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Abstract

For regulatory and interpretability reasons, the logistic regression is still
widely used by financial institutions to learn the refunding probability of
a loan from applicant’s historical data. To improve prediction accuracy
and interpretability, a preprocessing step quantizing both continuous and
categorical data is usually performed: continuous features are discretized
by assigning factor levels to intervals and, if numerous, levels of categorical
features are grouped. However, a better predictive accuracy can be reached
by embedding this quantization estimation step directly into the predictive
estimation step itself. By doing so, the predictive loss has to be optimized
on a huge and untractable discontinuous quantization set. To overcome
this difficulty, we introduce a specific two-step optimization strategy: first,
the optimization problem is relaxed by approximating discontinuous quan-
tization functions by smooth functions; second, the resulting relaxed op-
timization problem is solved via a particular neural network and stochas-
tic gradient descent. The strategy gives then access to good candidates
for the original optimization problem after a straightforward maximum a
posteriori procedure to obtain cutpoints. The good performances of this
approach, which we call glmdisc, are illustrated on simulated and real data
from the UCI library and Crédit Agricole Consumer Finance (a major Eu-
ropean historic player in the consumer credit market). The results show
that practitioners finally have an automatic all-in-one tool that answers
their recurring needs of quantization for predictive tasks.

1 Motivation

As stated by Hosmer Jr et al. (2013), in many application contexts (credit scoring, bio-
statistics, etc.), logistic regression is widely used for its simplicity, decent performance and
interpretability in predicting a binary outcome given predictors of different types (cate-
gorical, continuous). However, to achieve higher interpretability, continuous predictors are
sometimes discretized so as to produce a “scorecard”, i.e. a table assigning a grade to an ap-
plicant in credit scoring (or a patient in biostatistics, etc.) depending on its predictors being
in a given interval. Discretization is also an opportunity for reducing the (possibly large)
modeling bias which can appear in logistic regression as a result of the linearity assumption
on the continuous predictors in the model. Indeed, this restriction can be overcome by

*https://adimajo.github.io
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approximating the true predictive mapping with a step function where the tuning of the
steps and their sizes allows more flexibility. However, the resulting increase of the number
of parameters can lead to an increase in variance (overfitting) as shown in Yang & Webb
(2009). Thus, a precise tuning of the discretization procedure is required. Likewise when
dealing with categorical features which take numerous levels, their respective regression co-
efficients suffer from high variance. A straightforward solution formalized by Maj-Kańska
et al. (2015) is to merge their factor levels which leads to less coefficients and therefore less
variance.
From now on, the generic term quantization will stand for both discretization of continuous
features and level grouping of categorical ones. Its aim is to improve the prediction accuracy.
Such a quantization can be seen as a special case of representation learning, but suffers
from a highly combinatorial optimization problem whatever the predictive criterion used
to select the best quantization. The present work proposes a strategy to overcome these
combinatorial issues by invoking a relaxed alternative of the initial quantization problem
leading to a simpler estimation problem since it can be easily optimized by a specific neural
network. This relaxed version serves as a plausible quantization provider related to the
initial criterion after a classical thresholding (maximum a posteriori) procedure.
The outline of this work is the following. In the next section, we formalize both continu-
ous and categorical quantization. Selecting the best quantization in a predictive setting is
reformulated as a model selection problem on a huge discrete space. In Section 3, a par-
ticular neural network architecture is used to optimize a relaxed version of this criterion
and propose good quantization candidates. Section 4 is dedicated to numerical experiments
on both simulated and real data from the field of Credit Scoring, highlightening the good
results offered by the use of this new method without any human intervention. A final
section concludes the work by stating also new challenges.

2 Quantization as a combinatorial challenge

2.1 Quantization: definition

General principle The quantization procedure consists in turning a d-dimensional raw
vector of continuous and/or categorical features x = (x1, . . . , xd) into a d-dimensional cat-
egorical vector via a component wise mapping q = (qj)

d
1:

q(x) = (q1(x1), . . . , qd(xd)),

where each of the qj ’s is a vector of mj dummies:
qj,h(·) = 1 if xj ∈ Cj,h, 0 otherwise, 1 ≤ h ≤ mj , (1)

where mj is an integer and the sets Cj,h are defined with respect to each feature type as we
describe just below.

Raw continuous features If xj is a continuous component of x, quantization qj has to
perform a discretization of xj and the Cj,h’s, 1 ≤ h ≤ mj , are contiguous intervals

Cj,h = (cj,h−1, cj,h] (2)
where cj,1, . . . , cj,mj−1 are increasing numbers called cutpoints, cj,0 = −∞, cj,mj

= ∞.
For example, the quantization of the unit segment in thirds would be defined as mj = 3,
cj,1 = 1/3, cj,2 = 2/3 and subsequently qj(0.1) = (1, 0, 0).

Raw categorical features If xj is a categorical component of x, quantization qj consists
in grouping levels of xj and the Cj,hs form a partition of the set, say {1, . . . , lj}, of levels of
xj :

mj⊔
h=1

Cj,h = {1, . . . , lj}.

For example, the grouping of levels encoded as “1” and “2” would yield Cj,1 = {1, 2} such
that qj(1) = qj(2) = (1, 0, . . . , 0).
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Notations for the quantization family In both continuous and categorical cases, keep
in mind that mj is the dimension of qj . For notational convenience, the (global) order of
the quantization q is set as

|q| =
d∑

j=1

mj .

The space where quantizations q live will be denoted by Q in the sequel.

Literature review The current practice of quantization is prior to any predictive task,
thus ignoring its consequences on the final predictive ability. It consists in optimizing a
heuristic criterion, often totally unrelated (unsupervised methods) or at least explicitly
(supervised methods) to prediction, and mostly univariate (each feature is quantized ir-
respective of other features’ values). The cardinality of the quantization space Q can be
calculated explicitely w.r.t. d, (mj)

d
1 and, for categorical features, lj . It is huge, so that a

greedy approach is intractable and such heuristics are needed. Many algorithms have thus
been designed and a review of approximatively 200 discretization strategies, gathering both
criteria and related algorithms, can be found in Ramírez-Gallego et al. (2016). For factor
levels grouping, we found no such taxonomy, but some discretization methods, e.g. χ2 inde-
pendence test-based methods can be naturally extended to this type of quantization, which
is for example what the CHAID algorithm, proposed by Kass (1980) and applied to each
categorical feature, relies on.

2.2 Quantization embedded in a predictive process

Logistic regression on quantized data Quantization is a widespread preprocessing step
to perform a learning task consisting in predicting, say, a binary variable y ∈ {0, 1}, from a
quantized predictor q(x), through, say, a parametric conditional distribution pθ(y|q(x)) like
logistic regression. Considering quantized data instead of raw data has a double benefit.
First, the quantization order |q| acts as a tuning parameter for controlling the model’s
flexibility and thus the bias/variance trade-off of the estimate of the parameter θ (or of its
predictive accuracy) for a given dataset. This claim becomes clearer with the example of
logistic regression we focus on, as a still very popular model for many practitioners. It is
classically described by

ln
(

pθ(1|q(x))
1− pθ(1|q(x))

)
= θ0 +

d∑
j=1

θ′
j · qj(xj), (3)

where θ = (θ0, (θj)
d
1) ∈ R|q|+1 and θj = (θ1j , . . . , θ

mj

j ) with θ
mj

j = 0, j = 1 . . . d, for identi-
fiability reasons. Second, at the practitioner level, the previous tuning of |q| through each
feature’s quantization order mj , especially when it is quite low, allows an easier interpre-
tation of the most important predictor values involved in the predictive process. Denoting
the dataset by (x,y), with x = (x1, . . . ,xn) and y = (y1, . . . , yn), the log-likelihood

`q(θ; (x,y)) =
n∑

i=1

ln pθ(yi|q(xi)) (4)

provides a Maximum Likelihood estimator θ̂q of θ for a given quantization q. For the rest
of the paper, the approach is exemplified with logistic regression as pθ but it can be applied
to any other predictive model, as will be recalled in the concluding section.

Quantization as a model selection problem As dicussed in the previous section, and
emphasized in the literature review, quantization is often a preprocessing step; however,
quantization can be embedded directly in the predictive model. Continuouing our logistic
example, a standard information criteria such as the BIC (Schwarz (1978)) can be used to
select the best quantization q:

q̂ = arg max
q∈Q

{
`q(θ̂q; (x,y))−

1

2
νq ln(n)

}
(5)
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where νq is the number of continuous parameters to be estimated in the θ-parameter space.
Note however that an exhaustive search of q̂ ∈ Q is an intractable task due to its highly
combinatorial nature. For example, with d = 10 categorical features with lj = 4 levels each,
|Q| is given by the Stirling number of the second kind to the power d, which is approx.
6 · 1011. Anyway, the optimization (5) requires a new specific strategy that we describe in
the next section.

Remark on model identifiability The shifting of cutpoints (2) anywhere strictly be-
tween two successive raw values of a given continuous feature induce the same quantization.
Thus, the identifiability of such quantizations is obtained from the dataset x by fixing arbi-
trary cutpoints between successive data values, feature by feature. The continuous part of
Q then becomes a discrete set.

3 The proposed neural network based quantization

3.1 A relaxation of the optimization problem

In this section, we propose to relax the constraints on qj to simplify the search of q̂. Indeed,
the derivatives of qj are zero almost everywhere and consequently a gradient descent cannot
be directly applied to find an optimal quantization.

Smooth approximation of the quantization mapping A classical approach is to
replace the binary functions qj,h (see Equation (1)) by smooth parametric ones with a
simplex condition, namely with αj = (αj,1, . . . ,αj,mj ):

qαj
(·) =

(
qαj,h

(·)
)mj

h=1
with

mj∑
h=1

qαj,h
(·) = 1 and 0 ≤ qαj,h

(·) ≤ 1,

where functions qαj,h
(·), properly defined hereafter for both continuous and categorical

features, represent a fuzzy quantization in that, here, each level h is weighted by qαj,h
(·)

instead of being selected once and for all as in (1). The resulting fuzzy quantization for
all components depends on the global parameter α = (α1, . . . ,αd) and is denoted by
qα(·) =

(
qαj

(·)
)d
j=1

. This approximation is justified by the following arguments. From
a deterministic point of view, denoting by Q̃ the space of qα, we have Q ⊂ Q̃. From a sta-
tistical point of view, under standard regularity conditions and with a suitable estimation
procedure (see later for the proposed estimation procedure), we have consistency of (qα̂, θ̂)
towards (q,θ). From an empirical point of view, we will see in Section 4 and in particular
in Figure 2, that this smooth approximation qα converges towards “hard” quantizations* q.
For continuous features, we set for αj,h = (α0

j,h, α
1
j,h) ∈ R2

qαj,h
(·) =

exp(α0
j,h + α1

j,h·)∑mj

g=1 exp(α0
j,g + α1

j,g·)
where αj,mj

is set to (0, 0) for identifiability reasons.

For categorical features, we set for αj,h = (αj,h(1), . . . , αj,h(lj)) ∈ Rlj

qαj,h
(·) = exp (αj,h(·))∑mj

g=1 exp (αj,g(·))
where lj is the number of levels of the categorical feature xj .

Parameter estimation With this new fuzzy quantization, the logistic regression for the
predictive task is then expressed as

ln
(

pθ(1|qα(x))
1− pθ(1|qα(x))

)
= θ0 +

d∑
j=1

θ′
j · qαj

(xj), (6)

*Up to a permutation on the labels h = 1 . . .mj to recover the ordering in Cj,h (see Eq. (2)).
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where q has been replaced by qα from Equation (3). Note that as qα is a sound approxi-
mation of q (see above), this logistic regression in qα is consequently a good approximation
of the logistic regression in q from Equation (3). The relevant log-likelihood is here

`qα(θ; (x,y)) =
n∑

i=1

ln pθ(yi|qα(xi)) (7)

and can be used as a tractable substitute for (4) to solve the original optimization prob-
lem (5), where now both α and θ have to be estimated, which is discussed in the next
section. We wish to maximize the log-likelihood (6) which would yield parameters (α̂, θ̂);
these are consistent if the model is well-specified (i.e. there is a “true” quantization under
classical regularity conditions). To “push” Q̃ further into Q, we deduce q̂ from a maximum
a posteriori procedure applied to qα̂:

q̂j,h(xj) = 1 if h = arg max
1≤h′≤mj

qα̂j,h′ , 0 otherwise. (8)

If there are several levels h that satisfy (8), we simply take the level that corresponds to
smaller values of xj to be in accordance with the definition of Cj,h in Equation (2). This
maximum a posteriori principle will be exemplified in Figure 2 on simulated data.

3.2 A neural network-based estimation strategy

Neural network architecture To estimate parameters α and θ in the model (6), a
particular neural network architecture can be used. The most obvious part is the output
layer that must produce pθ(1|qα(x)) which is equivalent to a densely connected layer with
a sigmoid activation σ(·).
For a continuous feature xj of x, the combined use of mj neurons including affine trans-
formations and softmax activation obviously yields qαj

(xj). Similarly, an input categorical
feature xj with lj levels is equivalent to lj binary input neurons (presence or absence of the
factor level). These lj neurons are densely connected to mj neurons without any bias term
and a softmax activation. The softmax outputs are next aggregated via the summation in
model (6), say Σθ for short, and then the sigmoid function σ gives the final output. All
in all, the proposed model is straightforward to optimize with a simple neural network, as
shown in Figure 1.

continuous value xj

categorical value 1

...

categorical value lj

soft

soft

soft

soft

Σθ σ output

softmax
layerweights

αj

sigmoid
function

sum-
mation
function

soft outputs
qαj (xj)

Figure 1: Proposed shallow architecture to maximize (7).

Stochastic gradient descent as a quantization provider By relying on a stochastic
gradient descent, the smoothed likelihood (7) can be maximized over (α,θ). The results
should be close to the maximizers of the original likelihood (4) if the model is well-specified,
when there is a true underlying quantization. In the mis-specified model case, there is no
such guarantee. Therefore, to be more conservative, we evaluate at each training epoch
(t) the quantization q̂(t) resulting from the maximum a posteriori procedure explicited
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in Equation (8), then classicaly estimate the logistic regression parameter via maximum
likelihood, as done in Equation (4):

θ(t) = arg min
θ

`q(t)(θ; (x,y))

and the resulting BIC(t) as in (5). If T is a given maximum number of iterations of the
stochastic gradient descent algorithm, the quantization retained at the end is then deter-
mined by the optimal epoch

t∗ = arg min
t∈{1,...,T}

BIC(t).

Choosing an appropriate number of levels Concerning now the number of intervals or
factor levels m = (mj)

d
1, they have also to be estimated since in practice they are unknown.

Looping over all candidates m is intractable. But in practice, by relying on the maximum a
posteriori procedure developed in Equation (8), we might drop a lot of unseen factor levels,
e.g. if qαj,h

(xi,j) � 1 for all training observations xi,j , the level h “vanishes”, i.e. q̂j,h = 0.
In practice, we recommend to start with a user-chosen m = mmax and we will see in the
experiments of Section 4 that the proposed approach is able to explore small values of m
and to select a value m̂ drastically smaller than mmax. This phenomenon, which reduces
the computational burden of the quantization task, is also illustrated in the next section.

4 Numerical experiments

This section is divided into three complementary parts to assess the validity of our proposal,
that we call hereafter glmdisc. First, simulated data are used to evaluate its ability to
recover the true data generating mechanism. Second, the predictive quality of the new
learned representation approach is illustrated on several classical benchmark datasets from
the UCI library. Third, we use it on Credit Scoring datasets provided by Credit Agricole
Consumer Finance, a major European company in the consumer credit market. The Python
notebooks of all experiments, excluding the confidential real data, can be found on the first
author’s website.

4.1 Simulated data: empirical consistency and robustness

We focus here on discretization of continuous features (similar experiments could be con-
ducted on categorical ones). Two continuous features x1 and x2 are sampled from the
uniform distribution on [0, 1] and discretized by using

q1(·) = q2(·) = (1]−∞,1/3](·),1]1/3,2/3](·),1]2/3,∞](·)).
Here, following (2), we have d = 2 and m1 = m2 = 3 and the cutpoints are cj,1 = 1/3 and
cj,2 = 2/3 for j = 1, 2. Setting θ = (0,−2, 2, 0,−2, 2, 0), the target feature y is then sampled
from pθ(·|q(x)) via the logistic model (3).
From the glmdisc algorithm, we studied three cases:

(a) First, the quality of the cutoff estimator ĉj,2 of cj,2 = 2/3 is assessed when the starting
maximum number of intervals per discretized continuous feature is set to its true value
m1 = m2 = 3;

(b) Second, we estimated the number of intervals m̂1 of m1 = 3 when the starting maximum
number of intervals per discretized continuous feature is set to mmax = 10;

(c) Last, we added a third feature x3 also drawn uniformly on [0, 1] but uncorrelated to y
and estimated the number m̂3 of discretization intervals selected for x3. The reason is
that a non-predictive feature which is discretized or grouped into a single value is de
facto excluded from the model, and this is a positive side effect.

From a statistical point of view, experiment (a) assesses the empirical consistency of the
estimation of Cj,h, whereas experiments (b) and (c) focus on the consistency of the estima-
tion of mj . The results are summarized in Table 1 where 95% confidence intervals (CI) are
given, with a varying sample size. Note in particular that the slight underestimation in (b)
is a classical consequence of the BIC criterion on small samples.
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Sample size (a) ĉj,2 (b) m̂1 (c) m̂3

n = 1, 000 [0.656, 0.666] [2.679, 2.941] [1.326, 1.554]
n = 10, 000 [0.666, 0.666] [3.000, 3.000] [1.399, 1.621]

Table 1: (a) CI of ĉj,2 for cj,2 = 2/3. (b) CI of m̂ for m1 = 3. (c) CI of m̂3 for m3 = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
q0,1 q0,2 q0,3

x1

q α
0
,h

Continuous feature 0 at iteration 5

qα0,0

qα0,1

qα0,2

c0,1
c0,2
ĉ0,2

(a) Quantization q̂
(t)
1 (x1) resulting from the thresholding (8) at iterations t = 5 and mstart = 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
q0,1 q0,2 q0,3

x1

q α
0
,h

Continuous feature 0 at iteration 300

qα0,0

qα0,1

qα0,2

c0,1
c0,2
ĉ0,2
ĉ0,3

(b) Quantizations q̂
(t)
1 (x1) resulting from the thresholding (8) at iterations t = 300 and mstart = 3.

Figure 2: Quantizations q̂
(t)
1 (x1) of experiment (a) resulting from the thresholding (8).

4.2 Benchmark data

To test further the effectiveness of glmdisc in a predictive setting, we gathered 6 datasets
from the UCI library: the Adult dataset (n = 48, 842, d = 14), the Australian dataset
(n = 690, d = 14), the Bands dataset (n = 512, d = 39), the Credit-screening dataset
(n = 690, d = 15), the German dataset (n = 1, 000, d = 20) and the Heart dataset
(n = 270, d = 13). Each of these datasets have mixed (continuous and categorical) features
and a binary response to predict. To get more information about these datasets, their
respective features, and the predictive task associated with them, readers may refer to the
UCI website†.
Now that we made sure that our approach is empirically consistent, i.e. it is able to find
the true quantization in a well-specified setting, we wish to verify our claim that embedding
the learning of a good quantization in the predictive task via glmdisc is better than other
methods that rely on ad hoc criteria. As we were primarily interested in logistic regression,
we will compare our approach to a naïve linear logistic regression, a logistic regression on
continuous discretized data using the now standard MDLP algorithm from Fayyad & Irani
(1993) and categorical grouped data using χ2 tests of independence between each pair of
factor levels and the target in the same fashion as the ChiMerge discretization algorithm
proposed by Kerber (1992). As the original use case stems from Credit Scoring, we use the
performance metric usually monitored by Credit Scoring practitioners, which is the Gini
coefficient, directly related to the Area Under the ROC Curve (Gini = 2× AUC − 1).

†Dheeru & Karra Taniskidou (2017) : http://archive.ics.uci.edu/ml
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Dataset Additive linear
logistic regression

ad hoc
methods

Our proposal:
glmdisc

Adult 81.5 84.8 81.0
Australian 73.6 65.9 92.1
Bands 48.1 45.4 58.5
Credit-screening 81.3 88.5 93.4
German 52.1 57.9 70.4
Heart 79.4 76.0 84.0

Table 2: Gini indices of our proposed representation learning algorithm glmdisc and two
baselines: a “naïve” logistic regression and ad hoc methods (MDLP / χ2 tests) obtained on
several benchmark datasets from the UCI library.

Portfolio Additive linear
logistic regression

Current
performance

ad hoc
methods

Our proposal:
glmdisc

Automobile loans 58.8 55.6 60.4 55.0
Renovation loans 52.3 50.9 54.2 49.6
Standard loans 39.7 37.1 46.3 41.0
Revolving loans 61.5 58.5 62.9 60.3
Mass retail loans 52.5 48.7 63.7 61.3
Electronics loans 52.6 55.8 61.6 67.0

Table 3: Gini indices of our proposed representation learning algorithm glmdisc, the two
baselines of Table 2 and the current scorecard (manual / expert representation) obtained
on several portfolios of Credit Agricole Consumer Finance.

Table 2 shows our approach yields significantly better results on these rather small datasets
where the added flexibility of quantization might help the predictive task.

4.3 Credit Scoring data

Discretization, grouping and interaction screening are preprocessing steps relatively “man-
ually” performed in the field of Credit Scoring, using χ2 tests for each feature or so-called
Weights of Evidence (Zeng (2014)). This back and forth process takes a lot of time and
effort and provides no particular statistical guarantee.
Table 3 shows Gini coefficients of several portfolios for which there are n = 50, 000, n =
30, 000, n = 50, 000, n = 100, 000, n = 235, 000 and n = 7, 500 clients respectively and
d = 25, d = 16, d = 15, d = 14, d = 14 and d = 16 features respectively. Approximately
half of these features were categorical, with a number of factor levels ranging from 2 to 100.
We compare the rather manual, in-house approach that yields the current performance,
the naïve linear logistic regression and ad hoc methods introduced in the previous section
and finally our glmdisc proposal. Beside the classification performance, interpretability is
maintained and unsurprisingly, the learned representation comes often close to the “manual”
approach: for example, the complicated in-house coding of job types is roughly grouped
by glmdisc into e.g. “worker”, “technician”, etc. Notice that even if the “naïve” logistic
regression reaches some very decent predictive results, its poor interpretability skill (no
quantization at all) excludes it from standard use in the company.
The usefulness of discretization and grouping is clear on Credit Scoring data and although
glmdisc does not always perform significantly better than the manual approach, it allows
practitioners to focus on other tasks by saving a lot of time, as was already stressed out.
As a rule of thumb, a month is generally allocated to data pre-processing for a single data
scientist working on a single scorecard. On Google Collaboratory, and relying on Keras
(Chollet et al. (2015)) and Tensorflow (Abadi et al. (2015)) as a backend, it took less than
an hour to perform discretization and grouping for all datasets.
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5 Concluding remarks

Feature quantization (discretization for continuous features, grouping of factor levels for
categorical ones) in a supervised multivariate classification is a recurring problem in many
industrial contexts. This setting was formalized as a highly combinatorial representation
learning problem and a new algorithmic approach, named glmdisc, has been proposed as a
sensible approximation of a classical statistical information criterion.
This algorithm relies on the use of a softmax approximation of each discretized or grouped
feature. This proposal can alternatively be replaced by any other univariate multiclass
predictive model, which makes it flexible and adaptable to other problems. Prediction
of the target feature, given quantized features, was exemplified with logistic regression,
although here as well, it can be swapped with any other supervised classification model.
An estimation strategy putting neural networks’ good computational properties to use was
introduced while maintaining the interpretability necessary to some fields of application.
The experiments showed that, as was sensed empirically by statisticians in the field of
Credit Scoring, discretization and grouping can indeed provide better models than standard
logistic regression. This novel approach allows practitioners to have a fully automated and
statistically well-grounded tool that achieves better performance than ad hoc industrial
practices at the price of decent computing time but much less of the practitioner’s valuable
time.
As described in the introduction, logistic regression is additive in its inputs which does
not allow to take into account conditional dependency, as stated by Berry et al. (2010).
This problem is often dealt with by sparsely introducing “interactions”, i.e. products of
two features. This leads again to a model selection challenge on a highly combinatorial
discrete space that could be solved with a similar approach. In a broader context with no
restriction on the predictive model, Tsang et al. (2018) already made use of neural networks
to estimate the presence or absence of statistical interactions. The parsimonious addition
of pairwise interactions among quantized features, that might influence the quantization
process introduced in this work, is a future area of research.
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