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Clustering searches a hidden structure among data. Co-Clustering searches a structure among data and variables at the same time. Mixture Models are commonly used for Clustering [9] and Co-Clustering [7]. But, most of the Mixture Models used in (Co-)Clustering
are scale sensitive : changing one descriptor unit/coding may change the estimated structure(s). Instead of being a drawback such a mathematical unsustainability is an opportunity to enlarge the existing set of (Co-)Clustering models ; indeed, combining one
standard model with several data units provides a new collection of (Co-)Clustering models needing few creative efforts.

Model-Based Clustering and Co-Clustering

Targets

x = (xi,j) : a n×d data matrix of n individuals (rows) described by d features (columns).

Clustering Target : finding a K-class partition z = (zi,k) ∈ {0, 1}n×K of the rows :
zi,k = 1 iif xi,• = (xi,1, . . . , xi,d) ∈ Individual Class k.

Co-Clustering Target : finding z and a L-block partition w = (wj,l) ∈ {0, 1}d×L of the

columns : wj,l = 1 iif x•,j = (x1,j, . . . , xn,j)
′ ∈ Feature Block l.

Models

Clustering Model : the pdf of x is the likelihood of a K-component mixture model :

p(x;θ) =
n∏

i=1

K∑

k=1

πkf (xi,•;αk) (1)

where πk and f (◦;αk) denote respectively the weight and the pdf of Individual Class k.

Co-Clustering Model (Latent Block Model) : the pdf of x is :

p(x;θ) =
∑

z,w

∏

i,k

π
zi,k
k

∏

j,l

ρ
wj,l

l

∏

i,j,k,l

{f (xi,j;αk,l)}
zi,kwj,l (2)

where πk is the weight of individual Class k, ρl the weight of Feature Block l and
f (◦;αk,l) the pdf of one feature of Feature Block l, in Individual Class k.

Inference

Iterative procedures deriving from the EM algorithm [5] can be used to maximize (1) or
(2) with respect to θ, providing the Maximum Likelihood estimate θ̂.

Clustering Inference. A SEM algorithm [4] implemented into the MixtComp software a

estimates θ even when (i) x includes missing data (ii) x columns are mixed type (nominal,
count, continuous, etc.). A SE final step (SEM without M step) provides the estimated
partition ẑ.

Co-Clustering Inference. A SEM-Gibbs algorithm [7, p.74] implemented
into the BlockCluster software a estimates θ when features are all conti-
nuous/binary/categorical/contigency. A SE final step (SEM without M step) provides
the estimated partitions ẑ, ŵ.

Model Selection

Clustering Model Selection. Noting Θ the space of θ, a clustering model is a 3-tuplem =

(K, f,Θ) and BIC criterion [11] defined by : BIC(m) = − log p(x; θ̂)+(dof/2) log(n)
enables to : (i) assess a tradeoff between m goodness of fit and parsimony (ii) compare
competing models inferred on x (iii) select the class pdf f as the class number K.

Co-Clustering Model Selection. ICL criterion [2] computed on a co-clustering model
m = (K,L, f,Θ) is the logarithm of the integrated likelihood of the complete data
(x, z,w) : ICL(m) = log

∫
Θ p(x, z,w;θ)dθ. So, ICL favours well separated Individual

Classes and well separated Feature Blocks. Moreover, when all features are categorical
ICL is tractable without approximation [7, p.97].

a. freely available on the MASSICCC web platform https ://modal-research-dev.lille.inria.fr

Unit Change and Model Enlargement

Data Types

Each column of x is a series of numbers since any M -level nominal variable can be coded
as a M -dimensional vector of dummy variables.

The type of Feature j depends on the set Xj where x1,j, . . . , xn,j leave. According to
Xj = R, Xj = N or Xj = {0, 1}, x1,j, . . . , xn,j are continuous/count/binary/etc. data.

Unit Changes

Feature j can be rescaled/recoded through φj, a bijective map matching Xj with a space
of rescaled data : φj(Xj).

Remark. The global scaling map φ = (φ1, . . . , φd) is :

- feature wise : the rescaled series x
φ
•,j only depends on x•,j

- homogeneous across classes : φj(xi,j) does not depend on zi,•
- non parametric

Enlarging the (Co-)Clustering Model

Assuming (1) as a pdf for the rescaled data xφ = (φj(xi,j)) leads to set as a pdf for x :

pφ(x,θ) =
n∏

i=1

K∑

k=1

[πkf (x
φ
i,•,αk)

∏

j∈J

|φ′j(xi,j)|] (3)

where x
φ
i,• = (φ1(xi,1, . . . , φd(xi,d)) and J ⊂ {1, . . . , d} countains the indices of the

continuous features.

Assuming (2) as a pdf for the rescaled data xφ leads to set as a pdf for x :

pφ(x,θ) =
∑

z,w

∏

i,k

π
zi,k
k

∏

j,l

ρ
wj,l

l

∏

i,j,k,l

[f (φj(xi,j),αk,l)γi,j]
zi,kwj,l (4)

where γi,j = |φ′j(xi,j)| if Feature j is continuous and γi,j = 1 otherwise.

Both models p(◦;θ) and pφ(◦;θ) can be compared on x data through BIC or ICL.
Any (co-)clustering model p(◦;θ) on xφ data produces a new model pφ(◦;θ) on x data.

Consequences

In a clustering context.

◦ Cluster analysis of d-dimensional continuous data with the R package mixmod [8].

�

28 Gaussian Mixture Models among which 12 are scale dependent
◦ Only one alternative measurement unit is considered for each continuous feature

�

12× (2d − 1) additional models are immediately available
◦ Similar enlargement can be applied to other packages involving Gaussian mixtures :
bgmm [1], mclust [6], pgmm [10], etc.

In a co-clustering context.

◦ Co-Cluster analysis of d-dimensional binary data (0/1) into K classes and L blocks.

�

a convenient model : the Latent Block Model.
◦ Each one of the d series is possibly recoded (permutation of 0 and 1).

�

2d − 2 additional models immediately available.

First Experiments and Future Prospects

A Cluster Analysis Example (using MixtComp a software)

· R dataset rwm1984{COUNT} consists on n = 3, 874 patients of German hospitals decri-
bed by 11 variables : 4 count, 1 categorical, 5 binary, 1 continuous.
· MixtComp model : count ∼ Poisson, categorical ∼ Multinomial, binary ∼ Bernoulli,
continuous ∼ Gaussian + local independence
· Data Units. 4 maps φ are considered rescaling some of the counts one by one : (a) none
of the variables are rescaled (raw units) (b) time spent into hospital is counted in half
days instead of days (c) ages are shifted (youngest age taken as origin) (d) duration of
education is shifted (shortest duration taken as origin).

BIC values obtained by combining several units and class numbers on rwm1984{COUNT} data

Data units best BIC K̂
(a) raw counts (original units) 51647 21
(b) half days into hospital 52327 20
(c) shifted ages 51833 21
(d) shifted years of education 50044 23

Combining the shifted
duration of education with a
Poisson model improves the
best BIC clustering model

A Co-Cluster Analysis Example (using BlockCluster a software)

· The Congressional Voting Records Data Set b provides the response (y/n/ ?) of n = 435
U.S. Congressmen on 16 votes.
· Standard coding : (1, 0, 0) for ’y’, (0, 1, 0) for ’n’, (0, 0, 1) for ’ ?’ on each vote
For each vote, an alternative coding : (0, 1, 0) for ’y’ and (1, 0, 0) for ’n’

·K = 2 since the party (Democrat/Republican) of each congressman is known and L = 2

(a) standard coding (b) best ICL coding
ICL 5, 916.13 5,458.15

error rate 0.4229 0.1403
ARI 0.0234 0.5175

original data (left), co-
clustered data (right), Indi-
vidual Class rule (horizon-
tal) and Feature Block rule
(vertical)
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Recoding five votes (i) provides the best ICL model (ii) enables to re-
trieve more accurately the party of each congressman (iii) gives more
coherence to the vote blocks

Other clustering and co-clustering examples. see [3]

Chalenging Issues

· Each scaling map φj could (i) become parametric (ii) depend on all features (iii) depend
on the class. Parametric classwise and featurewise maps are considered in [12].
· All combinations : unit × model cannot be browsed exhaustively in a reasonable com-
putational time when d is large. User friendly processes are needed to preselect a subset
of features to be rescaled.

a. MASSICCC web platform https ://modal-research-dev.lille.inria.fr
b. http ://archive.ics.uci.edu/ml/machine-learning-databases/voting-records/house-votes-84.data
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