specific visualization procedures.

2.2 Overview of clustering visualization

Mapping vs. drawing Visualization is probably one of the most appealing data analysis tasks for practi-
tioners since its fundamental purpose is to display some potentially complex and technically demanding
statistical objects (typically a data set or a pdf) on simple and seamlessly accessible graphs (typically a
scatter plot or an iso-density curve). The whole process can be viewed as the achievement of two different
successive steps. The mapping step transforms the initial statistical object into a simpler statistical one
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typically through a space dimension reduction of a data set or of a pdf (marginal pdf). It produces no
graphical output at all. The drawing step provides the final graphical display from the output of the
previous mapping step and usually entails the use of conventional graphical toolboxes. It fine-tunes all
the possible graphical parameters.

Individual mapping The clustering visualization task is probably thought as firstly as visualizing simul-
taneously the data set x and its estimated partition ẑ. Typically, the corresponding mapping, designated
below by M ind, transforms the data set x, defined on X , into a new data set y = (y1, . . . ,yn), defined
on a new space Y, as follows:

M ind ∈Mind : x ∈ Xn 7→ y = M ind(x) ∈ Yn. (4)

HereMind denotes a particular mapping family. The latter varies according to the type of data involved
in X and also depending on whether they use only data x or additional clustering information ẑ or t(f̂).

Methods relying on data x (thus discarding clustering information) are certainly the most frequent.
In terms of continuous data, principal component analysis (PCA; Josse et al. (2011), Verbanck et al.
(2015), Audigier et al. (2016a)) serves to represent the data on a map by focusing on their dispersion.
Similarly, categorical data can be visualized using multiple correspondence analysis (MCA; Van der
Heijden & Escofier (2003), Josse et al. (2012), Greenacre (2017)), a mix of continuous and categorical
data can be visualized using mixed factorial analysis (MFA; Chavent et al. (2012), Audigier et al. (2016b))
and functional data can be visualized using functional principal component analysis (FPCA; Ramsay
& Silverman (2005), Zhou & Pan (2014), Chen & Lei (2015)). Multidimensional scaling (MDS;Young
(1987), Cox & Cox (2001)) is more general since it can be used to deal with any type of data. It
relies on dissimilarities between pairs of individuals for inputs x and also for outputs y, the resulting
coordinate matrix ŷ being obtained by minimizing a loss function. However, dissimilarities have to be
defined specifically in respect of the type of data under consideration.

Methods taking into account additional clustering information ẑ or t(f̂) are less common and are
mostly restricted to continuous data. We can cite linear discriminant analysis (LDA; Fisher (1936),
Xanthopoulos et al. (2013)) which takes into account cluster separation by defining the mapping through
to a particular factorial analysis of the cluster means. Also, in the specific case of multivariate Gaussian
mixtures and multivariate t-mixtures, Scrucca (2010) and Morris et al. (2013) defined a specific linear
mapping between X and Y. In that case, the distribution of y is itself a (less-dimensional) Gaussian
mixture or a multivariate t-mixture, with the same number of components and the same proportions,
which can be expressed as g =

∑
k πkgk. Finally, their method aims to preserve the related conditional

membership probabilities t(f̂) and t(g), namely the classification probabilities of x with f̂ and the
classification probabilities of y with g, respectively. In other words, the aim is to find a linear mapping
that preserves as far as possible, through the mapping mixture g, the cluster separation occurring in the
original mixture f .

Pdf mapping Many data set visualizations are in practice overlaid by additional information relating to
the corresponding mapping distribution. This latter transforms the initial mixture f =

∑
k πkfk, defined

on the distributional space F , into a new mixture g =
∑
k πkgk, defined on the distributional space G.

It can be expressed as the following mapping, designated here by Mpdf:

Mpdf ∈Mpdf : f ∈ F 7→ g = Mpdf(f) ∈ G, (5)

where Mpdf denotes a particular mapping family. It is important to note that the pdf mapping Mpdf

is rarely defined “from scratch” since it can be obtained as a “simple” by-product from the previous
individual mapping M ind. However, in practice, the resulting mixture g can be particularly tedious to
calculate (possibly no closed-form available outside linear mappings), which can be partially overcome
by displaying the empirical mapping of a very large sample. But, the resulting pdf can also have non-
conventional iso-density shape per cluster (for instance clusters with disconnected parts), undermining
somewhat all the user-friendliness that is expected when using pdf visualization.
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2.3 Running example

As a running example for this paper, we consider the data set of Schlimmer (1987). It is composed of
votes for each of the n = 435 U.S. House of Representatives Congressmen on the dX = 16 key votes. For
each vote, three levels are considered: yea, nay or unknown disposition. Data are clustered by a mixture of
product of multinomial distributions (Goodman 1974). Parameter estimation is performed by maximum
likelihood and model selection is done by the BIC (Schwarz 1978), which selects four components. The
r package Rmixmod (Lebret et al. 2015) is used for inference.

As an output of this estimation step, the user is provided with partition and a parameter set. It is not
really convenient to have a detailed look at the partition because reviewing all 435 individual memberships
can be tedious. As regard the parameters, the mixing proportions can be suitable for a quick, but
partial, understanding of the clustering result. However, going further into the clustering understanding
by analyzing the multinomial parameters can be very laborious since it entails 192 = 16 × 3 × 4 values
to be observed and compared.

It is also possible to analyze the clustering results graphically in a conventional way. Figure 1 presents
the scatter plot of the Congressmen and their partition on the first map of the MCA, obtained by the
r package FactoMineR (Lê et al. 2008). It appears that the scatter plot provided by MCA is quite hard
to read. Firstly, it is well-known that total inertia is hard to interpret, and consequently the information
about a possible relative positioning of clusters can be questionable. Secondly, even if faithful, overlap
between components is not fully visible and thus does not allow for a straightforward interpretation of
f .

Fig. 1 Scatter plot of the Congressmen and their partition on the first MCA map.

3 Mapping clusters as spherical Gaussians

In this section, we focus our attention on the so-called pdf visualization, arguing that, asymptotically on
the sample size n, similar objects result from both pdf and individual visualization processes. However,
we will hold a specific discussion on individual visualization below.

3.1 Changing the mapping objects to be controlled

Traditional way: controlling the mapping family As described in Section 2.2, the cornerstone of all tradi-
tional pdf visualization procedures is based on defining the mapping familyMpdf (or more exactlyMind

from whichMpdf is almost always deduced). Then, the pdf family G of g is a simple by-product ofMpdf,
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and thus can be denoted by G(Mpdf). Using the general mapping expression (5), G(Mpdf) is naturally
expressed as follows:

G(Mpdf) = {g : g = Mpdf(f), f ∈ F ,Mpdf ∈Mpdf} . (6)

As an immediate consequence, the nature of G can depend to a great extent on the choice of Mpdf,
leading potentially to very different cluster shapes. Arguments that lead to traditional Mpdf (or Mind)
rely essentially on a combination of user-friendly and easy-to-compute properties. For instance, in the
continuous case, linear mappings are often retained (like for PCA). In the categorical case, a continuous
space Y is often targeted (like for MCA). It is a similar situation for mixed data with MFA or MDS,
or also for functional data with FPCA, even if MDS is a somewhat more complex procedure since it
is not always defined in closed-form. However, such choices may vary significantly from one statistician
to another one. For instance, MDS relies on defining dissimilarities both inside spaces X and Y and
changing them could significantly affect the resulting mapping.

New proposed method: controlling the distribution family Alternatively, the general mapping expres-
sion (5) can be seen as indexed by the distribution family G, the mapping Mpdf being now obtained as
a by-product, and thus now denoted by Mpdf(G). This new point of view is straightforwardly expressed
as:

Mpdf(G) = {Mpdf : g = Mpdf(f), f ∈ F , g ∈ G} . (7)

It corresponds to the reversed situation of (6) where G has to be defined instead of Mpdf. This new
freedom indeed provides an opportunity to directly force G to be a user-friendly mixture family.

3.2 Constrained spherical Gaussians as matching candidates

Spherical Gaussians One of the most simple and natural candidate belonging to the “user-friendly mix-
ture family” is probably the spherical Gaussian mixture defined on Y = RdY . Its pdf is defined for any
y ∈ RdY by

g(y;µ) =

K∑
k=1

πkφdY (y;µk, I), (8)

where µ = (µ1, . . . ,µK) and φdY (.;µk, I) is the pdf of the Gaussian distribution with mean µk =
(µk1, . . . , µkdY ) ∈ RdY and covariance matrix equal to identity I.

Because clustering visualization is the central task of this work, it is natural to require that both
mixtures f and g(·;µ) have the most similar clustering information. This information is measured by
the probabilities of classification (see (3)). We note now pf as the pdf of the probabilities of classification
under mixture f and pg(·;µ) as the pdf of the probabilities of classification under mixture g(·;µ). In this
manner, a quite natural way for measuring the difference between both f and g(·;µ) clustering property
could be the following Kullback-Leibler divergence (pf being the reference measure):

δKL(f, g(·;µ)) =

∫
T

pf (t) ln
pf (t)

pg(t;µ)
dt (9)

where T = {t : t = (t1, . . . , tK−1), tk > 0,
∑
k tk < 1}. Then, the set G is defined as

G = {g : g = g(·;µ), g ∈ arg min δKL(f, g), f ∈ F} . (10)

Somewhere, it is mimicking the idea of Scrucca (2010) and Morris et al. (2013) which imposes (as far as
possible) the retention of the overlap of mixture distributions before and after the mapping.
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More constrains on Gaussians Another natural requirement should be that pg(·;µ) and g are linked by
a one-to-one mapping, meaning that for one distribution f , there is a unique distribution g(·;µ) which
minimizes (9). This target is reached firstly by setting dY = K − 1 and secondly by setting µK = 0,
µkh = 0 if h > k, and µkk ≥ 0. This last restriction prevents any rotation and/or translation of y from
providing the same distribution pg(·;µ) but a different distribution g(·;µ).

For technical convenience, we consider now the following one-to-one mapping Λ between t and a
classical transformation of the latter, which we express hereafter as t̃

Λ : t = (t1, . . . , tK−1) ∈ T 7→ t̃ = (t̃1, . . . , t̃K−1) ∈ [0,∞)K−1 with t̃k =
tk

1−
∑K−1
`=1 t`

. (11)

It is essential to note that, by considering mixture g(·;µ), there is also a one-to-one mapping Ψ between
y and the new previous notation t̃

Ψ(·;µ) : y 7→ t̃ with Ψ(y;µ) =

(
π1φdY (y;µ1, I)

πKφdY (y;µK , I)
, . . . ,

πK−1φdY (y;µK−1, I)

πKφdY (y;µK , I)

)
. (12)

Moreover, we have

Ψ−1(t̃;µ) = M−1


ln
(
t̃1
πK

π1

)
+ 1

2 ||µ1||2

...

ln
(
t̃K−1

πK

πK−1

)
+ 1

2 ||µK−1||
2

 with M =

 µ′1
...

µ′K−1

 , (13)

where matrices M and M−1 are lower triangular.

3.3 Estimating the Gaussian centers

Invoking a log-likelihood From (10), we consider the distribution g(·;µ∗) where the centers µ∗ are defined

by µ∗ = arg min δKL(f, g(·;µ)). Noting that |JacΛ(t)|−1 =
∑K−1
k=1 tk,

µ∗ = arg min

∫
[0,∞)K−1

p̃f (t̃) ln
p̃f (t̃)

p̃g(t̃;µ)

(
K−1∑
k=1

tk

)
dt̃, (14)

where p̃f (·) and p̃g(·;µ) denote the pdf of t̃ by considering distribution f and g(·;µ), respectively. It is
possible to explicitly and easily express the previous p̃g(·;µ) distribution by using the change of variables
theorem combined with the linear transformation (13), which leads to the following term, obtained by

noting that |JacΨ−1(·;µ)(t̃)|−1 =
∏K−1
k=1 (µkk t̃k)−1,

p̃g(t̃;µ) = g(Ψ−1(t̃;µ);µ)

K−1∏
k=1

(µkk t̃k)−1. (15)

Unfortunately, the Kullback-Leibler divergence defined in (14) has generally no closed-form. However,

it is easy to independently draw a sample of S ratios of conditional probabilities t̃ = (t̃
(1)
, . . . , t̃

(S)
)

from p̃f . This sample can be used to estimate the previous integral such that maximizing the following
normalized (observed-data) log-likelihood function

L(µ; t̃) =
1

S

S∑
s=1

ln p̃g(t̃
(s)

;µ), (16)

is equivalent to solving (14) asymptotically on S.
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Maximizing the log-likelihood The log-likelihood (16), combined with (15), entails the pdf of a mixture
model. Thus, it can be classically broken down into a normalized complete-data log-likelihood Lcomp and
a normalized entropy term E as follows (Hathaway 1986):

L(µ; t̃) = Lcomp(µ; t̃) + E(t̃), (17)

where, noting Λ−1(t̃) = (Λ−11 (t̃), . . . , Λ−1K−1(t̃)) the inverse function of Λ,

Lcomp(µ; t̃) = c−
K−1∑
k=1

lnµkk −
1

2S

S∑
s=1

K−1∑
k=1

Λ−1k (t̃
(s)

)||Ψ−1(t̃
(s)

;µ)− µk||2, (18)

E(t̃) = − 1

S

S∑
s=1

K−1∑
k=1

Λ−1k (t̃
(s)

) lnΛ−1k (t̃
(s)

), (19)

with a constant term c = 1
S

∑S
s=1

∑K−1
k=1 Λ−1k (t̃

(s)
) lnπk − 1

S

∑S
s=1

∑K−1
k=1 lnΛ−1k (t̃

(s)
). Since the normal-

ized entropy does not depend on µ, an estimate µ̂ of µ∗ is obtained only via the maximization of the
normalized complete-data likelihood. This maximization is straightforward only if K = 2. Otherwise, a
standard Quasi-Newton algorithm should be run with different random initializations, in order to avoid
possible local optima. In practice, we use S = 5000 which allows for a fast estimation of the centers and
stability of the results.

4 Final visualization as bivariate spherical Gaussians

4.1 From a multivariate to a bivariate Gaussian mixture

Because g is defined on RK−1, it is inconvenient to draw this distribution if K ≥ 3. Therefore, we apply
an LDA to g to represent this distribution on its most discriminative map (i.e., eigen value decomposition
of the covariance matrix computed on the centers µ̂ by considering the mixture proportions π), leading
to the following bivariate spherical Gaussian mixture g̃:

g̃(ỹ; µ̃) =

K∑
k=1

πkφ2(ỹ; µ̃k, I), (20)

where ỹ ∈ R2, µ̃ = (µ̃1, . . . , µ̃K) and µ̃k ∈ R2. The (standard) percentage of inertia of LDA serves
to measure the quality of the mapping from g to g̃. In addition, the accuracy of the mapping from
the initial mixture f to the final “ready-to-be-drawn” mixture g̃ can be easily compared through the
following difference between the normalized entropy of f and the normalized entropy of g̃, namely

δE(f, g̃) = − 1

lnK

K∑
k=1

{∫
X
tk(x; f) ln tk(x; f)dx−

∫
R2

tk(ỹ; g̃) ln tk(ỹ; g̃)dỹ

}
. (21)

Such a quantity can be easily estimated using empirical values. Its meaning is particularly relevant: if
δE(f, g̃) is close to zero then the component overlap conveyed by g̃ (over f) is accurate; if it is close
to one, then g̃ strongly underestimates the component overlap of f ; if it is close to negative one, then
g̃ strongly overestimates the component overlap of f . Thus, δE(f, g̃) serves to evaluate the bias of the
visualization.

Remark When the initial data set x is in the continuous space X = Rd and also when the initial clustering
relies on a Gaussian mixture f whose covariance matrices are identicaly, then the proposed mapping is
strictly equivalent to applying a LDA to the centers of f .
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4.2 Proposal for drawing the bivariate Gaussian mixture

The aim is now to draw the pdf g̃ on the most discriminative map in a manner that highlights as much
as possible the overlap between components. Indeed, it is primarily such information that acted as a
guideline to transform f into g̃. The proposed graph will display the following elements:

– Cluster centers: the locations of µ̃1, . . . , µ̃K are materialized by vectors.
– Cluster spread: the 95% confidence level is displayed by a black border which separates the area

outside the confidence level in white from the area inside the confidence level in gray levels (i.e.,, the
set Ω is in gray where Ω = {ỹ : g(ỹ; µ̃) > uα} with uα such that

∫
Ω
g(ỹ; µ̃)dỹ = 1 − α; by default

plots are made with α = 0.05).
– Cluster overlap: curves of iso-probability of the MAP classification are also displayed for different

levels ` (associated with different gray levels), a curve being composed of the set of ỹ such that

max
k=1,...,K

πkφ2(ỹ; µ̃k)

g̃(ỹ; µ̃)
= `. (22)

– Mapping accuracy: the accuracy of this representation is given by the difference between entropies
δE(f, g̃) and also by the percentage of inertia by axis.

4.3 Continuation of the running example

We now illustrate the previous visualization proposition on the running example. Figure 2 is the com-
ponent interpretation graph obtained for the congressional voting records. It presents the Gaussian-like
component overlap on the most discriminative map. In this way, it provides in a more concise way than
a traditional confusion table the overlap information of the initial mixture f . Note that the mapping of
f on this graph is accurate because the difference between entropies is almost zero (i.e., δE(f, g̃) = 0.01).
For instance, this figure also shows that the most numerous components (i.e., components three and
four) are composed of strongly different Congressmen. Indeed, the overlap between these components is
almost zero. It is also easy to make other comments about the relative positioning of each component.

Fig. 2 Component interpretation graph of the congressional voting records.
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5 Proposal for drawing a pseudo bivariate scatter plot

5.1 From pdf visualization to individual visualization

We have limited our attention to the mapping of the initial cluster pdf f , described by (5), intentionally
discarding the mapping of the initial individual data set x, described by (4). We have already discussed
that the pdf mapping (5) can be a by-product of the individual mapping (4). However, the reverse
is mathematically impossible, the distributional information being weaker than the random variable
information.

Nevertheless, a pseudo scatter plot y of x can be mapped onto RK−1 by transforming the ratios
of probabilities Λ(ti(f)), associated with xi by f , into values yi through the reverse application of
Ψ−1(·; µ̂) associated with g(·; µ̂), namely yi = Ψ−1(Λ(ti(f)); µ̂) (i = 1, . . . , n). Then, each observation
yi is projected on the LDA map, leading to a pseudo scatter plot ỹ = (ỹ1, . . . , ỹn), with each ỹi ∈ R2.

We use the term “pseudo” for ỹ (or for y) because some caution has to taken in order to avoid
misunderstanding. Indeed, the distribution of ỹ is expected to be different from g(·; µ̃), the essential
property of ỹ being to respect as far as possible the conditional probabilities t(f) associated to x, not
to respect as far as possible the distribution f itself. In fact, only when f corresponds to a spherical
Gaussian mixture do distributions of ỹ and of g(·; µ̃) match.

Such remarks strongly affect the related drawing we propose for the scatter plot ỹ:

– Data drawing: display ỹ on the LDA best discriminative map as dots of different colors representing
the partition membership z.

– Conditional probabilities: information about the uncertainty of classification is given by the curves
of iso-probability of classification.

– Mapping accuracy: again, the accuracy of this representation is given by the difference between
entropies δE(f, g̃) and also by the percentage of inertia by axis.

– No pdf overlay: do not display ỹ simultaneously with g̃(.; µ̃) to avoid misunderstanding; therefore
use another graph.

5.2 Continuation of the running example

Figure 3 displays the scatter plot of the observation memberships obtained on the congressional voting
records. It overlays on the most discriminative map the curve of iso-probabilities of classification and the
cloud of observations. Three levels of probabilities of classification are considered (0.95, 0.80 and 0.50)
and observations are represented with the label of the component maximizing the posterior probability of
classification. This plot serves to focus on specific observations and, for instance, to detect observations
classified with a high uncertainty of classification.

6 Numerical illustrations for complex data

We present applications of the visualization method on three real data sets composed of complex features
(mixed, functional and network data). They illustrate the ability of the method to deal with extremely
different kinds of data and of mixtures, without any new specific development. Results are obtained by
the r package ClusVis which implements the visualization method.

6.1 Mixed data: Contraceptive method choice

Data This dataset x is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey (Lim
et al. 2000). It described 1473 Indian women with two numerical variables (age and number of children)
and eight categorical variables (education level, education level of the husband, religion, occupation,
occupation of the husband, standard-of-living index and media exposure).
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Fig. 3 Scatter plot of the observation memberships of the congressional voting records.

Model used to cluster These mixed data are clustered by a mixture f assuming that variables are indepen-
dent within components (Moustaki & Papageorgiou 2005). Maximum likelihood inference is performed
by the r package Rmixmod (Lebret et al. 2015). Model selection is done by the BIC criterion which
detects six components.

Model drawing Figure 4 presents the component interpretation graph obtained for the contraceptive
method choice data. It shows overlaps between component one, two and three. Moreover, components
four and five are significantly different from component six. Such a visualization is in accordance with
a fine study of Table 1, which presents the parameters of the continuous variables. Indeed, we can see
that components one, two and three are all composed of middle-age women who have many children. On
the contrary, components four and five are composed of young women who have few children. Finally,
component six is composed of the oldest women. Therefore, the first axis can be interpreted as the
age of the women (left size is composed of older women than on the right size). Finally, the second axis
distinguishes components two, four and six from the others. As shown in Table 2, these three components
have the same mode for the eight categorical variables.

Fig. 4 Component interpretation graph of the Contraceptive method choice.

11



Age Number of children
Mean Variance Mean Variance

Component 1 35 30 4 4
Component 2 35 22 3 2
Component 3 40 42 5 9
Component 4 25 10 1 1
Component 5 24 13 2 1
Component 6 45 7 5 8

Table 1 Parameters of the continuous variables for the Contraceptive method choice.

education husband’s religion occupation husband’s standard-of- media
level education level occupation living index exposure

Component 1 3 3 2 2 3 4 1
Component 2 4 4 2 2 1 4 1
Component 3 1 2 2 2 3 3 1
Component 4 4 4 2 2 1 4 1
Component 5 3 3 2 2 3 3 1
Component 6 4 4 2 2 1 4 1

Table 2 Modes of the categorical variables for the Contraceptive method choice.

Scatter plot drawing The scatter plot of the observation memberships is presented in Figure 5. The
overlap between components one and three is obvious. Note that, on this figure, some observations
classified under component one are projected on a location where the MAP rule would classify them under
component three. However, on the space R5, the probabilities of classification are respected precisely.
But this well-known phenomenon is due to the projection of the observations yi from R5 to R2 when
projecting a discriminative rule.

Fig. 5 Scatter plot of the observation memberships of the Contraceptive method choice.

6.2 Functional data: Bike sharing system

Data We consider now the study of the Bike sharing system data presented by Bouveyron et al. (2015).
We analyze station occupancy data collected over the course of one month on the bike sharing system

12



in Paris. The data were collected over 5 weeks, between February, 24 and March, 30, 2014, at 1 189
bike stations. The station status information, in terms of available bikes and docks, were downloaded
every hour during the study period for the seven systems from the open-data APIs provided by the
JCDecaux company. To accommodate the varying stations sizes (in terms of the number of docking
points), Bouveyron et al. (2015) normalized the number of available bikes by station size and obtained
a loading profile for each station. The final data set contains 1 189 loading profiles, one per station,
sampled at 1 448 time points. Note that the sampling is not perfectly regular; there is one hour, on
average, between the two sample points. The daily and weekly habits of inhabitants introduce a periodic
behavior in the BSS station loading profiles, with a natural period of one week. It is thus natural to use
a Fourier basis to smooth the curves, with basis functions corresponding to sine and cosine functions of
periods equal to fractions of this natural period of the data. Using such a procedure, the profiles of the
stations were projected on the basis of 25 Fourier functions.

Model used to cluster We conduct a model-based clustering of these functional data (Bouveyron et al.
2015) using the r package FunFEM (Bouveyron 2015) . The parameters of the model presented by
Bouveyron et al. (2015) (i.e., K = 10 and DFM[αkjβ] model) are estimated. Figure 6 presents the curves
for the 10 components based on the MAP rule.

Model drawing Figure 7 presents the component interpretation graph obtained for the bike sharing
system data. The representation has good accuracy, because the difference between entropies is small
(i.e., δE(f, g̃) = −0.03). It shows a strong similarity between components three and four. In Figure 6,
we can see that the curves classified in these components are similar (high values with the same phase).
Component two and six overlap because they have a very low amplitude. Moreover, Figure 7 shows that
component seven is the most isolated one. This component corresponds to the group that Bouveyron
et al. (2015) called empty stations. Finally, components eight and nine are significantly different because
they have a phase opposition. Thus, these components are at opposite locations on this figure.

Scatter plot drawing The scatter plot of the observation memberships is presented in Figure 8. It confirms
the interpretation of Figure 7. Indeed, the observations classified in components three and four are well-
mixed. Similarily, one can observe an overlap between components two and six. Finally, the observations
classified in component seven are isolated.

6.3 Network data: French political blogosphere

Data We consider the clustering of the French political blogosphere network (Zanghi et al. 2008). Data
consist of a single day snapshot of over 1 100 political blogs automatically extracted on October, 14th,
2006 and manually classified by the “Observatoire Présidentielle” project. This project is the result of
collaborative work by RTGI SAS and Exalead and aims at analyzing the French presidential campaign
on the web. In this data set, nodes represent hostnames (a hostname contains a set of pages) and edges
represent hyperlinks between different hostnames. If several links exist between two different hostnames,
Zanghi et al. (2008) subsum them into a single one. Note that intra-domain links can be considered if
hostnames are not identical. Finally, in this experimentation we consider that edges are not oriented
which is not realistic but which does not affect the interpretation of the groups. This network presents
an interesting community-based organization due to the existence of several political parties and com-
mentators. We assume that authors of these blogs tend to link, blogs with similar political positions as
a result of their political affinities.

Model used to cluster We use the graph clustering via Erdös–Rényi mixture proposed by Zanghi et al.
(2008) and implemented on the r package mixer. As proposed by these authors, we consider K = 6 com-
ponents. The confusion matrix between the component memberships and the political party memberships
is given in Table 3.
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Fig. 6 Partition among the 1 189 bike stations in Paris (each row corresponds to a single component and gives the mean
curve in bold and observations belonging to this component in thin).

Model drawing Figure 9 presents the component interpretation graph obtained for the French political
blogosphere data. The graph slightly over-represents the component overlaps (i.e., δE(f, g̃) = −0.216).
Indeed, the (normalized) entropy of f is equal to 0.016 while the entropy of the projection of g into the
most discriminative space is equal to 0.221. Note that this difference between entropies is due to the
projection of the data from R5 to R2. Indeed, the entropy of g (in R5) is closed to those of f with a value
of 0.004. The loss of information due to the data projection can also be detected by the inertia, because
only 56.76% of the inertia is represented by this most discriminative map. Therefore, the components
overlaps should be interpreted with more caution than in the previous examples, where the differences
between entropies were close to zero.

The graph shows that components three and six overlap significantly. This result is natural because
component three is mainly comprises UMP members (“French Republican”) and component sixis com-
posed of supporters of economic-liberalism. Finally, component one which comprises of politicians from
different political parties is the most isolated.
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Fig. 7 Component interpretation graph of the bike sharing system.

Fig. 8 Scatter plot of the observation memberships of the bike sharing system.

Scatter plot drawing Figure 10 presents the scatter plot of the observation memberships. It confirms the
proximity between components three and six.

7 Conclusion

We presented a generic method for visualizing the results of a model-based clustering in a “Gaussian
way”. This method allows for visualization of clustering made on any type of data, because it is based on
the distribution of classification probabilities. This method produces two graphs. The first graph allows
for the component interpretation through all component overlaps. The second graph represents a scatter
plot of the observations and many curves of iso-probabilities of classification. It serves to focus on the
classification of specific observations and to quantify the risk of misclassification. Finally, the accuracy
of the procedure can be measured by taking the difference between the normalized entropies obtained
by the model used to cluster and by the model defined on the visualization map.

The proposed procedure has been developed by considering that the model used to visualize is a
constrained Gaussian mixture. Obviously, other continuous distributions could be considered. However,
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Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6
Cap21 2 0 0 0 0 0

Commentateurs Analystes 10 0 0 1 0 0
FN - MNR - MPF 2 0 0 0 0 0

Les Verts 7 0 0 0 0 0
PCF - LCR 7 0 0 0 0 0

PS 31 0 0 0 26 0
Parti Radical de Gauche 11 0 0 0 0 0

UDF 1 1 0 30 0 0
UMP 2 25 11 2 0 0

liberaux 0 1 0 0 0 24

Table 3 Confusion matrix between the component memberships and the political party memberships.

Fig. 9 Component interpretation graph of the French political blogosphere.

Fig. 10 Scatter plot of the observation memberships of the French political blogosphere.

these distributions must define a one-to-one relation between the space of the probability of classification
and the continuous space. If several distributions compete, then the best distribution could be the dis-
tribution that leads to minimization of the Kullback-Leibler divergence δKL(f, g). Alternatively, because
there is a step of LDA-like projection, the best distribution could be the distribution that minimizes the
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difference between the normalized entropies obtained by f and by the projected distribution g̃, namely
δE(f, g̃). Finally, if non-Gaussian mixtures are considered, it is crucial that the resulting graph presenting
the component overlaps is still meaningful and does not entail excessively boring calculus. In particular,
it could be meaningful to explore non-unimodal component candidates.
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