
HAL Id: hal-01949068
https://hal.science/hal-01949068

Submitted on 19 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chocolate P Automata
Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Marion Oswald, Sergey Verlan

To cite this version:
Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Marion Oswald, Sergey Verlan. Chocolate P Au-
tomata. Lecture Notes in Computer Science, 11270, pp.1–20, 2018, Lecture Notes in Computer Sci-
ence, �10.1007/978-3-030-00265-7_1�. �hal-01949068�

https://hal.science/hal-01949068
https://hal.archives-ouvertes.fr

Chocolate P Automata

Artiom Alhazov1, Rudolf Freund2(B), Sergiu Ivanov3, Marion Oswald2,
and Sergey Verlan4

1 Institute of Mathematics and Computer Science,
Academiei 5, 2028 Chişinău, Moldova

artiom@math.md
2 Faculty of Informatics, TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria

{rudi,marion}@emcc.at
3 IBISC, Université Évry, Université Paris-Saclay,

23 Boulevard de France, 91025 Évry, France
sergiu.ivanov@univ-evry.fr

4 Laboratoire d’Algorithmique, Complexité et Logique, Université Paris Est Créteil,
61 Avenue du Général de Gaulle, 94010 Créteil, France

verlan@u-pec.fr

Abstract. We introduce several variants of input-driven tissue P
automata – we also will call them chocolate automata – where the rules
to be applied only depend on the input symbol. Both strings and mul-
tisets are considered as input objects; the strings are either read from
an input tape or defined by the sequence of symbols taken in, and the
multisets are given in an input cell at the beginning of a computation,
enclosed in a vesicle. Additional symbols generated during a computa-
tion are stored in this vesicle, too. An input is accepted when the vesicle
reaches a final cell and it is empty. The computational power of some
variants of input-driven tissue P automata (chocolate automata) is illus-
trated by examples and compared with the power of the input-driven
variants of other automata as register machines and counter automata.

1 Introduction

In the basic model of membrane systems as introduced at the end of the last
century by Gheorghe Păun, e.g., see [9,30], the membranes are organized in a
hierarchical membrane structure (i.e., the connection structure between the com-
partments/regions within the membranes being representable as a tree), and the
multisets of objects in the membrane regions evolve in a maximally parallel
way, with the resulting objects also being able to pass through the surround-
ing membrane to the parent membrane region or to enter an inner membrane.
Many variants of membrane systems, for obvious reasons mostly called P sys-
tems, have been investigated during nearly two decades, most of them being
computationally complete, i.e., being able to simulate the computations of regis-
ter machines. If an arbitrary graph is used as the connection structure between
the cells/membranes, the systems are called tissue P systems, see [21].

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00265-7_1&domain=pdf

Instead of multisets of plain symbols coming from a finite alphabet, P sys-
tems quite often operate on more complex objects (e.g., strings, arrays), too.
A comprehensive overview of different variants of (tissue) P systems and their
expressive power is given in the handbook which appeared in 2010, see [32].
For a short view on the state of the art on the domain, we refer the reader to
the P systems website [35] as well as to the Bulletin series of the International
Membrane Computing Society [34].

The notion and concept of input-driven push-down automata goes back to the
seminal paper [22] as well as the papers [6,10] improving the complexity measures
shown in [22]. The main idea of input-driven push-down automata is that the
input symbols uniquely determine whether the automaton pushes a symbol, pops
a symbol, or leaves the pushdown unchanged. Input-driven push-down automata
have been rediscovered at the beginning of this century under the name of visibly
pushdown automata, see [3,4]. Since then, variants of input-driven push-down
automata have gained growing interest, especially because closure properties
and decidable questions of the language classes defined by these devices turn
out to be similar to those of regular languages. Several new variants of input-
driven automata have been developed, for example, using stacks or queues, see
[5,19,20]. For complexity issues of input-driven push-down automata, the reader
is referred to [24–27].

The so-called point mutations, i.e., insertion, deletion, and substitution, which
mean inserting or deleting one symbol or replacing one symbol by another one
in a string or multiset are very simple biologically motivated operations. For
example, on strings graph-controlled insertion-deletion systems have been inves-
tigated in [13], and P systems using these operations at the left or right end of
string objects were introduced in [16], where also a short history of using these
point mutations in formal language theory can be found.

The operations of insertion and deletion in multisets show a close relation
with the increment and decrement instructions in register machines. The power
of changing states in connection with the increment and decrement instructions
then can be mimicked by moving the whole multiset representing the configu-
ration of a register machine from one cell to another one in the corresponding
tissue system after the application of an insertion or deletion rule. Yet usually
moving the whole multiset of objects in a cell to another one, besides maxi-
mal parallelism, requires target agreement between all applied rules, i.e., that all
results are moved to the same target cell, e.g., see [15].

A different approach has been introduced in [2]: in order to guarantee that the
whole multiset is moved even if only one point mutation is applied, the multiset
is enclosed in a vesicle, and this vesicle is moved from one cell to another one as
a whole, no matter if a rule has been applied or not. Requiring that one rule has
to be applied in every derivation step, a characterization of the family of sets of
(vectors of) natural numbers defined by partially blind register machines, which
itself corresponds with the family of sets of (vectors of) natural numbers obtained
as number (Parikh) sets of string languages generated by graph-controlled or
matrix grammars without appearance checking, is obtained.

2

The idea of using vesicles of multisets has already been used in variants of P
systems using the operations drip and mate, corresponding with the operations
cut and paste well-known from the area of DNA computing, see [14]. Yet in
that case, always two vesicles (one of them possibly an axiom available in an
unbounded number) have to interact. In the model as introduced in [2] and also
to be adapted in this paper, the rules are always applied to the same vesicle.
The point mutations, i.e., insertion, deletion, and substitution, well-known from
biology as operations on DNA, have also widely been used in the variants of
networks of evolutionary processors (NEPs), which consist of cells (processors)
each of them allowing for specific operations on strings, and in each derivation
step, after the application of a rule, allow the resulting string to be sent to
another cell provided specific conditions (for example, random context output
and input filters). A short overview on NEPs is given in [2], too.

In this paper, we now introduce input-driven tissue P automata – which we
will also call chocolate automata – where the rules to be applied only depend
on the input symbol. Taking strings as input objects, these are either read from
an input tape or defined by the sequence of symbols taken in, and as a kind of
additional storage we use a multiset of different symbols enclosed in a vesicle
which moves from one cell of the tissue P system to another one depending on the
input symbol; the input symbol at the same time also determines whether (one
or more) symbols are added to the multiset in the vesicle or removed from there.
The given input is accepted if the whole input has been read and the vesicle has
reached a final cell and is empty at this moment. When using multisets as input
objects, these are enclosed in the vesicle in the input cell at the beginning of
a computation, which vesicle then will also carry the additional symbols. The
given input multiset is accepted if no input symbols are present any more and
the vesicle has reached a final cell and is empty at this moment.

As rules operating on the multiset enclosed in the vesicle when read-
ing/consuming an input symbol we use insertion, deletion, and substitution of
multisets, applied in the sequential derivation mode. As restricted variants, we
consider systems without allowing substitution of multisets and systems only
allowing symbols to be inserted or deleted (or substituted) as it is common
when using point mutation rules.

Multiset automata have already been considered in [7], where models for finite
automata, linear bounded automata, and Turing machines working on multisets
are discussed. When dealing with multisets only, the tissue P automata con-
sidered in this paper can be seen as one of the variants of multiset pushdown
automata as investigated in [18], where no checking for the emptiness of the mul-
tiset memory during the computation is possible. Various lemmas proved there
then can immediately be adapted for our model. Moreover, also the input-driven
variants can be defined in a similar manner, although input-driven multiset push-
down automata have not yet been considered in that paper.

We should also like to mention that the control given by the underlying
communication structure of the tissue P system could also be interpreted as
having a P system with only one membrane but using states instead. For a

3

discussion on how to use and interpret features of (tissue) P systems as states we
refer to [1], where also an example only using the point mutation rules insertion
and deletion is given. Moreover, we will also consider another alternative model
very common in the P systems area, i.e., P systems with antiport and symport
rules, which were introduced in [29]; for overviews on P automata, we refer to
[32], Chapter 5, [31], and [11]. One-membrane P systems using antiport rules in a
sequential manner and with specific restrictions on the rules then are an adequate
model for (input-driven) P automata, yet the restrictions are less visible than in
the model of input-driven tissue P automata. On the other hand, when dealing
with strings instead of multisets, the way how to read or define the input string
in P systems with antiport rules has already been investigated thoroughly, e.g.,
see [8,11,28] for an overview.

The sweet title “chocolate automata”1 is motivated by the following short
story, fictive, but based on long-term experiences with the fruitful and inspiring
meetings in Sevilla, known as the Brainstorming Weeks on Membrane Comput-
ing :

Preparing for the forthcoming week in Sevilla, expecting to meet many
friends and colleagues as well as to have long nights of intensive discussions
with his friends from Moldova, Artiom, Sergiu, and Sergey, Rudi thinks
about how to fill his bag with a lot of chocolates. Moreover, a special
birthday anniversary has to be celebrated, so some special chocolate cake
is needed for this occasion. Starting to buy the cake, Rudi visits the famous
Sacher in Vienna, and a big Sacher Torte as well as some other special
Sacher sweets find their way into Rudi’s chocolate bag.

A lot more sweets are expected to be needed, so Rudi at his home
town Stockerau visits several stores to buy Austrian sweets like the famous
Mozart Kugeln. With his chocolate bag well filled, Rudi now is ready and
happy to start his journey from Vienna to Sevilla together with Marion. The
friendly atmosphere established by Mario’s Sevillan group immediately
invites the teams from Austria – Rudi and Marion – and from Moldova –
Artiom, Sergiu, and Sergey – to discuss new ideas on membrane comput-
ing. During the whole Brainstorming Week, a lot of chocolate is needed as
brain fuel for the team members.

The famous churros are announced to be served in the middle of the
week, during the morning coffee break; hence, to not interfere with this
tradition, already on the second day the Sacher Torte is presented to Mario
on the occasion of his special birthday anniversary, and he happily shares
it with the participants of the meeting during the morning coffee break.

At the end of the Brainstorming Week, special chocolate awards are
given to some participants: as usual, Artiom has had the most questions

1 The idea of “chocolate automata” first came up in the relaxed atmosphere of the
conference dinner at AFL 2017, the 15th International Conference on Automata
and Formal Languages, taking place in Debrecen, Hungary, at the beginning of
September, 2017; the ideas initiated there then were further developed during the
Brainstorming Week on Membrane Computing at the beginning of February, 2018.

4

during all the talks, so he gets the chocolate award for the “most active par-
ticipant in discussions”. From all the young researchers present in Sevilla,
Sergiu has contributed the most with new ideas especially on the last day,
when results obtained during the current Brainstorming Week have been
presented; therefore, he receives the chocolate award as the “most innova-
tive young P scientist”. During the closing ceremony, the members of the
Sevillan group ofMario finally get a lot of chocolates as a special thank-you
gift for their outstanding friendly organization.

After the Brainstorming Week Rudi returns home to Vienna together
with Marion, with his chocolate bag being empty, but with his brain full
of new “P ideas” obtained based on the discussions with the participants
of the meeting, especially with his friends from Moldova.

Interpreting this story in an abstract way, the different chocolate sorts corre-
spond to the different non-terminal symbols used as intermediate symbols during
the computation. The events like going to a specific store as well as the coffee
breaks and the award-giving events correspond with the terminal input symbols.
There is no time condition on the sequence of these events except that choco-
lates have to be bought before they can be given away. This perfectly corresponds
with the use of a mutiset bag (vesicle) as a storage, where the sequence does not
matter as it is the case when dealing with strings stored in the stack of a push-
down automaton. Finally, the acceptance condition of empty vesicle at the end
of the computation corresponds with having an empty chocolate bag at the end
of the Brainstorming Week. Even several variants of the input-driven automata
model can be derived from this chocolate story : for example, it is natural to buy
several pieces in one store or to give away several chocolates at the same event,
which nicely corresponds with putting more than one symbol into the vesicle
or deleting more than one symbol from the vesicle at the same moment when
reading/consuming an input symbol.

The rest of the paper now is structured as follows: In Sect. 2 we recall some
well-known definitions from formal language theory. The main definitions for the
model of (input-driven) tissue P automata as well as its variants to be considered
in this paper are given in Sect. 3, and there we also present the definition of the
alternative model of (input-driven) one-membrane P automata with (restricted)
antiport rules; moreover we also give some first examples and results. Further
illustrative examples and some more results, especially for input-driven tissue
P automata are exhibited in Sect. 4. As upper bound for the family of sets of
vectors of natural numbers accepted by input-driven tissue P automata we get
the family of sets of vectors of natural numbers generated by partially blind
register machines, and as upper bound for the family of sets of strings accepted
by input-driven tissue P automata we get the family of sets of strings accepted
by partially blind counter automata. A summary of the results obtained in this
paper and an outlook to future research are presented in Sect. 5.

5

2 Prerequisites

We start by recalling some basic notions of formal language theory. An alpha-
bet is a non-empty finite set of symbols. A finite sequence of symbols from an
alphabet V is called a string over V . The set of all strings over V is denoted
by V ∗; the empty string is denoted by λ; moreover, we define V + = V ∗ \ {λ}.
The length of a string x is denoted by |x|, and by |x|a we denote the number of
occurrences of the symbol a in a string x.

A multiset M with underlying set A is a pair (A, f) where f : A → N is a
mapping, with N denoting the set of natural numbers (i.e., non-negative inte-
gers). If M = (A, f) is a multiset then its support is defined as supp(M) =
{x ∈ A | f(x) > 0}. A multiset is empty (respectively finite) if its support
is the empty set (respectively a finite set). If M = (A, f) is a finite multiset
over A and supp(M) = {a1, . . . , ak}, then it can also be represented by the

string a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak} (the corresponding vec-

tor (f(a1), . . . , f(ak)) of natural numbers is called Parikh vector of the string

a
f(a1)
1 . . . a

f(ak)
k), and, moreover, all permutations of this string precisely identify

the same multiset M (they have the same Parikh vector). The set of all multisets
over the alphabet V is denoted by V ◦.

The family of all recursively enumerable sets of strings is denoted by RE, the
corresponding family of recursively enumerable sets of Parikh vectors is denoted
by PsRE. For more details of formal language theory the reader is referred to
the monographs and handbooks in this area, such as [33].

2.1 Insertion, Deletion, and Substitution

For an alphabet V , let a → b be a rewriting rule with a, b ∈ V ∪{λ}, and ab �= λ;
we call such a rule a substitution rule if both a and b are different from λ and
we also write S(a, b); such a rule is called a deletion rule if a �= λ and b = λ,
and it is also written as D(a); a → b is called an insertion rule if a = λ and
b �= λ, and we also write I(b). The sets of all insertion rules, deletion rules, and
substitution rules over an alphabet V are denoted by InsV , DelV , and SubV ,
respectively. Whereas an insertion rule is always applicable, the applicability of
a deletion and a substitution rule depends on the presence of the symbol a. We
remark that insertion rules, deletion rules, and substitution rules can be applied
to strings as well as to multisets. Whereas in the string case, the position of the
inserted, deleted, and substituted symbol matters, in the case of a multiset this
only means incrementing the number of symbols b, decrementing the number
of symbols a, or decrementing the number of symbols a and at the same time
incrementing the number of symbols b.

These types of rules and the corresponding notations can be extended by
allowing more than one symbol on the left-hand and/or the right-hand side, i.e.,
a, b ∈ V ∗, and ab �= λ. The corresponding sets of all extended insertion rules,
deletion rules, and substitution rules over an alphabet V are denoted by Ins∗

V ,
Del∗V , and Sub∗

V , respectively.

6

2.2 Register Machines

Register machines are well-known universal devices for computing (generating
or accepting) sets of vectors of natural numbers.

Definition 1. A register machine is a construct M = (m, B, I, h, P) where

– m is the number of registers,
– B is a set of labels bijectively labeling the instructions in the set P ,
– I ⊆ B is the set of initial labels, and
– h ∈ B is the final label.

The labeled instructions of M in P can be of the following forms:

– p : (ADD (r) , K), with p ∈ B \ {h}, K ⊆ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to one
of the instructions in K.

– p : (SUB (r) , K, F), with p ∈ B \ {h}, K, F ⊆ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by
one (decrement case) and jump to one of the instructions in K, otherwise
jump to one of the instructions in F (zero-test case).

– h : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each
register and by the value of the current label, which indicates the next instruction
to be executed.

In the accepting case, a computation starts with the input of a k-vector
of natural numbers in its first k registers and by executing one of the initial
instructions of P (labeled with l ∈ I); it terminates with reaching the HALT -
instruction. Without loss of generality, we may assume all registers to be empty
at the end of the computation.

By L(RM) we denote the family of sets of vectors of natural numbers
accepted by register machines. It is well known (e.g., see [23]) that PsRE =
L(RM).

Partially Blind Register Machines. In the case when a register machine
cannot check whether a register is empty we say that it is partially blind: the
registers are increased and decreased by one as usual, but if the machine tries to
subtract from an empty register, then the computation aborts without producing
any result (that is we may say that the subtract instructions are of the form
p : (SUB (r) , K, abort); instead, we simply will write p : (SUB (r) , K).

Moreover, acceptance now by definition also requires all registers to be empty
at the end of the computation, i.e., there is an implicit test for zero at the end
of a (successful) computation, that is why we say that the device is partially
blind. By L(PBRM) we denote the family of sets of vectors of natural numbers

7

accepted by partially blind register machines. It is known (e.g., see [12]) that
partially blind register machines are strictly less powerful than general register
machines (hence, than Turing machines); moreover, L(PBRM) characterizes
the Parikh sets of languages generated by graph-controlled or matrix grammars
without appearance checking.

2.3 Counter Automata

Register machines can also be equipped with an input tape to be able to process
strings, and the registers then are only used as auxiliary storage. We then call
the registers counters and the automaton a counter automaton (we mention that
in the literature slightly different definitions with respect to the instructions may
be found). The additional instruction needed then is a read instruction reading
one symbol from the input tape:

p : (read(a), K), with p ∈ B \ {h} , K ⊆ B, and a ∈ T.

T is the input alphabet, i.e., in sum we obtain a counter automaton as a construct

M = (m, B, I, h, P, T) .

A counter automaton accepts an input w ∈ T ∗ if and only if it starts in some
initial state and with w on its input tape, and finally M reaches h having read
the whole input string w. Without loss of generality, we again may assume all
registers to be empty at the end of the computation.

It is well known (e.g., see [23]) that the family of string languages accepted
by counter automata equals RE (in fact, only two counters are needed).

Partially Blind Counter Automata. As in the case of register machines, a
counter automaton is called partially blind if it cannot check whether a register
is empty, and acceptance by definition requires the whole input to be read and
all counters to be empty at the end of the computation. For basic results on
partially blind counter automata we refer to the seminal paper [17]. The family
of string languages accepted by partially blind counter automata is denoted by
L(PBCA).

2.4 Input-Driven Register Machines and Counter Automata

An input-driven register machine/counter automaton (an IDRM∗ and IDCA∗,
respectively, for short) can be defined in the following way: any decrement of an
input register r/any reading of a terminal symbol a is followed by fixed sequences
of instructions on the working registers/counters only depending on the input
register r/the terminal symbol a. If each such sequence is of length exactly one,
then we speak of a real-time input-driven register machine/counter automaton
(an IDRM and IDCA, respectively, for short).

8

In the case of an IDCA, these sequences are of the form

p : (read(a), K) → q : (α(r), Kq), q ∈ K,

with α ∈ {ADD, SUB}, 1 ≤ r ≤ m, and they could be written as one extended
instruction

p : (read(a), α(r),
⋃

q∈K
Kq).

In a similar way, for an IDCA∗ we replace α(r) by the whole sequence of
instructions following the reading of the input symbol a. A similar notation
can be adapted for the case of a SUB-instruction on an input register instead
of read(a). Moreover, analogous definitions and notations hold for the partially
blind variants of input-driven register machines/counter automata.

Remark 1. We emphasize that we have chosen a very restricted variant of what
it means that the actions on the working registers only depend on the input
symbol just read: no matter which label the read instruction read(a) has, it
must always be followed by the same sequence α(r); only the branching to labels
from

⋃
q∈K Kq allows for taking different actions – in fact, read-instructions

followed by the corresponding sequences of instructions – afterwards. ⊓⊔

Remark 2. Allowing a set of initial labels as well as sets of labels in the ADD-
and SUB-instructions may look quite unusual, but especially for the input-driven
automata this feature turns out to be essential:

Assume we had allowed only one initial label i in any input-driven counter
automaton. Now consider the finite multiset language {a, b}: assume there is an
input-driven partially blind counter automaton accepting {a, b}. By definition,
the instruction assigned to the initial label i must be a read instruction. With
the initial label i, only one of the read instructions read(a) or read(b) can be
assigned, hence, only a or only b can be accepted, a contradiction.

A similar argument holds for partially blind register machines taking the
input set of two-dimensional vectors {(1, 0), (0, 1)}: the instruction assigned to i
must be a SUB-instruction either on register 1 or on register 2, again leading to
a contradiction.

On the other hand, with our more general definition, these sets are in
L(IDCA∗) and L(IDRM∗), respectively. Still, in general we do not have closure
under union, as the sequences of instructions after a read-instruction or a SUB-
instruction in two different counter automata or register machines, respectively,
need not be the same. ⊓⊔

3 Tissue P Automata as Multiset Pushdown Automata

We now define a model of a tissue P automaton and its input-driven variants,
first for the case of working with multisets as input objects:

9

Definition 2. A tissue P automaton (a tPA∗ for short) is a tuple

Π = (L, V, Σ, Γ, R, g, I, F)

where

– L is a set of labels identifying in a one-to-one manner the |L| cells of the
tissue P system Π;

– V is the alphabet of the system;
– Σ ⊆ V is the (non-empty) input alphabet of the system;
– Γ ⊆ V is the (possibly empty) memory alphabet of the system, Γ ∩ Σ = ∅;
– R is a set of rules of the form (i, p) where i ∈ L and p ∈ Ins∗

V ∪Del∗V ∪Sub∗

V ,
i.e., p is an extended insertion, deletion or substitution rule over the alphabet
V ; we may collect all rules from cell i in one set and then write Ri = {(i, p) |
(i, p) ∈ R}, so that R =

⋃
i∈L Ri; moreover, for the sake of conciseness, we

may simply write Ri = {p | (i, p) ∈ R}, too;
– g is a directed graph describing the underlying communication structure of Π,

g = (N, E) with N = L being the set of nodes of the graph g and the set of
edges E ⊆ L × L;

– I ⊆ L is the set of labels of initial cells one of them containing the input
multiset w at the beginning of a computation;

– F ⊆ L is the set of labels of final cells.

If in the definition above we take p ∈ InsV ∪ DelV ∪ SubV instead of p ∈
Ins∗

V ∪ Del∗V ∪ Sub∗

V , then we speak of a tPA instead of a tPA∗.
A tPA∗ Π now works as follows: The computation of Π starts with a vesi-

cle containing the input multiset w in one of the initial cells i ∈ I, and the
computation proceeds with derivation steps until a specific output condition is
fulfilled.

In each derivation step, with the vesicle enclosing the multiset w being in
cell k, one rule from Rk is applied to w and the resulting multiset in its vesicle
is moved to a cell m such that (k, m) ∈ E.

As we are dealing with membrane systems, the classic output condition is
to only consider halting computations; yet in case of automata, the standard
acceptance condition is reaching a final state, which in our case means reaching
a final cell h, and, moreover, the vesicle to be empty. We will combine these two
conditions to define acceptance in this paper, as with the vesicle being empty
no decrement rule can be applied any more and, moreover, it is guaranteed that
we have “read the whole input”. Only requiring the vesicle to be empty or else
requiring to have reached a final cell with the vesicle containing no input symbol
any more, are two other variants of acceptance.

The set of multisets accepted by Π is denoted by Psacc(Π). The families of
sets of vectors of natural numbers accepted by tPA∗ and tPA with at most n
cells are denoted by Ln(tPA∗) and Ln(tPA), respectively. If n is not bounded,
we simply omit the subscript in these notations. In order to specify which rules
are allowed in the tPA∗ and tPA, we may explicitly specify I∗, D∗, S∗ and
I, D, S, respectively, to indicate the use of (extended) insertion, deletion, and

10

substitution rules. For example, L(tPA, ID) then indicates that only insertion
and deletion rules are used.

Remark 3. The model of a tPA∗ comes very close to the model of a multiset
pushdown automaton as introduced in [18]; in fact, the family of sets of vec-
tors of natural numbers accepted by these multiset pushdown automata equals
L(tPA∗). A formal proof would go far beyond the scope of this short paper, but
the basic similarity of these two models becomes obvious when identifying the
cells in the tPA∗ with the states in the multiset pushdown automaton; moving
the vesicle from one cell to another one corresponds to changing the states. As
shown for the states of the multiset pushdown automata in [18], we could also
restrict ourselves to only one initial as well as only one final cell in the gen-
eral case, as this does not restrict the computational power of a tPA∗. On the
other hand, for any of the following restricted variants this need not be true any
more, especially for the input-driven variants defined later; in this context we
also remind the arguments given in Remark 2. ⊓⊔

The following result shows that having more than one rule in a cell is not
necessary:

Lemma 1. For any tPA∗ Π there exists an equivalent tPA∗ Π ′ such that every
cell contains at most one rule.

Proof (Sketch). Let Π = (L, V, Σ, Γ, R, g, I, F) be a tPA∗. The equivalent tPA∗

Π ′ = (L′, V, Σ, Γ, R′, g′, I ′, F ′) then is constructed as follows:
For every cell k with Rk containing nk rules, instead of cell k we take nk

copies of that cell, cells (k, 1), . . . , (k, nk), into Π ′, each of it containing one of
the rules from Rk, say pk,l, 1 ≤ l ≤ nk. The connection graph g then has to be
enlarged to a graph g′ containing all the edges

{((k, l), (j, m)) | (k, j) ∈ g, 1 ≤ l ≤ nk, 1 ≤ m ≤ nj}.

If cell k contains no rule, we rename it to cell (k, 1), and no rule is contained in
this cell, too.

The new sets of labels of initial and final cells are obtained by taking all
copies of the original cell labels, i.e., we take

I ′ = {(k, l) | (k ∈ I, 1 ≤ l ≤ nk},

F ′ = {(k, l) | (k ∈ F, 1 ≤ l ≤ nk}.

We now immediately infer Ps(Π) = Ps(Π ′). ⊓⊔

Remark 4. Continuing the construction from Lemma 1, it is easy to show how
to avoid having more than one final cell: we introduce a new final cell f ′, i.e.,
we take F ′ = {f ′}, with this new cell not containing any rule; moreover, we add
all edges

{((k, l), f ′) | ((k, l), (j, m)) ∈ g′, j ∈ F}.

11

This new cell corresponds to the label of the final HALT instruction in a register
machine or a counter automaton. As f ′ does not contain a rule, the computation
will stop there in any case. ⊓⊔

Remark 5. Having only one initial cell cannot be shown by only using a new
structure: we may add two new cells i′, i′′ containing the rules I(a) and D(a),
respectively, for some a ∈ V ; the first one i′ is used as the only new initial cell
having one arc to the second one i′′, i.e., (i′, i′′), from where to branch to the
original initial cells as constructed in the proof of Lemma 1, i.e. we add all edges

{(i′′, (k, l)) | (k, l) ∈ I ′}.

Continuing the discussions from Remarks 2 and 3 we mention that this construc-
tion is not feasible for the input-driven variants to be defined in Subsect. 3.2. ⊓⊔

The following result is based on the fact that the insertion, deletion, or sub-
stitution of a multiset over V can easily be simulated by a sequence of insertions
and deletions:

Lemma 2. For any tPA∗ Π there exists an equivalent tPA Π ′ even not using
substitution rules.

Now let L(mARB) denote the family of sets of multisets generated by arbi-
trary multiset grammars.

Corollary 1. L(tPA∗, IDS) = L(tPA, ID) = L(mARB) = L(PBRM).

Proof (Sketch). The equality L(tPA∗, IDS) = L(tPA, ID) follows from the def-
initions and Lemma2.

The equality L(tPA∗, IDS) = L(mARB) is a consequence of the observation
discussed above in Remark 3 that L(tPA∗, IDS) corresponds to the family of
sets of multisets accepted by multiset pushdwon automata as defined in [18]. In
a similar way, interpreting the cells in a tissue P automaton as the states of a
partially blind register machine and seeing the correspondence of the acceptance
conditions, we also infer the equality L(tPA∗, IDS) = L(PBRM). The details
are left to the reader. ⊓⊔

3.1 Accepting Strings

The tissue P automata defined above can also be used to accept sets of strings
by assuming the input string to be given on a separate input tape, from where
the symbols of the input string are read from left to right. As when going from
register machines to counter automata, we use the additional instruction (read
instruction) read(a) with a ∈ Σ, Σ being the input alphabet. The corresponding
automata then are defined as follows:

Definition 3. A tissue P automaton for strings (a tPAL∗ for short) is a tuple

Π = (L, V, Σ, Γ, R, g, I, F)

12

where L, V , Σ, Γ , R, g, I, F are defined as for a tPA∗, except that besides
insertion, deletion, and substitution rules we also allow rules of the form read(a)
with a ∈ Σ, i.e., read instructions.

If we only take rules from InsV ∪DelV ∪SubV instead of Ins∗

V ∪Del∗V ∪Sub∗

V ,
then we speak of a tPAL instead of a tPAL∗.

A tPAL∗ Π works as follows: The computation of Π starts with the input
string on the input tape as well as an empty vesicle in one of the initial cells
i ∈ I, and the computation proceeds with derivation steps until the whole input
string has been read and the vesicle has reached a final cell, again being empty
at the end of the computation.

In each derivation step, with the vesicle enclosing the multiset w being in
cell k, one rule from Rk is applied, either reading a symbol from the input tape
or affecting w, and the resulting multiset in its vesicle then is moved to a cell m
such that (k, m) ∈ E.

The set of strings accepted by Π is denoted by L(Π). The families of sets
of strings accepted by tPAL∗ and tPAL with at most n cells are denoted by
Ln(tPAL∗) and Ln(tPAL), respectively. If n is not bounded, we simply omit
the subscript in these notations. In order to specify which rules are allowed in
the tPAL∗ and tPAL, we again may explicitly specify I∗, D∗, S∗ and I, D, S,
respectively, to indicate the use of (extended) insertion, deletion, and substitu-
tion rules.

As for tissue P automata accepting multisets, also for the ones accepting
strings we obtain some similar results as shown above:

Lemma 3. For any tPAL∗ Π there exists an equivalent tPAL∗ Π ′ such that
every cell contains at most one rule.

Lemma 4. For any tPAL∗ Π there exists an equivalent tPAL Π ′ even not
using substitution rules.

Corollary 2. L(tPAL∗, IDS) = L(tPAL, ID) = L(PBCA).

3.2 Input-Driven Tissue P Automata

We now define the input-driven variants of tPA∗ and tPA as well as tPAL∗ and
tPAL:

Definition 4. A tPA∗ Π = (L, V, Σ, Γ, R, g, I, F) is called input-driven (and
called an IDtPA∗ for short) if the following conditions hold true:

– to each cell, (at most) one rule is assigned;
– any decrement of an input register r is followed by some fixed sequence

of instructions on the working registers only depending on the input regis-
ter r before a cell with the next decrement instruction on an input register is
reached. Such a sequence of instructions may even be of length zero.

If each such sequence is of length exactly one, then we speak of a real-time input-
driven tPA∗ (a rtIDtPA∗ for short).

13

Definition 5. A tPAL∗ Π = (L, V, Σ, Γ, R, g, I, F) is called input-driven (and
called an IDtPAL∗ for short) if the following conditions hold true:

– to each cell, (at most) one rule is assigned;
– any reading of a terminal symbol a by a read instruction read(a) is followed by

some fixed sequence of instructions on the working registers only depending
on the terminal symbol a before a cell with the next read instruction is reached.
Such a sequence of instructions may even be of length zero.

If each such sequence is of length exactly one, then we speak of a real-time input-
driven tPAL∗ (a rtIDtPAL∗ for short).

The corresponding families of sets of vectors of natural numbers and of sets
of strings accepted by tissue P automata of type X with X being one of the
types IDtPA∗, IDtPA, rtIDtPA∗, rtIDtPA as well as IDtPAL∗, IDtPAL,
rtIDtPAL∗, rtIDtPAL, are denoted by L(X).

Remark 6. As already discussed in Remark 1 for input-driven register machines
and counter automata, we emphasize that we have chosen a very restricted vari-
ant of what it means that the actions on the multiset in the vesicle only depend on
the input symbol just read: no matter in which cell we have the read instruction
read(a), it must always be followed by the same finite sequence of instructions
not including read instructions. ⊓⊔

Remark 7. If we only have SUB-instructions on input registers/read instruc-
tions, i.e., if the tPA∗/tPAL∗ does not use the vesicle at all for storing any
intermediate information of working registers, then such a tPA∗/tPAL∗ can be
interpreted as a finite automaton accepting a regular multiset/string language.
In this case, the condition of not having rules on the vesicle for symbols repre-
senting working registers, already subsumes the condition of the P automaton
being input-driven. In fact, P systems of that kind exactly characterize the reg-
ular multiset/string languages. ⊓⊔

3.3 One-Membrane Antiport P Automata

The idea of using states instead of cells can also be “implemented” by using a
well-investigated model of membrane systems using antiport rules:

Definition 6. A one-membrane antiport P automaton (a 1APA∗ for short) is
a tuple Π = (V, Σ, Γ, Q, R, I, F) where

– V is the alphabet of the system;
– Σ ⊆ V is the (non-empty) input alphabet of the system;
– Γ ⊆ V is the (possibly empty) memory alphabet of the system, Γ ∩ Σ = ∅;
– Q ⊆ V , Q ∩ (Γ ∪ Σ) = ∅, is the set of states;
– R is a set of rules of the form pu → qv, p, q ∈ Q, u ∈ (Γ ∪ Σ)∗, v ∈ Σ∗;
– I ⊆ Q is the set of initial states;
– F ⊆ Q is the set of final states.

14

The 1APA∗ can be seen as a membrane system consisting of only one mem-
brane with the rules pu → qv interpreted as antiport rules (pu, out; qv, in), i.e.,
the multiset pu leaves the membrane region and the multiset qv enters the mem-
brane region.

Π starts with an input multiset w0 together with one of the initial states
p0, i.e., with w0p0 in its single membrane region, and then applies rules from R
until a configuration with only pf ∈ F in the membrane region is reached, thus
accepting the input multiset w0.

For antiport P automata the acceptance of strings can be defined without
needing an input tape as follows, e.g., see [28]: the rules in R now are of the form
pu → qv, p, q ∈ Q, u ∈ Γ ∗ and v ∈ (Γ ∪ Σ)∗, i.e., the input symbols are now
taken from outside the membrane (from the environment); the sequence how the
input symbols are taken in defines the input string (we may assume v to contain
only one symbol from Σ; otherwise, if in one step several symbols are taken in,
we have to take any permutation of these symbols, in which way several input
strings are defined).

Using such rules and the interpretation of the input string as defined above,
we obtain the model of a one-membrane antiport P automaton for strings (a
1APAL∗ for short).

As in the preceding subsections we now can define specific variants of 1APA∗

and 1APAL∗, e.g., the corresponding input-driven automata. Yet as we have
introduced these models especially to show the correspondence with an automa-
ton model well-known in the area of P systems, we leave the technical details to
the interested reader.

4 Examples and Results

The concepts of IDtPA∗ and IDPBRM∗ are closely related:

Theorem 1. L(IDtPA∗) ⊆ L(PBRM∗) and
L(IDtPA∗) = L(IDtPA∗, ID) = L(IDPBRM∗).

Proof (Sketch). The inclusion L(IDPBRM∗) ⊆ L(PBRM∗) is obvious from
the definitions.

The equality L(IDtPA∗, ID) = L(IDPBRM∗) follows from the definitions
of these types of input-driven automata: as already mentioned earlier, the cells
in a tPA∗ correspond to the states in a PBRM . The acceptance conditions –
the vesicle being empty in a final cell in a tPA∗ and all registers being empty
in a PBRM when reaching the final label – directly correspond to each other,
too. Moreover, insertion and deletion rules directly correspond to ADD- and
SUB-instructions. Finally, the conditions for the input-driven variants requir-
ing the same actions for a consumed input symbol and the decrement of the
corresponding register are equivalent, too.

The equality L(IDtPA∗) = L(IDtPA∗, ID) follows from the possibility to
simulate substitution rules by a sequence of insertion and deletion rules. This
observation completes the proof. ⊓⊔

15

Using similar arguments as in the preceding proof, now considering read
instructions instead of decrements on input registers, we obtain the correspond-
ing result for the string case:

Theorem 2. L(IDtPAL∗) ⊆ L(PBCA∗) and
L(IDtPAL∗) = L(IDtPAL∗, ID) = L(IDPBCA∗).

In the real-time variants, we cannot use substitution rules in the input-driven
tissue P automata, as the simulation by deletion and insertion rules takes more
than one step:

Theorem 3. L(rtIDtPA, ID) = L(rtIDPBRM) and
L(rtIDtPAL, ID) = L(rtIDPBCA).

We now illustrate the computational power of input-driven tissue P automata
accepting strings by showing how well-known string languages can be accepted.
We remark that in all cases the automaton has only one initial label and one
final label.

Example 1. The Dyck language LD over the alphabet of brackets { [,] } can
easily be accepted by the rtIDtPBCA MD:

MD = (1, B = {1, 2, 3, 4, 5}, l0 = 1, lh = 5, P, T = { [,] }) ,

P = {1 : (read ([) , {2}) , 2 : (ADD (1) , {1, 3}) ,

3 : (read (]) , {4}) , 4 : (SUB (1) , {1, 3, 5}) , 5 : HALT}.

LD can also be accepted by the corresponding rtIDtPAL ΠD:

ΠD = (L = {1, 2, 3, 4, 5}, V, Σ, Γ, R, g = (L, E), I = {1}, F = {5}) ,

V = {a1, [,] },

Σ = { [,] },

Γ = {a1},

R = {(1, read ([)), (2, I (a1)), (3, read (])), (4, D (a1))},

E = {(1, 2), (2, 1), (2, 3), (3, 4), (4, 1), (4, 3), (4, 5)}.

The two constructions elaborated above implement the following definition
of a well-formed bracket expression w over the alphabet of brackets { [,] }:

– for every prefix of w, the number of closing brackets] must not exceed the
number of opening brackets [;

– the number of closing brackets] in w equals the number of opening brackets [.

Hence, during the whole computation, the (non-negative) difference between
the number of opening and the number of closing brackets is stored as the number
of symbols a1; at the end, this number must be zero, which is guaranteed by the
acceptance conditions. ⊓⊔

16

Fig. 1. Graphic representation of the rtIDtPAL Πil.

L(rtIDPBCA) even contains a non-context-free language:

Example 2. The language Lil = {anbmcndm | m, n ≥ 1} is not context-free, but
accepted by the following rtIDtPAL Πil:

Πil = (L = {1, . . . , 9}, V, Σ, Γ, R, g = (L, E), I = {1}, F = {9}) ,

V = {a1, a2, a, b, c, d},

Σ = {a, b, c, d},

Γ = {a1, a2},

R = {(1, read (a)), (2, I (a1)), (3, read (b)), (4, I (a2)),

(5, read (c)), (6, D (a1)), (7, read (d)), (8, D (a2))},

E = {(1, 2), (2, 1), (2, 3), (3, 4), (4, 3),

(4, 5), (5, 6), (6, 5), (6, 7), (7, 8), (8, 7), (8, 9)}.

By this construction, we conclude Lil ∈ L(rtIDtPAL, ID). ⊓⊔

For the language considered in the next example we show that it is in
L(rtIDtPAL∗), but we claim that it is not in L(rtIDtPAL):

Example 3. Let k > 2 and consider the string language Lk = {b1
n . . . bk

n | n ≥
1}, which is not context-free, but accepted by the following rtIDtPAL∗ Π:

Πk = (L = {1, . . . , 2k + 1}, V, Σ, Γ, R, g = (L, E), I = {1}, F = {2k + 1}) ,

V = {ai, bi | 1 ≤ i ≤ k},

Σ = {bi | 1 ≤ i ≤ k},

Γ = {ai | 1 ≤ i ≤ k},

R = {(1, read (b1)), (2, I (a2 . . . ak))}

∪ {(2j − 1, read (bj)), (2j, D (aj)) | 1 < j ≤ k},

E = {(2j − 1, 2j), (2j, 2j − 1), (2j, 2j + 1) | 1 ≤ j ≤ k}.

Without proof we claim that Lk /∈ L(rtIDtPAL). ⊓⊔

17

5 Conclusion and Future Research

In this paper, we have introduced tissue P automata as a specific model of
multiset automata as well as input-driven tissue P automata – which we also
called chocolate automata – where the rules to be applied depend on the input
symbol. Taking strings as input objects, these are either read from an input tape
or defined by the sequence of symbols taken in, and as an additional storage of
a multiset of different symbols we use a vesicle which moves from one cell of
the tissue P system to another one depending on the input symbol; the input
symbol at the same time determines whether (one or more) symbols are added
to the multiset in the vesicle or removed from there and where the vesicle moves
afterwards. The given input is accepted if it has been read completely and the
vesicle has reached a final cell and/or is empty at this moment. When using
multisets as input objects, these are enclosed in the vesicle in the input cell at
the beginning of a computation, which vesicle then will also take the additional
symbols. The given input multiset is accepted if no input symbols are present
any more and the vesicle has reached a final cell and is empty at this moment.

As rules operating on the multiset enclosed in the vesicle when read-
ing/consuming an input symbol we have used insertion, deletion, and substi-
tution of multisets, working in the sequential derivation mode. As restricted
variants, we have considered systems without allowing substitution of multisets
and systems only allowing symbols to be inserted or deleted (or substituted).

We have shown how chocolate automata with multisets and strings can
be characterized by input-driven register machines and input-driven counter
automata, respectively. Moreover, we have exhibited some illustrative examples,
for example, how the Dyck language or even some non-context-free languages
can be accepted by simple variants of chocolate automata.

Several challenging topics remain for future research: for example, a char-
acterization of the language classes accepted by several variants of tissue P
automata accepting multisets or strings, especially for the input-driven variants
(chocolate automata), introduced in this paper is still open.

As acceptance condition we have only considered reaching the final cell h
with an empty vesicle. The other variants of acceptance, i.e., only requiring the
vesicle to be empty or else requiring to have reached the final cell with the vesicle
containing no input symbol any more, are to be investigated in the future in more
detail.

Acknowledgements. The authors appreciate the helpful comments of the unknown
referees.

References

1. Alhazov, A., Freund, R., Heikenwälder, H., Oswald, M., Rogozhin, Yu., Verlan,
S.: Sequential P systems with regular control. In: Csuhaj-Varjú, E., Gheorghe, M.,
Rozenberg, G., Salomaa, A., Vaszil, Gy. (eds.) CMC 2012. LNCS, vol. 7762, pp.
112–127. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36751-9
9

18

https://doi.org/10.1007/978-3-642-36751-9_9
https://doi.org/10.1007/978-3-642-36751-9_9

2. Alhazov, A., Freund, R., Ivanov, S., Verlan, S.: (Tissue) P systems with vesicles
of multisets. In: Csuhaj-Varjú, E., Dömösi, P., Vaszil, Gy. (eds.) Proceedings 15th
International Conference on Automata and Formal Languages. AFL 2017, 4–6
September 2017, Debrecen, Hungary, vol. 252, pp. 11–25. EPTCS (2017). https://
doi.org/10.4204/EPTCS.252.6

3. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing, 13–16
June 2004, Chicago, IL, USA, pp. 202–211. ACM (2004). https://doi.org/10.1145/
1007352.1007390

4. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3),
16:1–16:43 (2009). https://doi.org/10.1145/1516512.1516518

5. Bensch, S., Holzer, M., Kutrib, M., Malcher, A.: Input-driven stack automata. In:
Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp.
28–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33475-7 3

6. von Braunmühl, B., Verbeek, R.: Input-driven languages are recognized in log n
space. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 40–51. Springer,
Heidelberg (1983). https://doi.org/10.1007/3-540-12689-9 92

7. Csuhaj-Varjú, E., Mart́ın-Vide, C., Mitrana, V.: Multiset automata. In: Calude,
C.S., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2000. LNCS, vol. 2235,
pp. 69–83. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45523-X 4

8. Csuhaj-Varjú, E., Vaszil, Gy.: P automata or purely communicating accepting P
systems. In: Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC
2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36490-0 14

9. Dassow, J., Păun, Gh.: On the power of membrane computing. J. UCS 5(2), 33–49
(1999). https://doi.org/10.3217/jucs-005-02-0033

10. Dymond, P.W.: Input-driven languages are in log n depth. Inf. Process. Lett. 26(5),
247–250 (1988). https://doi.org/10.1016/0020-0190(88)90148-2

11. Freund, R.: P automata: new ideas and results. In: Bordihn, H., Freund, R., Nagy,
B., Vaszil, Gy. (eds.) Proceedings of Eighth Workshop on Non-Classical Models of
Automata and Applications. NCMA 2016, 29–30 August 2016, Debrecen, Hungary,
vol. 321, pp. 13–40. Österreichische Computer Gesellschaft (2016). https://shop.
ocg.at/de/books.html

12. Freund, R., Ibarra, O., Păun, Gh., Yen, H.C.: Matrix languages, register machines,
vector addition systems. In: Third Brainstorming Week on Membrane Computing,
pp. 155–167 (2005). https://www.gcn.us.es/3BWMC/bravolpdf/bravol155.pdf

13. Freund, R., Kogler, M., Rogozhin, Yu., Verlan, S.: Graph-controlled insertion-
deletion systems. In: Proceedings Twelfth Annual Workshop on Descriptional Com-
plexity of Formal Systems. DCFS 2010, 8–10 August 2010, Saskatoon, Canada, pp.
88–98 (2010). https://doi.org/10.4204/EPTCS.31.11

14. Freund, R., Oswald, M.: Tissue P systems and (mem)brane systems with mate and
drip operations working on strings. Electron. Notes Theor. Comput. Sci. 171(2),
105–115 (2007). https://doi.org/10.1016/j.entcs.2007.05.011

15. Freund, R., Păun, Gh.: How to obtain computational completeness in P systems
with one catalyst. In: Proceedings Machines, Computations and Universality 2013.
MCU 2013, 9–11 September 2013, Zürich, Switzerland, pp. 47–61 (2013). https://
doi.org/10.4204/EPTCS.128.13

16. Freund, R., Rogozhin, Yu., Verlan, S.: Generating and accepting P systems with
minimal left and right insertion and deletion. Nat. Comput. 13(2), 257–268 (2014).
https://doi.org/10.1007/s11047-013-9396-3

19

https://doi.org/10.4204/EPTCS.252.6
https://doi.org/10.4204/EPTCS.252.6
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1007/978-3-642-33475-7_3
https://doi.org/10.1007/3-540-12689-9_92
https://doi.org/10.1007/3-540-45523-X_4
https://doi.org/10.1007/3-540-36490-0_14
https://doi.org/10.1007/3-540-36490-0_14
https://doi.org/10.3217/jucs-005-02-0033
https://doi.org/10.1016/0020-0190(88)90148-2
https://shop.ocg.at/de/books.html
https://shop.ocg.at/de/books.html
https://www.gcn.us.es/3BWMC/bravolpdf/bravol155.pdf
https://doi.org/10.4204/EPTCS.31.11
https://doi.org/10.1016/j.entcs.2007.05.011
https://doi.org/10.4204/EPTCS.128.13
https://doi.org/10.4204/EPTCS.128.13
https://doi.org/10.1007/s11047-013-9396-3

17. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter
machines. Theor. Comput. Sci. 7, 311–324 (1978). https://doi.org/10.1016/0304-
3975(78)90020-8

18. Kudlek, M., Totzke, P., Zetzsche, G.: Multiset pushdown automata. Fundam.
Inform. 93(1–3), 221–233 (2009). https://doi.org/10.3233/FI-2009-0098

19. Kutrib, M., Malcher, A., Wendlandt, M.: Tinput-driven pushdown, counter, and
stack automata. Fundam. Inform. 155(1–2), 59–88 (2017). https://doi.org/10.
3233/FI-2017-1576

20. Kutrib, M., Malcher, A., Wendlandt, M.: Queue automata: foundations and devel-
opments. In: Adamatzky, A. (ed.) Reversibility and Universality. ECC, vol. 30, pp.
385–431. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73216-9 19

21. Mart́ın-Vide, C., Pazos, J., Păun, Gh., Rodŕıguez-Patón, A.: A new class of sym-
bolic abstract neural nets: tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.)
COCOON 2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45655-4 32

22. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 89

23. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs (1967)

24. Okhotin, A., Salomaa, K.: Input-driven pushdown automata: nondeterminism and
unambiguity. In: Bensch, S., Drewes, F., Freund, R., Otto, F. (eds.) Proceedings of
Fifth Workshop on Non-Classical Models for Automata and Applications. NCMA
2013, 13–14 August 2013, Ume̊a, Sweden, vol. 294, pp. 31–33. Österreichische Com-
puter Gesellschaft (2013). https://shop.ocg.at/de/books.html

25. Okhotin, A., Salomaa, K.: Input-driven pushdown automata with limited nonde-
terminism. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp.
84–102. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09698-8 9

26. Okhotin, A., Salomaa, K.: Descriptional complexity of unambiguous input-driven
pushdown automata. Theor. Comput. Sci. 566, 1–11 (2015). https://doi.org/10.
1016/j.tcs.2014.11.015

27. Okhotin, A., Salomaa, K.: State complexity of operations on input-driven push-
down automata. J. Comput. Syst. Sci. 86, 207–228 (2017). https://doi.org/10.
1016/j.jcss.2017.02.001

28. Oswald, M.: P automata. Ph.D. thesis, Faculty of Computer Science, TU Wien
(2003)

29. Păun, A., Păun, Gh.: The power of communication: P systems with sym-
port/antiport. New Gener. Comput. 20(3), 295–306 (2002). https://doi.org/10.
1007/BF03037362

30. Păun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143
(2000). https://doi.org/10.1006/jcss.1999.1693

31. Păun, Gh., Pérez-Jiménez, M.J.: P automata revisited. Theor. Comput. Sci. 454,
222–230 (2012). https://doi.org/10.1016/j.tcs.2012.01.036

32. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

33. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3.
Springer, Heidelberg (1997)

34. Bulletin of the International Membrane Computing Society (IMCS). http://
membranecomputing.net/IMCSBulletin/index.php

35. The P Systems Website. http://ppage.psystems.eu/

20

https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.3233/FI-2009-0098
https://doi.org/10.3233/FI-2017-1576
https://doi.org/10.3233/FI-2017-1576
https://doi.org/10.1007/978-3-319-73216-9_19
https://doi.org/10.1007/3-540-45655-4_32
https://doi.org/10.1007/3-540-10003-2_89
https://shop.ocg.at/de/books.html
https://doi.org/10.1007/978-3-319-09698-8_9
https://doi.org/10.1016/j.tcs.2014.11.015
https://doi.org/10.1016/j.tcs.2014.11.015
https://doi.org/10.1016/j.jcss.2017.02.001
https://doi.org/10.1016/j.jcss.2017.02.001
https://doi.org/10.1007/BF03037362
https://doi.org/10.1007/BF03037362
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1016/j.tcs.2012.01.036
http://membranecomputing.net/IMCSBulletin/index.php
http://membranecomputing.net/IMCSBulletin/index.php
http://ppage.psystems.eu/

	Chocolate P Automata
	1 Introduction
	2 Prerequisites
	2.1 Insertion, Deletion, and Substitution
	2.2 Register Machines
	2.3 Counter Automata
	2.4 Input-Driven Register Machines and Counter Automata

	3 Tissue P Automata as Multiset Pushdown Automata
	3.1 Accepting Strings
	3.2 Input-Driven Tissue P Automata
	3.3 One-Membrane Antiport P Automata

	4 Examples and Results
	5 Conclusion and Future Research
	References

