
HAL Id: hal-01949063
https://hal.science/hal-01949063v1

Submitted on 1 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Lookup Is Not Enough: Towards Efficient and
Scalable Flow Entry Updates for TCAM-Based

OpenFlow Switches
Kun Qiu, Jing Yuan, Jin Zhao, Xin Wang, Stefano Secci, Xiaoming Fu

To cite this version:
Kun Qiu, Jing Yuan, Jin Zhao, Xin Wang, Stefano Secci, et al.. Fast Lookup Is Not Enough: To-
wards Efficient and Scalable Flow Entry Updates for TCAM-Based OpenFlow Switches. 38th IEEE
International Conference on Distributed Computing Systems (ICDCS), Jul 2018, Vienna, Austria.
�10.1109/ICDCS.2018.00093�. �hal-01949063�

https://hal.science/hal-01949063v1
https://hal.archives-ouvertes.fr

Fast Lookup Is Not Enough: Towards Efficient and Scalable
Flow Entry Updates for TCAM-based OpenFlow Switches

Kun Qiu∗†, Jing Yuan∗†, Jin Zhao∗†, Xin Wang∗†, Stefano Secci‡, Xiaoming Fu§
∗School of Computer Science, Fudan University, Shanghai, China

†Engineering Research Center of Cyber Security Auditing and Monitoring, Ministry of Education, China
‡Sorbonne Université, CNRS, LIP6, France
§Georg-August-Universität Göttingen, Germany

{qkun,yuanj16,jzhao,xinw}@fudan.edu.cn, stefano.secci@sorbonne-universite.fr, fu@cs.uni-goettingen.de

Abstract—With an increasing demand for flexible management
in software-defined networks (SDNs), it becomes critical to
minimize the network policy update time. Although major SDN
controllers are now optimized for rapid network update at the
control plane, there is still room for data plane optimization
in terms of update time, when using TCAM-based physical
SDN commodity-off-the-shelf switches. A slow update directly
affects network performance creating bottlenecks. To minimize
flow entry update time, a dependency graph, a kind of DAG
(directed acyclic graph), can be used for the access management
of flow entries at the switch. Thanks to the DAG, unnecessary
entry movements, which are the main factor slowing down flow
entry updates, can be avoided. However, existing algorithms show
limitations when updates become very frequent. We propose a
new flow entry update algorithm, called FastRule, that exploits a
greedy strategy with an efficient data structure to accelerate flow
entry update with a DAG approach. Moreover, we also adjust
our algorithm for other flow table layouts to make it scalable. We
elaborate on the correctness of FastRule and test our algorithm
using a hardware switch. Compared with existing algorithms, the
evaluation shows that our algorithm is about 100x faster than
state-of-the-art solutions with a flow table of 1k line size.

I. INTRODUCTION

Software-defined networks (SDN) and OpenFlow [1] are
increasingly being adopted by enterprise networks and even
carrier networks. The advantage brought by SDN is dynamic
network reconfiguration thanks to global view on network
states. An increased spectrum of functionalities is being ex-
plored in SDN, especially to enhance SDN response time to
networking events such as failures or topology changes, since
it determines the agility of the control loop [2]. In the case
of the respond time of failure recovery in carrier networks,
re-routing of rules in switches has to be finished within
25ms [3], to avoid congestion or packet loss. Meanwhile,
traffic engineering applications, e.g., B4 [4], also require fast
switch reconfiguration to improve network efficiency.

Although many solutions are proposed to increase the
controller processing power in order to shorten control-plane
processing latency [5]–[9], they cannot avert the considerable
latency in the data plane, which is mainly caused by rule
update of switch [10]. According to the recent measurement
results, a commercial OpenFlow switch, can only process 42
rule updates in 1s [11]. Thus, reducing the rule update latency
of switch is a critical task.

Usually, the switching rule (flow entry) update latency is
the time to add, delete, modify flow entries in the flow table

of SDN switches [12]. The primary reason why OpenFlow
switches can perform inefficiently in flow entry update is that
they use ternary content addressable memory (TCAM) [13] –
an memory architecture that can be seen as an ordered array
with parallel look-up ability [14] – whose function is mainly
designed for fast entry lookup, not for fast updating. Flow en-
tries in TCAM are usually stored from top to bottom, ordered
by decreasing physical addresses. If the header of an incoming
packet matches with multiple flow entries, only the entry with
the highest physical address is chosen. Thus, during the flow
entry update, the switch cannot prevent maintaining the order
of entries in the TCAM, which may cause a significant number
movements of existing flow entries [15], [16].

The problem can be approached from two dimensions.
One is to minimize the number of flow entry updates sent
to switches from the control plane [17]–[20]. For example,
a modular composition approach [21]–[24] can minimize
the number of updates by reducing redundant updates; and
Dionysus [15] reduces multi-switch policy update latency
caused by suboptimal scheduling. Another way is to design
a new firmware with some efficient algorithms [25]–[30] in
switches that can decrease flow entry movements in TCAM.
The minimum dependency graph, a kind of Directed Acyclic
Graph (DAG), can avoid unnecessary flow entry movements
in the procedure of flow entry update. Utilizing DAG in the
firmware needs a policy compiler, whose function is to convert
entry update requirement into DAG, and a TCAM update
scheduler, whose function is to convert an update in DAG back
into a sequence of TCAM entry movements. The state-of-the-
art solution called RuleTris [31] mainly focuses on designing
an efficient policy compiler, but the poor performance of its
TCAM update scheduler leads the firmware time, which is the
time used by TCAM update scheduler, up to 100ms for one
update in a flow table with a size of 4k entries.

In order to overcome these limitations, we propose FastRule,
an efficient and scalable flow entry update framework that
can achieve 0.04ms firmware time per-update in a 1k size
flow table by providing a high-performance TCAM update
scheduler. Our scheduler reduces the time complexity of cal-
culating update sequence to O(cavg(log n)2) with only O(n)
space complexity by a greedy algorithm and an efficient data
structure based on Binary Indexed Tree (BIT), where n is the
size of TCAM and cavg is average diameter of subgraphs in

the DAG. According to our measurement, a common value of
cavg for a n = 40k flow table is less than 15, which is far
less than n. We implement our scheduler in the firmware of a
programmable hardware OpenFlow switch ONetSwitch [32].
Through hardware evaluation, our solution reveals to be 100x
faster than the solution of RuleTris. The evaluation also
demonstrates our solution has a good scalability in a large-
scale hardware emulation flow table. We also modify FastRule
to satisfy the particular TCAM layout [29], [30] in order
to prove that FastRule can also be utilized in different type
of OpenFlow switches. We elaborate on the correctness of
FastRule and prove that we can always find a solution with
our algorithm.

The rest of paper is organized as follows: we first give
a background of TCAM, flow dependency and DAG in sec-
tion II. In section III, we describe the FastRule solution from
the state of the art. In section IV, we introduce our greedy
algorithm and BIT in details, and BIT is an efficient data
structure that performs minimum range querying. In section V,
we present our modification in different TCAM layouts. In
section VI, we evaluate FastRule and analyze the evaluation
results. We conclude in section VII.

II. BACKGROUND

As above mentioned, the TCAM is designed for high-speed
packet matching rather than for efficient entry updating in the
flow table. The reason for the slow update is that the TCAM
must keep the order of flow entries to satisfy a restriction
called flow dependency [10], [31]. Besides the priority (defined
in OpenFlow specification), the minimum dependency graph,
a kind of DAG, is a widely utilized way to handle flow
dependency. In this section, we give a brief description of
the flow dependency restriction, DAG, and how they decrease
the TCAM update latency.

A. Flow dependency

Similarly to the route entry that includes a prefix and a
forwarding port, the flow entry includes a match field and an
action [1]. If an incoming packet matches the match field of a
flow entry, the corresponding action is executed. If the match
field of two flow entries overlaps, i.e., two flow entries match
a same incoming packet, a specific order must be provided
to solve the matching ambiguity. The flow dependency is
such a relationship between two flow entries. Without loss
of generality, we define a flow entry A is dependent on a flow
entry B if B should be matched first. We also use A → B to
indicate A is dependent on B directly. Moreover, if there is
an entry C, and A → B → C, we can say A is dependent on
entry C indirectly.

B. Flow entry update in existing hardware switches

Previous research shows that the main reason for TCAM
slow update is the flow dependency maintenance based on
an integer index or priority [18]. In the TCAM, each flow
entry has its physical address [14], and the TCAM always
returns the entry with the highest physical address if it matches

multiple entries. When adding a new flow entry, the switch
firmware finds a correct place: the physical address which must
be higher than flow entries with lower priority, and moves
all flow entries whose physical address are lower than the
newly arrived one to create a space (unused TCAM entry)
in TCAM. Thus, updating a TCAM flow entry is similar to
insert sorting algorithm, i.e., if we have n flow entries, we
need n/2 movements on average to insert a new flow entry
into the TCAM.

C. Dependency graph

Moving all flow entries whose physical address is lower
than the newly arrived flow entry will lead to a large number
of entry movements. However, it is apparent that only moving
flow entries that have flow dependency relationship with the
newly inserted flow entry also meets the flow dependency
requirement.

For example, in Fig. 1(b), we need to move 4 flow entries to
create a free space for the newly inserted entry if we utilize a
priority-based solution, but in Fig. 1(c), only 2 movements are
necessary. Thus, directly utilizing flow dependency rather than
assigning a priority can significantly decrease the number of
movements. The minimum dependency graph, which is a kind
of Directed Acyclic Graph (DAG) [19], [31], [33] commonly
used to describe the flow dependency in a flow table. We
describe our notations in TABLE I. Specifically, we use a node
to indicate a flow entry in the flow table, and we use a directed
edge from node fb to fa to express node entry fa is dependent
on entry fb. Also, if fa is dependent on entry fb, the physical
address phyaddr(fa) must be higher than phyaddr(fb). In
Fig. 1(c), we can see that it is easy to reduce movements in
DAG. Generally speaking, the largest number of movements is
small than or equal to cmax, which is the largest diameter in all
sub-graphs in the DAG. Intuitively speaking, cmax indicates
how complex the flow dependency is in a flow table. In most
cases, such as routing table and access control list, cmax � n.

TABLE I
TERMS OF DEFINITION

Notation Description

G = (V,E)
A flow dependency graph G

with node set V and edge set E

n
The number of

flow entries or nodes in G

fu ∈ V , u ∈ [0, n]
A node in DAG, also

indicates a flow entry in flow table
efu,fv ∈ E An edge in DAG, indicates fu → fv

m
The number of

flow dependency requirements or edges in G
cmax The largest diameter of the sub-graph in G
cavg The average diameter of the sub-graph in G

phyaddr(fu) The physical address that stores fu in TCAM
val(A) The flow entry or node in physical address A

D. TCAM update scheduler

For inserting a flow entry into the TCAM, after the correct
place for the newly inserted entry is chosen, a sequence of flow
entry movements is applied in order to make the chosen space

Entries

CAA

**A

A*B

**B

0x6

Phyaddr

0[�

0[�

0[�

0x2

0[�

C*A

(a) A flow entry with match field “C*A”
needs to be inserted into the flow table. We
use the uppercase letter to indicate match
items of the match field. Usually, an entry
with wildcard match field must be dependent
on a precise one. Such as “**A” → “C*A”,
“**B” → “A*B ”.

Entries

CAA

**A

A*B

**B

0[�

Phyaddr

0x5

0x4

0x3

0x2

0[�

25

Prio

20

16

15

10

6

C*A

(b) If the flow dependency is implied by
priority, the firmware introduces a priority
20 to the new flow entry, and schedule the
insertion according to 20 into the space with
physical address 0x5. It needs 4 movements
in order to provide the space. We call it
priority-based solution, which is a naı̈ve so-
lution widely utilized in OpenFlow switches.

Entries

CAA

A*B

**B

**A

0[�

Phyaddr

0[�

0[�

0[�

0x2

0[�

C*A

Dependency

(c) If the flow dependency is implied by DAG, the firmware
finds that the newly inserted entry has no dependency
on entry “A*B” and “**B” in DAG. It needs only 2
movements to provide the space. We call it DAG based
solution.

Fig. 1. An example of flow entry insertion in a TCAM based flow table. We firstly simply introduce how TCAM match works. There are 5 flow entries in the
TCAM, and we use uppercase letter to indicate an entry field in the flow entry. There are 3 match items in the match field: ‘A,B,C’ indicate a fixed item, and
‘*’ indicate ‘ANY’ (omitted). ‘ANY’ means it will match any possible value in the packet header. If there is an incoming packet with packet header “CAA”,
the flow entry “CAA”, “C*A” and “***” are matched, but only “CAA” is the match result. This is because “CAA” has the highest physical address. In (a),
we need to insert a new entry with match field “C*A”. (b) shows the movements if the flow dependency implied by priority, and (c) shows the movements if
the flow dependency implied by DAG. Usually, utilizing DAG can significantly decrease the number of movements.

free in the TCAM. Such a sequence is called update sequence,
which is created by the TCAM update scheduler, part of
the switch firmware. We use (I, f, A) to indicate the insert
operation, and use (D,A) to indicate the delete operation. For
example, we can use the sequence (I, C ∗A, 0x5), (I, ∗ ∗A,
0x4), (I, A ∗ B, 0x3), (I, ∗ ∗ B, 0x2) and (I, ∗ ∗ ∗, 0x1) to
indicate the update sequence in Fig. 1(b). Also, we can use
the sequence (I, C ∗ A, 0x5), (I, ∗ ∗ A, 0x2), and (I, ∗ ∗ ∗,
0x1) to indicate the update sequence in Fig. 1(c).

Due to the large time cost of priority-based solution, a
more efficient algorithm is needed to calculate an update
sequence from graph elements (such as nodes and edges).
RuleTris utilizes a dynamic programming algorithm with the
time complexity O(n2) in the TCAM update scheduler to
calculate the update sequence. However, it lacks efficiency
when n is large. Motivated by our observation that the length
of most update sequences is not longer than cmax, and the
average length is about cavg , we design an optimized algorithm
whose time complexity is related to cmax or cavg . Moreover, as
deleting a flow entry from TCAM is simpler than inserting one
in most cases [31], we firstly discuss the flow entry insertion
in Section III and IV.

III. THE WORKING FLOW OF FASTRULE

In this section, we give an overview of FastRule. We use
Fig. 2 as an example to present the workflow of flow entry
insertion in FastRule. The FastRule includes 3 stages, where
the second stage is the main one, i.e., converting an update in
DAG back into a sequence of TCAM entry movements.

The first stage is the compiler, which coverts a request of
flow entry insertion into a request of node insertion in DAG.
There are many approaches to contribute a compiler, and we
can apply existing approaches, e.g., the one in RuleTris [31],

TCAM update time

On-demand:O((cavg^2)*n)
Array:O(cavg*n)

BIT:O(cavg* (logn)^2)
Firmware time

Update Request
(Flow Entry)

to
Update Request

(DAG)

Compiler

A Flow Entry
Update Request
“Insert a flow entry f”

A DAG Update
Request

“Insert a node f in
DAG”

The Greedy
Algorithm

loop O(cavg) times
(Input:f, candidate

addresses. Output: fp,
TCAM operation)
“Output node fp,

whose address A has
minimum metric in
candidates. Output
TCAM operation:

(I,f,A)”

Update Schedule
“�I,f�$��ŏ”

Apply Update
Schedule in

TCAM

TCAM API

Co
m

pu
te

Fe
tc

h
Pr

e-
co

m
pu

te

O(n*cavg)

Minimum metric
in candidates

(Input f. Output:
candidate addresses)

“Find candidate
addresses for f”

Or

Fetch
Array:O(n)
BIT:O(logn)
Maintain
Array:O(1)

BIT:O((logn)^2)

loop,f=fp

1st stage�
'$*�&RPSLOHU

3rd stage�
7&$0

2nd stage�
8SGDWH�6FKHGXOHU

Fig. 2. The working flow of FastRule. We give the input and output of
algorithms in the greedy algorithm, and we explain how they work with
quotation marks.

to our framework. Usually, the output contains a node: a flow
entry f , and all flow dependency requirements that f must
satisfy. The third stage is the TCAM; we apply the update
sequence into TCAM by TCAM API. In our evaluation, we
use the API provided by ONetSwitch [32].

The second stage searches for a sequence of TCAM entry
movements, i.e., an update sequence, which starts with the
newly inserted flow entry, and ends with a free space in
TCAM. We design an algorithm based on the greedy algo-
rithm, which is an approach that always takes the locally
optimal choice. To put it simply, the algorithm constantly finds
the most optimal address in a candidate addresses set, for
the newly inserted entry. An integer called metric determines
whether a candidate address is optimal, accordingly with the
principle that the smaller the metric is, the more optimal the
address is considered to be.

Fig. 2 gives a brief workflow of the second stage. Firstly,
we must find candidate addresses for f before the greedy
algorithm, and these candidate addresses must satisfy the flow
dependency requirements of f . Next, an address A with the
minimum metric is chosen from the candidates set and its
fp = val(A) is obtained. Then, f is inserted in A to displace
fp, and a TCAM operation (I, f, A) is added to the update
sequence. Next, the fp becomes the new f , and we must
find candidate addresses which satisfy the flow dependency
requirements of the new f in a new loop. The loop is over
if there exists at least one free space in candidate addresses,
which means the new f can be put into a free address. Usually,
the loop performs O(cavg) times.

Choosing the minimum metric from candidates contribute to
the most time in FastRule. In the bottom of the second stage,
we give three methods, which have different time complexity
to get the minimum metric:

1) On-demand: Computing the metric of all candidates
from scratch every time. Choosing the minimum metric
from candidates set has a time complexity with O(cavgn).

2) Pre-compute with array: Utilizing an array to save met-
rics of all candidates, and updating metrics after the loop
is over. Choosing the minimum metric from candidates
has a time complexity with O(n), while updating metrics
has a time complexity with O(cavg).

3) Pre-compute with BIT: Utilizing a modified Binary
Indexed Tree (BIT) to save metrics for all candidates,
and updating metrics after the loop is over. Choosing the
minimum metric from candidates has a time complexity
with O(log n), updating metrics has a time complexity
with O(cavg(log n)2).

The BIT is a data structure that is modified to get the
minimum metric in all candidates in a log time. In Section IV,
we briefly introduce our greedy algorithm and BIT, and we
also propose that how we optimize FastRule from the on-
demand version to the pre-compute with BIT version. The
final time complexity of the on-demand version is O(c2avgn),
the pre-compute with array version is O(cavgn), and the
Pre-compute with BIT version is O(cavg(log n)2).

As we have mentioned above, the time for the second stage
is called the firmware time, and the time for the third stage is
called the TCAM update time. When compared to previous
solutions, FastRule can significantly decrease the firmware
time and does not increase TCAM update time in most cases.
We evaluate two metrics in Section VI.

IV. GREEDY ALGORITHM

In this section, we first describe how to find candidate
addresses for f , and then we give a brief description of
the greedy algorithm. Without loss of generality, the highest
physical address and free space are in the top of TCAM.

A. On-demand: finding candidate addresses

When receiving an incoming request from the DAG com-
piler, such as inserting a node f with flow dependency
requirements fa → f → fb, it is precisely that candi-
date addresses for f is ranged from phyaddr(fa) + 1 to
phyaddr(fb). In another case, if node f is an output of the
greedy algorithm in last loop, the flow dependency is f → fb,
where phyaddr(fb) − phyaddr(f) is the minimum. In other
words, fb is the nearest node f dependent on. Thus, candidate
addresses for f is ranged from phyaddr(f)+1 to phyaddr(fb)
in this case.

B. Address metric computation

As we have mentioned, the greedy algorithm needs to
choose a candidate address A whose metric is the minimum.
We use M(A) to indicate the metric. We now give the
definition of M(A).

Definition 1. M(A) is the number of nodes in a specific path
P (A) in DAG that starts from val(A) and ends with val(Al).
The out-degree of val(Al) must be 0. For all pair of addresses
Ai, Ai+1 in path P = {val(A), val(A1), val(A2), ...val(Al)},
they satisfy Ai+1 ≤ At for any At ∈ {At|eval(Ai),val(At) ∈
G}.

Intuitively speaking, path P starts from the node in address
A, and ends with a node that is not dependent on any nodes.
For any pair of addresses Ai, Ai+1 in path P , the node in
Ai is dependent on the node in Ai+1, and Ai+1 must be the
nearest address from Ai.

We can use a depth first search (DFS) algorithm to find P
and its length M(A) for any address A: finding the nearest
node that is depended by the node in the current address (the
first address is A); using the searched nodes and its physical
address as the input in next search turn. If there is no new
node found, the search is finished. The time complexity of the
DFS algorithm is O(cavg). As G is DAG that does not have
any loop, the algorithm can always get a result.

C. Greedy algorithm

After node f that need to be inserted and its candidate
addresses are available, we can start the greedy algorithm to
get the update sequence. We describe the greedy algorithm in
Algorithm 1.

We use a recursion form to describe the algorithm. The
algorithm finds the address with minimum metric in candidates
from line 5 to 9, and insert f in A, and output a TCAM
operation (I, f, A) to update sequence in 12. We invoke the
algorithm with new fp and new candidate addresses in line 11
to 12. If there is a free space exists, the recursion will stop at
line 14.

We give an example to describe how it works in Fig. 3.

Algorithm 1: SCHEDULE: Output TCAM update sequence
Input: Candidate addresses phyaddr(fa) to

phyaddr(fb), node f
Output: Update Schedule U(f)

1 fp is the node whose address has the minimum metric
2 A is the physical adddress of fp
3 succ(A) is the address of the nearest (in address)

successor of fp
4 h is the current minimum metric
5 for k ∈ (phyaddr(fa), phyaddr(fb)] do
6 Compute M(k)
7 if M(k) ≤ h then
8 h←M(k), A← k
9 fp ← val(k)

10 if exists succ(A) then
11 fa ← A + 1, fb ← succ(A)
12 U(f)← (I, f, A)∪ SCHEDULE(fa, fb, fp)

13 else
14 U(f)← (I, f, A)

15 return U(f)

Before we prove the correctness of our algorithm, we first
give Proposition 1.

Proposition 1. Suppose there is a node f satisfies fa → f
and the out degree of node f is 0. If there exists at least one
free space whose physical address is higher than phyaddr(fa)
in the flow table, it can always find an address A to insert f .

Proposition 1 tells us that if f is not dependent on any
node, and the physical address of free space is higher than
phyaddr(fa), it can always be inserted successfully.

Proof 1. In line 4, phyaddr(fb) is the maximum physical
address TCAM have. After running line 5 to 9, we can always
find A that M(A) = 0, and f is inserted at line 14.

Then, we can state the following proposition.

Proposition 2. The greedy algorithm can always find a
solution if there exists at least one free space in the flow table.

Proof 2. For current node f , and candidate addresses
phyaddr(fa) to phyaddr(fb), we have the following cases.

1) if the out-degree of f is 0 (f is not dependent on any
nodes), then choose an address that is a free space in the
candidate addresses set, and insert f into the free space.
A solution hence exits.

2) if the out-degree of f is not 0, and there is an address
that is a free space in the candidate addresses set, insert
f into the free space. A solution hence exists.

3) if the out-degree of f is not 0, and there is no free address
in the candidate addresses set, then choose node fp
whose addressing metric is the minimum in the candidate
addresses set, and call the algorithm with fp as new f .
From the definition of candidate addresses set, if there
is only one address in the set, fp satisfies the existence
condition, f → fp.

As G is a DAG (the graph is directed and no loop exists), the
out-degree of fp selected in case 3) gets 0, eventually. Thus,
the case of the algorithm will be 1) finally. In case 1), the free
space must be higher than phyaddr(fa). If the free space is
lower than phyaddr(fa), it must be occupied by previous call
in case 2). Thus, from Proposition 1, the algorithm can find a
solution and exits.

About the time complexity of the degree algorithm: the
time complexity for line 5 to line 9 is O(cavgn), and the
greedy algorithm needs cavg times to stop, thus the total time
complexity is O(c2avgn).

D. Using an array data structure to store metrics

In Algorithm 1, the function from line 5 to line 9 is choosing
the minimum metrics in candidate addresses, which costs most
of the time in the greedy algorithm. As we have mentioned
above, in order to prevent computing metrics from the scratch,
we can use an O(n) array to save metrics. The tradeoff is
maintenance time of updating the array after each loop. We
also use M [] to indicate the array. We describe our maintaining
algorithm for M [] after inserting a new node into the flow
table.

From Fig. 4 we can see that the algorithm updates M [] by
two steps:

1) Update metrics with addresses that in the update sequence
U(f).

2) Update metrics with addresses that nodes in these ad-
dresses are directly and indirectly dependent on node f .

About the time complexity: modifying an element in array
M [] costs O(1). From step 1) we have to update metrics in
the update sequence and the cavg is the length of the update
sequence, the time complexity of step 1) is O(cavg). From step
2) we have to update metrics of the node that are directly or
indirectly dependent on f . The time complexity of step 2) is
O(cavg(1+din)) while din is the average in-degree of G. We
find din < 1 in all data sets, which means most flow entries are
not depended by other entries. Thus, the total time complexity
of updating metrics is O(cavg). The time complexity of greedy
algorithm decreases to O(cavgn) since the time complexity of
line 5 to line 9 decrease to O(n).

E. Using a modified Binary Indexed Tree to store metrics

As we have mentioned in the previous section, utilizing
Binary Indexed Tree (BIT) (also called Fenwick Tree) can
decrease the time complexity of line 5 to line 9 in Algorithm 1

 0x9

 0x8

 0x7

 0x6

 0x3

 0x2

 0x1

 0x0

 0x9

 0x8

 0x7

 0x6

 0x5

 0x4

 0x2

 0x1

 0x0

 0x9

 0x8

 0x7

 0x6

 0x5

 0x4

 0x3

 0x2

 0x1

 0x0

 0x9

 0x8

 0x7

 0x6

 0x5

 0x4

0

1

2

3

4

 0x3

 0x2

 0x1

 0x0

5

6

7

8

9

0

1

3

6

7

8

2

4

5

9

0

1

2

3

4

 0x35

6

7

8

 0x5

 0x4

0

1

2

3

4

6

7

8

9

5

a) b) c) d)

9

 0x9

 0x8

 0x7

 0x6

 0x3

 0x2

 0x1

 0x0

 0x5

 0x4

0

1

2

3

6

7

8

9

5

4

 0x9

 0x8

 0x7

 0x6

 0x3

 0x2

 0x1

 0x0

 0x5

 0x4

0

1

3

6

7

8

9

5

4

2

e) f)

Fig. 3. An example of creating an update sequence for inserting f into DAG. From a) we can see there are 9 nodes (entries) in the DAG (table), and we need
to insert a new node 9 that is dependent on node 5, and node 6 is dependent on the new node 9. b) shows the flow table after node 9 is inserted. The length
of update sequence is 4. Only nodes with blue color need be moved, and the update sequence U (0x3) is (I,9,0x3),(I,5,0x4),(I,4,0x6),(I,2,0x9). We give the
detail of first two callings of algorithm SCHEDULE in remain figures to show how our algorithm works. We use green color to indicate candidate addresses.
In c), we call SCHEDULE(0x3,0x3,9). The only selection in candidate address is 0x3, M (0x3)= 4, and P (0x3) is 0x3, 0x5, 0x7, 0x8. We insert node f = 9
at 0x3. The fp = 5, and we call SCHEDULE(0x4,0x5,5). We have two available selection for A in candidate addresses: 0x4 and 0x5. M (0x4)= 2 and P (0x4)
is 0x4, 0x6. M (0x5)= 3 and P (0x5) is 0x5, 0x7, 0x8. We choose 0x4 as A since M (0x4)< M (0x5). The fp = 4, and we insert node f = 5 at 0x4. In e)
and f), we insert node 4 and 2. Eventually, the flow table will become b).

 0x9

 0x8

 0x7

 0x6

 0x5

 0x4

 0x3

 0x2

 0x1

 0x0

0

1

3

6

7

8

2

4

5

9

M>�[�@ 0ROG>�[�@+2

M[0x1]=Mold>�[�@+3

M[0x0]=Mold>�[�@+3

M[0x3]=Mold>�[�@��

M>�[�@ 0ROG>�[�@

M[0x6]=Mold>�[�@

M[0x9]=Mold>�[�@

Fig. 4. An example for updating M [] after the greedy algorithm.
We update metrics (M [phyaddr(9)], M [phyaddr(5)], M [phyaddr(4)],
M [phyaddr(2)]) whose addresses in U (9) and we also update met-
rics (M [phyaddr(6)], M [phyaddr(7)], M [phyaddr(8)]). These nodes
(6, 7, 8) are directly or indirectly dependent on node 9. We use M [A] =
Mold[B] to indicate the update process. Mold[B] is the metric of physical
address B before update.

to O(log n). We discuss the design of BIT in detail in this
section.

1) Original BIT data structure: The original BIT data struc-
ture is used for quickly calculating the cumulative frequency.
Suppose there is an array R[] that has n elements, BIT can
get the

R[1 . . . a] =

a∑
i=1

R[i], a ∈ [1, n]

in O(log n) with space complexity O(n) by maintaining
an array B[]. As each integer p can be represented as

2k1 + 2k2 + · · · + 2kq , For example. 11 = 1 + 2 + 8, the
sum R[1 . . . 11] can also be represented by R[1 . . . 11] =
R[11(1)] +R[9 . . . 10(2)] +R[1 . . . 8(8)]. It is easy to decom-
pose an integer p into 2k1 + 2k2 + · · · + 2kq by utilizing a
function LOWBIT(x) = x&(−x) (& is bit and). LOWBIT(x)
can get the integer whose value equals to the rightmost 1 in the
binary presentation of x, such as LOWBIT(10112) = 00012,
LOWBIT(10102) = 00102. BIT use an another array B[] to
store the sum

B[x] =

x∑
i=x−LOWBIT(x)+1

R[i], x ∈ [1, N]

like B[11] = R[11], B[10] = R[9 . . . 10], B[8] = B[1 . . . 8]. If
we use binary to represent an integer, such as 11 = 10112,
we can find 11 can be decomposed by minus the rightmost
1 in its binary presentation. For example, 10112 = 10102 +
00012, 10102 = 10002 + 00102. Thus, R[1 . . . 11(10112)] =
B[11(10112)] + B[10(10102)] + B[8(10002)]. For computing
any R[a . . . b], a, b ∈ [1, n], we can compute R[1 . . . b] −
R[1 . . . a] directly.

2) Minimum Range Query: In array based Algorithm 1, the
function of line 5 to line 9 is to find the minimum metrics in
array M [], which takes O(n) times. This is a minimum range
query problem, which can be solved by a modified BIT in
O(log n) times.

We can perform minimum range query by changing the
definition of B[] from sum (

∑
) to minimum value:

B[x] = min(M [i]), i ∈ [x− LOWBIT(x) + 1, x], x ∈ [1, n]

From Fig. 5(a) we can see that querying the
min(M [a . . . b]) by computing min(M [1 . . . b],M [1 . . . a])
is not possible. We can only query M [a . . . b] by

3

1

4

1

5

5

2

1

3 1 4 1 5 9 2 6
B

M

B>�@
���

B>�@
���

B>�@
���

B>�@
���

B>�@
���

B>�@
���

B>�@
���

B>�@
����

M[1] M[2] M[3] M[4] M[5] M[6] M[7] M[8]

3

1

4

1

5

2

2

1

3 1 4 1 5 2 2 6

B>�@
���

B>�@
���

B>�@
���

B>�@
���

B>�@
���

B>�@
���

B>�@
���

B>�@
����

M[1] M[2] M[3] M[4] M[5] M[6] M[7] M[8]

B

M

a) query

b) update

Fig. 5. An example for querying and updating BIT. In a), we query the min-
imum value in M [1 . . . 6], which can be decomposed as B[4] = M [1 . . . 4]
and B[6] = M [4 . . . 6]. Thus, we can only compare B[4] and B[6] to get
the minimum value is 1. In b). we update the value of M [6] from 9 to 2.
Thus, we have to check all range that include M [6]. The first is B[6], which
is the minimum value of M [5] and M [6], and we update B[6] = 2. The
next is B[8], which is the minimum value of B[4], B[6], R[7], R[8]. Due to
B[4] = 1, we do not change the value of B[8].

decomposing the range [a, b] into several ranges in
B[x] = min(M [(x − LOWBIT(x) + 1) . . . x]) and find
the minimum value in these ranges. The time complexity is
O(log n).

3) Update: In the original BIT, if we update M [i] by
increasing or reducing a value ∆, we only need to increase
or decrease ∆ in all B[j] whose range include i. However,
in the scenario of minimum range query, we need to re-
compute all B[j] whose range including i. However, if we
directly compute each B[j] by definition, the time complexity
will be O(n log n). From Fig. 5(b), we can use computed
B[j − 2k], 2k < LOWBIT(j) ≤ 2k+1 to update B[j]. The
time complexity is O((log n)2). Thus, the time complex-
ity of the greedy algorithm is decreased from O(cavgn) to
O(cavg log n), and the time complexity of update metrics is
increased from O(cavg) to O(cavg(log n)2). Overall, the time
complexity of the BIT version is O(cavg(log n)2).

V. FASTRULE IN DIFFERENT TCAM LAYOUTS

In most cases, all flow entries are arranged in the bottom (or
top) of the TCAM (such as in Fig. 6(a)), and the free space is

a) b) c) d)

Fig. 6. a) is the original layout, b) is a layout that keeping a free space
in every 2 non-free spaces. c) and d) demonstrate an example for balance
deleting an entry. From c) and d), we can see that after the entry (orange
node) was deleted, the free space was occupied by other flow (blue node)
entry immediately.

in the top (or bottom) of the TCAM. We call this layout as the
original layout. However, in some other layouts, the TCAM
keeps a few free spaces (unused TCAM entries) in every K
non-free spaces [16], as shown in Fig. 6(b), in anticipation of
inserting and deleting of flow entries. The average loop times
of the greedy algorithm improves to K, but it can decrease to
cmax if all intermediate spaces are filled up.

A further approach is that all flow entries are separated
into two parts, one part in the bottom and the other part in
the top, and the free space is in the middle [30]. Moreover,
the insert and delete behaviors are different from the original
layout. In this section, we discuss insert/delete behaviors in
this particular layout. As an example shows in Fig. 6(c)(d),
we separate flow entries in the flow table into two parts: some
entries in the bottom, and others in the top.

1) Insert: If the newly inserted node f satisfies fa → f →
fb, and phyaddr(fa) and phyaddr(fb) are both in the bottom
part or top part of the TCAM, we just insert f at bottom part
or top part. Otherwise, we need insert f at the free space in
the middle part. Before we insert f into the middle part, we
need to judge whether bottom or top is feasible to insert. If
the number of flow entries in the top part is larger than in
the bottom part, we insert the new entry in the bottom part.
Otherwise, we insert the new entry in the top part. Insert f in
the middle part does not cost any flow entry movements.

2) Delete: Deleting a flow entry is more complex then in
the original layout. We have two options:

1) Dirty delete: Delete the flow entry, left the space available
for newly inserted flow entries.

2) Balance delete: Delete the flow entry, and then use other
existing flow entries to fill this space.

Both two options have advantages and disadvantages. If we
use the Dirty delete, free spaces are not in the middle of the
flow table; this will waste much space in TCAM. If we use
the Balance delete, as an example shows in Fig. 6 a) and
b), we have to move other entries to the free space, which is
considered as overhead.

We have evaluated both this layout (insert with dirty delete,
insert with balance delete) and the original layout in our
evaluation section to show the differences in efficiency.

VI. EVALUATION

We evaluate FastRule through experiments on
ONetSwitch [32], which is an open-source hardware
OpenFlow switch. ONetSwitch is a ZedBoard with an up to
800Mhz Cortex-A9, 512MB DDR3 RAM. We use C++ to
implement our framework and use g++ provided by Xilinx
to cross-compile without any optimization. We evaluate the
average TCAM update time and firmware time by measuring
1,000 random updates.

1) Large size TCAM emulation: The original TCAM in
ONetSwitch is pretty small (256 entries in ONetSwitch45),
which is not enough for the experimental evaluation. RuleTris
solves this problem by emulating a large size TCAM in
a Linux server; in the server, they evaluate their algorithm
on the emulated TCAM and output the number of TCAM
moves that is needed for TCAM update – as each TCAM
move costs a constant amount of time (0.6ms), it uses the
total number of TCAM moves times the average latency of a
TCAM move to estimate the TCAM update time. We use a
more accurate way to emulate large size TCAM. Similarly to
RuleTris, we also use a Linux server to evaluate our algorithm,
but it is only used to ensure the correctness of our algorithm
(by checking whether flow entries in emulated TCAM are
in the correct physical address). In order to emulate a large
size TCAM with a small size (ONS HW TABLE SIZE,
defined in ONetSwitch) TCAM in ONetSwitch, we mod-
ulo the original address with ONS HW TABLE SIZE
(such as (I, f, A%256), ONS HW TABLE SIZE=256 in
ONetSwitch45 [31]) if the original address is larger than or
equal to ONS HW TABLE SIZE, and update the TCAM
with the modulo address. The update time is not affected by
utilizing modulo address.

TABLE II
DATA SET

Type ACL4
n 250 500 1K 2K 4K 10K 20K 40K

cmax 3 3 3 6 3 4 13 5
cavg 1.1 1.0 1.1 1.1 1.1 1.1 1.6 1.1
Type ACL5

n 250 500 1K 2K 4K 10K 20K 40K
cmax 2 3 3 5 3 3 9 4
cavg 1.0 1.0 1.1 1.1 1.1 1.1 1.2 1.1
Type FW4

n 250 500 1K 2K 4K 10K 20K 40K
cmax 5 7 3 8 4 4 15 4
cavg 1.5 1.4 1.1 1.6 1.1 1.1 1.6 1.0
Type FW5

n 250 500 1K 2K 4K 10K 20K 40K
cmax 5 7 5 8 5 5 12 5
cavg 1.4 1.4 1.2 1.3 1.2 1.1 1.2 1.1
Type ROUTE

n 250 500 1K 2K 4K 10K 20K 40K
cmax 2 3 3 3 3 3 4 4
cavg 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.8

2) Data set: To confirm that our methods are robust and
scalable enough, we evaluate FastRule on various type of
flow tables: two from Access Control List (ACL4, ACL5),
two from Firewall (FW4, FW5) and one from Routing Table
(ROUTE). For ACL4, ACL5 and FW4, FW5, we firstly use the
well-known policy generator ClassBench, with configuration
names ACL4, ACL5, FW4, FW5 provided in ClassBench [34],
to generate policies, and use ClassBench-ng [35] to covert
these generated policies into OpenFlow entries. For ROUTE,
we download a L3 routing table (routeviews-rv2-20170606)
from CAIDA [36], and use ClassBench-ng [35] to convert
a subset of prefixes into OpenFlow entries. We summarize
characteristics of these flow tables in TABLE II. The number
of flow dependency m ranges from 37 to 38225 in ACL4, 3 to
4557 in ACL5, 365 to 24130 in FW4, 168 to 40303 in FW5
and 169 to 31381 in ROUTE. From m we can see din is small
since 10% flow entries have flow dependency. It is obvious that
the number of flow dependency in FW4, FW5 are larger than
the number in ACL4, ACL5. Moreover, ROUTE has a larger
cavg than others. We also prepare a data set of flow updates
to flow tables with each size. We generate 250 updates for
the flow table with 250 entries, 500 updates for the flow table
with 500 entries, and 1000 updates for the flow table with
1k, 2k, 4k, 10k, 20k, 40k entries. Moreover, we generate two
type of update. The first type only contains entry insertion,
and the second type contains an entry insertion and an entry
deletion after the insertion. As for flow entry insertion, we
create a new f that satisfies fa → f → fb, where fa and fb
are randomly chose from existing entries in the flow table. As
for the deletion, we randomly delete a flow entry in the flow
table.

3) Firmware time and TCAM update time: We measure the
firmware time, which is the time of computing the update
sequence from a DAG based or priority-based flow entry
update in the switch firmware: the time is measured from
when the computation starts till it is ready to apply the update
sequence to the TCAM. We also measure the TCAM update
time, which includes all update times when applying the
update sequence to the TCAM: we fetch the ADDENTRY(),
DELETEENTRY() APIs from ONetSwitch SDK, and call these
APIs to insert/delete entries in specific physical addresses in
TCAM, then the time is measured from the TCAM updating
start to the end. The firmware and TCAM update times are
measured separately on the physical OpenFlow switch.

4) Layout and algorithm: In section V, we have introduced
the impact of layout and different insert/delete behaviors. In
evaluation, we use FR-SB to indicate the separated layout with
balance delete, FR-SD to indicate the separated layout with
dirty delete, FR-O to indicate the original layout. Moreover, we
use RuleTris to indicate the dynamic programming algorithm
in RuleTris, and Naı̈ve to indicate the widely used insertion
sort algorithm.

A. Firmware time: computing update sequence

Firstly, we show the average firmware time on these flow
tables in Fig. 7. We choose ACL4, FW5 and ROUTE with

0.01

0.1

1

10

100

1000

10000

250 500 1K 2K 4K 10K 20K 40K

Flowtable size

F
ir

m
w

ar
e

T
im

e
(m

s)

FR−SB FR−O RuleTris Naive

(a) Insert, ACL4

0.01

0.1

1

10

100

1000

10000

250 500 1K 2K 4K 10K 20K 40K

Flowtable size

F
ir

m
w

ar
e

T
im

e
(m

s)

FR−SB FR−O RuleTris Naive

(b) Insert, FW5

0.01

0.1

1

10

100

1000

10000

250 500 1K 2K 4K 10K 20K 40K

Flowtable size

F
ir

m
w

ar
e

T
im

e
(m

s)

FR−SB FR−O RuleTris Naive

(c) Insert, ROUTE

0.01

0.1

1

10

100

1000

10000

250 500 1K 2K 4K 10K 20K 40K

Flowtable size

F
ir

m
w

ar
e

T
im

e
(m

s)

FR−SB FR−SD FR−O RuleTris Naive

(d) Insert and delete, ACL4

0.01

0.1

1

10

100

1000

10000

250 500 1K 2K 4K 10K 20K 40K

Flowtable size

F
ir

m
w

ar
e

T
im

e
(m

s)

FR−SB FR−SD FR−O RuleTris Naive

(e) Insert and delete, FW5

0.01

0.1

1

10

100

1000

10000

250 500 1K 2K 4K 10K 20K 40K

Flowtable size

F
ir

m
w

ar
e

T
im

e
(m

s)

FR−SB FR−SD FR−O RuleTris Naive

(f) Insert and delete, ROUTE

Fig. 7. The firmware time in ACL4, FW5 and ROUTE. We do not put Naı̈ve in 20k and 40k since Naı̈ve can not finish in half an hour.

0.1

1

10

100

1000

250 500 1K 2K 4K 10K 20K 40K

Flowtable size

T
C

A
M

 U
pd

at
e

T
im

e
(m

s)

FR−SB FR−O RuleTris Naive

(a) Insert, ROUTE

0.1

1

10

100

1000

250 500 1K 2K 4K 10K 20K 40K

Flowtable size

T
C

A
M

 U
pd

at
e

T
im

e
(m

s)

FR−SB FR−SD FR−O RuleTris Naive

(b) Insert and delete, FW5

Fig. 8. The TCAM update time in ROUTE and FW5. We do not put Naı̈ve
in 20k and 40k since Naı̈ve can not finish in half an hour.

250 to 40k entries in flow tables to show how the overhead
increases. In the experiments, we feed 250 updates to the table
with 250 entries, 500 updates to the table with 500 entries and
1, 000 updates to tables with other sizes. In Fig. 7(a), 7(b)
and 7(c), each update only contains one insert to the ACL4,
FW5 and ROUTE tables. In Fig. 7(d), 7(e) and 7(f), every
two updates sequentially contain one insert and one delete to

the ACL4, FW5 and ROUTE table. We do not add FR-SD in
Fig. 7(a), 7(b) and 7(c) since the time used by FR-SB and
FR-SD is equal if there is no delete update. The error bar
indicates the maximum firmware time in the evaluation.

The firmware times evaluated in ACL4 table are shown in
Fig. 7(a) and 7(d). In all cases, the naı̈ve algorithm is the
slowest, which takes more than 1, 000 times our algorithms
in a 10k-entry table. The reason is that it needs to locate the
suitable place in every update, and assign a new priority for all
entries that need to be moved within the TCAM. The RuleTris
performs better than the naı̈ve solution (100 times the naı̈ve
algorithm in a 2k entries flow table), but it is still slower than
our algorithms. Moreover, with the increase in flow table size,
the time used by the RuleTris and naı̈ve algorithm increase
rapidly, but our algorithms can remain stable. Different layout
and delete behavior can also influence the efficiency. If updates
only contain insert, FR-SB is a little bit faster than the FR-
O. However, If updates contain both insert and delete, FR-SB
is slower than FR-SD and FR-O. We give a brief analysis
in subsection VI-D. Moreover, the maximum firmware times
of FastRule algorithms are shorter than the average time of
others.

Fig. 7(b), 7(c) and 7(e), 7(f) show the result of firmware
time evaluated in FW5 and ROUTE tables. Similarly to the
previous experiment, we observe that our algorithms are at
least 10 times faster than RuleTris due to the time saved in
the firmware time.

B. TCAM update time: time of rule updates on the TCAM

Then, we give the time of rule updates on the TCAM on
these flow tables in Fig. 8. In this experiment, we only choose
ROUTE in Fig. 8(a) and FW5 in Fig. 8(b) since these two

figures are typical and other figures are pretty similar to them.
From Fig. 8(a), the TCAM update time of FR-SB and FR-
O show no big differences with RuleTris, which means that
our algorithms do not introduce overhead. From Fig. 8(b), we
can see FR-SD is the fastest among all algorithms. However,
FR-SB is much slower than FR-SD, FR-O and RuleTris. This
happens because the FR-SB uses more TCAM movements to
perform balance deletion by moving other existing entries to
fill the space.

0.00

0.01

0.02

0.03

0.04

FR−SB FR−O

F
ir

m
w

ar
e

T
im

e
(m

s)

Data type Acl4 Acl5 Fw4 Fw5 Route

(a) Insert, 2K size

0.00

0.01

0.02

0.03

0.04

FR−SB FR−SD FR−O

F
ir

m
w

ar
e

T
im

e
(m

s)

Data type Acl4 Acl5 Fw4 Fw5 Route

(b) Insert and delete, 2K size

0.00

0.01

0.02

0.03

0.04

FR−SB FR−O

F
ir

m
w

ar
e

T
im

e
(m

s)

Data type Acl4 Acl5 Fw4 Fw5 Route

(c) Insert, 10K size

0.00

0.01

0.02

0.03

0.04

FR−SB FR−SD FR−O

F
ir

m
w

ar
e

T
im

e
(m

s)

Data type Acl4 Acl5 Fw4 Fw5 Route

(d) Insert and delete, 10K size

Fig. 9. The firmware time among different layouts and delete behaviors.

C. The influence of cavg
Because of the time complexity of inserting in FastRule is

O(cavg(log n)2), which depends on cavg , we give the firmware
time among different types of flow tables to show how cavg
influence the efficiency of our algorithms. In Fig. 9(a) and 9(c),
we can find the time used of FR-O is consistent with cavg . For
example, in Fig 9(a), the time used by ROUTE and FW4 in
size 2k are larger than the time used in another type of tables
since the cavg of ROUTE and FW4 are 1.6 and 1.7, which are
larger than cavg in other type of tables (ACL4, ACL5 and FW5
are 1.1, 1.1 and 1.3). The situation is the same in Fig. 9(c).
Moreover, the average time of FR-SB is a little bit smaller than
the FR-O. However, in Fig. 9(b) and Fig. 9(d), the time does
not follow cavg . This happens because the time complexity of
delete entry operations does not depend on cavg . Moreover, it
obviously shows that FR-SB is slower than FR-SD and FR-O
in all types of flow tables due to the balance delete overhead,
and FR-SD is the fastest method.

D. Analysis

1) Comparison with RuleTris: The efficiency of our algo-
rithms derives from a lower time complexity than previous
solutions. We only move cavg flow entries for each flow entry
update in TCAM. Usually, cavg is very small in real-world

data set. RuleTris utilizes a loop to calculate the potential
movements in a range of flow entries that may be moved, and
the range may be n. Although the cmax can also be n, but it
seldom occurs in real-world data sets. Moreover, some time
wasting initiation processes (Line 4 to Line 8 in Algorithm
1 of RuleTris [31]) can also be observed in RuleTris, which
makes it less efficient than our approach.

2) Efficiency among different layouts and delete behaviors:
As we have mentioned above, differences exist among two
layouts, and also between delete behaviors. It can be observed
that the firmware time with FR-SB is slightly lower than FR-O
with pure insert updates, but the firmware time with FR-SB
is about 1.5 to 2 times the FR-SD and FR-O times, when the
insert updates and deletes update parts count for half each.
FR-SB separates all entries into top and bottom, and creates
a space in the middle of the flow table. On the one hand, the
new inserted entry falling into the free space can decrease the
firmware time of maintaining existing entries, and on the other
hand, a separated flow table can decrease cavg , which can also
decrease the firmware time. However, the situation is different
if the proportion of delete updates increased. FR-SB needs to
continuously maintain a free space in the middle of the flow
table, which can increase the delete overhead. If the deleted
entry is not near the middle free space, it costs at least one
movement to fill the space created by the deleted entry. The
FR-SD and FR-O do not cost any movements in delete update,
which makes them more efficient than FR-SB.

VII. CONCLUSION

In this paper, we propose a scalable rule update algorithm,
called FastRule, which is able to efficiently address the issue
of performance bottleneck in TCAM memory update for
OpenFlow switches. To decrease the TCAM update latency,
we design a greedy algorithms with a specific data structure.
First, we propose a fast algorithm with a O(c2avgn) time
complexity for quickly calculating the update sequence in a
flow table of size n, where cavg is the diameter of a directed
acyclic graph we use. Second, we optimize this algorithm
to work at O(cavg(log n)2) time complexity, with a data
structure to further increase its efficiency. Moreover, we also
optimize our algorithm in a special layout of the flow table.
Meanwhile, We prove the correctness of the greedy algorithm
and prove that we can always find a solution by our algorithm.
The evaluation results show that our algorithm can be about
100 times faster than state-of-the-art approach, in a 1k size
flow table. Furthermore, we analyze the efficiency of different
layouts and delete behaviors. The results demonstrate that
FastRule can significantly decrease the TCAM update latency
in different layouts with different delete behaviors.

ACKNOWLEDGMENTS

The work was partially supported by Natural Science Foun-
dation of China(61571136), 863 program(2015AA016106)
and the EU FP7 IRSES MobileCloud Project(612212). Jin
Zhao is the corresponding author.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.” in Nsdi,
vol. 10, 2010, pp. 19–19.

[3] B. Niven-Jenkins, D. Brungard, M. Betts, N. Sprecher, and S. Ueno,
“Requirements of an mpls transport profile,” Tech. Rep., 2009.

[4] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
globally-deployed software defined wan,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 3–14.

[5] J. Hu, C. Lin, X. Li, and J. Huang, “Scalability of control planes for
software defined networks: Modeling and evaluation,” in Quality of
Service (IWQoS), 2014 IEEE 22nd International Symposium of. IEEE,
2014, pp. 147–152.

[6] S. H. Yeganeh and Y. Ganjali, “Beehive: Simple distributed program-
ming in software-defined networks,” in Proceedings of the Symposium
on SDN Research. ACM, 2016, p. 4.

[7] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[8] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker, “Scl:
Simplifying distributed sdn control planes.” in NSDI, 2017, pp. 329–345.

[9] B. Davie, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. Gude, A. Pad-
manabhan, T. Petty, K. Duda, and A. Chanda, “A database approach to
sdn control plane design,” ACM SIGCOMM Computer Communication
Review, vol. 47, no. 1, pp. 15–26, 2017.

[10] X. Wen, C. Diao, X. Zhao, Y. Chen, L. E. Li, B. Yang, and K. Bu,
“Compiling minimum incremental update for modular sdn languages,”
in Proceedings of the third workshop on Hot topics in software defined
networking. ACM, 2014, pp. 193–198.

[11] D. Y. Huang, K. Yocum, and A. C. Snoeren, “High-fidelity switch
models for software-defined network emulation,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking. ACM, 2013, pp. 43–48.

[12] H. Chen and T. Benson, “Hermes: Providing tight control over high-
performance sdn switches,” in Proceedings of the 13th International
Conference on emerging Networking EXperiments and Technologies.
ACM, 2017, pp. 283–295.

[13] F. Long, Z. Sun, Z. Zhang, H. Chen, and L. Liao, “Research on tcam-
based openflow switch platform,” in Systems and Informatics (ICSAI),
2012 International Conference on. IEEE, 2012, pp. 1218–1221.

[14] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(cam) circuits and architectures: A tutorial and survey,” IEEE Journal
of Solid-State Circuits, vol. 41, no. 3, pp. 712–727, 2006.

[15] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rex-
ford, and R. Wattenhofer, “Dynamic scheduling of network updates,”
in ACM SIGCOMM Computer Communication Review, vol. 44, no. 4.
ACM, 2014, pp. 539–550.

[16] B. Vamanan and T. Vijaykumar, “Treecam: decoupling updates and
lookups in packet classification,” in Proceedings of the Seventh COnfer-
ence on emerging Networking EXperiments and Technologies. ACM,
2011, p. 27.

[17] X. Jin, J. Gossels, J. Rexford, and D. Walker, “Covisor: A compositional
hypervisor for software-defined networks.” in NSDI, vol. 15, 2015, pp.
87–101.

[18] A. Lazaris, D. Tahara, X. Huang, E. Li, A. Voellmy, Y. R. Yang, and
M. Yu, “Tango: Simplifying sdn control with automatic switch property
inference, abstraction, and optimization,” in Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies. ACM, 2014, pp. 199–212.

[19] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple:
simplifying sdn programming using algorithmic policies,” in ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4. ACM,
2013, pp. 87–98.

[20] S. Vissicchio and L. Cittadini, “Safe, efficient, and robust sdn updates
by combining rule replacements and additions,” IEEE/ACM Transactions
on Networking, vol. 25, no. 5, pp. 3102–3115, 2017.

[21] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker et al., “Com-
posing software defined networks.” in NSDI, vol. 13, 2013, pp. 1–13.

[22] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “Netkat: Semantic foundations for
networks,” SIGPLAN Not., vol. 49, no. 1, pp. 113–126, Jan. 2014.
[Online]. Available: http://doi.acm.org/10.1145/2578855.2535862

[23] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler
and run-time system for network programming languages,” in ACM
SIGPLAN Notices, vol. 47, no. 1. ACM, 2012, pp. 217–230.

[24] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
ACM Sigplan Notices, vol. 46, no. 9, pp. 279–291, 2011.

[25] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow:
Dependency-aware rule-caching for software-defined networks,” in Pro-
ceedings of the Symposium on SDN Research. ACM, 2016, p. 6.

[26] P. He, W. Zhang, H. Guan, K. Salamatian, and G. Xie, “Partial order
theory for fast tcam updates,” IEEE/ACM Transactions on Networking,
2017.

[27] H. Chen and T. Benson, “The case for making tight control plane latency
guarantees in sdn switches,” in Proceedings of the Symposium on SDN
Research. ACM, 2017, pp. 150–156.

[28] J. Van Lunteren and T. Engbersen, “Fast and scalable packet classifi-
cation,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 4, pp. 560–571, 2003.

[29] T. Mishra and S. Sahni, “Duos-simple dual tcam architecture for routing
tables with incremental update,” in Computers and Communications
(ISCC), 2010 IEEE Symposium on. IEEE, 2010, pp. 503–508.

[30] D. Shah and P. Gupta, “Fast updating algorithms for tcam,” IEEE Micro,
vol. 21, no. 1, pp. 36–47, 2001.

[31] X. Wen, B. Yang, Y. Chen, L. E. Li, K. Bu, P. Zheng, Y. Yang, and
C. Hu, “Ruletris: Minimizing rule update latency for tcam-based sdn
switches,” in Distributed Computing Systems (ICDCS), 2016 IEEE 36th
International Conference on. IEEE, 2016, pp. 179–188.

[32] ONetSwitch, Open Source Hardware for SDN. Accessed: 2018-02-06.
[Online]. Available: {https://www.kickstarter.com/projects/onetswitch/
onetswitch-open-source-hardware-for-networking}

[33] H. Song and J. Turner, “Nxg05-2: Fast filter updates for packet classi-
fication using tcam,” in Global Telecommunications Conference, 2006.
GLOBECOM’06. IEEE. IEEE, 2006, pp. 1–5.

[34] D. E. Taylor and J. S. Turner, “Classbench: A packet classification
benchmark,” IEEE/ACM Transactions on Networking (TON), vol. 15,
no. 3, pp. 499–511, 2007.

[35] J. Matoušek, G. Antichi, A. Lučanskỳ, A. W. Moore, and J. Kořenek,
“Classbench-ng: Recasting classbench after a decade of network evo-
lution,” in Architectures for Networking and Communications Systems
(ANCS), 2017 ACM/IEEE Symposium on. IEEE, 2017, pp. 204–216.

[36] CAIDA,Center for Applied Internet Data Analysis. Accessed: 2018-02-
06. [Online]. Available: {https://www.caida.org/home/}

