

Comparative characterization of surface sludge deposits from fourteen French Vertical Flow Constructed Wetlands sewage treatment plants using biological, chemical and thermal indices

M. Kania, Mathieu Gautier, Anne Imig, Philippe Michel, Rémy Gourdon

▶ To cite this version:

M. Kania, Mathieu Gautier, Anne Imig, Philippe Michel, Rémy Gourdon. Comparative characterization of surface sludge deposits from fourteen French Vertical Flow Constructed Wetlands sewage treatment plants using biological, chemical and thermal indices. Science of the Total Environment, 2019, 647, pp.464-473. 10.1016/j.scitotenv.2018.07.440 . hal-01949002

HAL Id: hal-01949002 https://hal.science/hal-01949002v1

Submitted on 22 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Comparative characterization of surface sludge deposits from fourteen French vertical flow constructed wetlands sewage treatment plants using biological, chemical and thermal indices

Manon KANIA, Mathieu GAUTIER, Anne IMIG, Philippe MICHEL, Rémy GOURDON

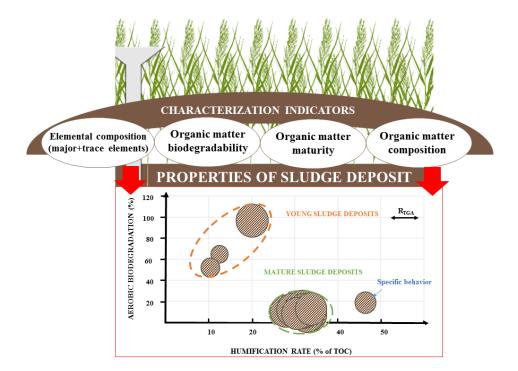
→ To cite this version:

Manon Kania, Mathieu Gautier, Anne Imig, Philippe Michel, Rémy Gourdon (2019). Comparative characterization of surface sludge deposits from fourteen French vertical flow constructed wetlands sewage treatment plants using biological, chemical and thermal indices. Science of The Total Environment, 647, 464–473.

https://doi:10.1016/j.scitotenv.2018.07.440

Please contact the corresponding author (<u>mathieu.gautier@insa-lyon.fr</u>) if you are interested by a copy of the article published in the journal.

Comparative characterization of surface sludge deposits from fourteen French vertical


flow constructed wetlands sewage treatment plants using biological, chemical and

thermal indices

M. Kania ^{a,b}, M. Gautier ^{a,*}, A. Imig ^a, P. Michel ^b and R. Gourdon ^a

^a Univ Lyon, INSA Lyon, DEEP (Déchets Eaux Environnement Pollutions), EA 7429, 69621 Villeurbanne Cedex, France ^b SCIRPE, 5 Allée Alban Vistel, 69110 Sainte-Foy-Lès-Lyon, France

Graphical abstract

Highlights

- Particulate organic matter (POM) in sludge deposits (SD) exhibits specific properties.
- Young deposits (≤ 1 y) and mature de-posits (>3 y) identified as 2 distinct groups.
- Additional pretreatments affected young-age sludge deposits characteristics.
- State of maturation of POM in SD inter-mediate between peat and wet meadows

Abstract

Due to their design and mode of operation, French Vertical Flow Constructed Wetlands (VFCWs) accumulate suspended solids from the inflow wastewater in the form of a sludge layer at the surface of the first filter. In order to maintain the treatment performance over the long term, the characteristics of the sludge deposits and their evolution have to be well described. In this objective, a panel of sludge deposit samples taken from 14 French VFCW sewage treatment plants was investigated. Elemental composition and organic matter content, nature and reactivity were analyzed. Results clearly revealed two categories of sludge deposits, namely the "young-age plants" type (1 year of operation and less) and the "mature plants" type (3 years of operation and more). Sludge deposits from the "mature plants" exhibited same biological, physical and chemical properties. Their organic matter was globally less abundant, more humified and less biodegradable than in the young-age plants type. Their overall contents in trace metals were also higher, although in a limited manner. The effect of additional treatments, particularly FeCl₃ injection for phosphorus precipitation, was observable in the "young-age plants" group. Finally, the sludge deposits sampled from one particular plant with specific operating conditions were found to exhibit very different characteristics from those of either groups identified. This observation underlined the influence of local conditions on the typology of the sludge deposits.

Keywords

Sludge deposits; Constructed wetland; indices; Characterization; Organic matter; Ageing

*Corresponding author.

E-mail addresses: manon.kania@insa-lyon.fr (M. Kania), mathieu.gautier@insa-lyon.fr (M. Gautier), pmi@scirpe.fr (P. Michel), remy.gourdon@insa-lyon.fr (R. Gourdon).

3

1. Introduction

French Vertical Flow Constructed Wetlands (VFCWs) have become in the recent years in France the sewage treatment system most widely used in rural communities of \leq 2000 Population Equivalent (Bellin, 2016). This rapid development may be explained by the high level of performance of these systems, their good social acceptability and landscape integration, their low energy requirements, easy operation, and low maintenance (Liu et al., 2015a; Semeraro et al., 2015; Wu et al., 2014).

The so-called "French VFCW system" comprises two stages of filters where the first stage is fed with unsettled raw wastewater. This design results in the formation of a sludge layer at the surface of the first filter which has mainly been considered until recently through its hydraulic aspects and its negative consequences with regards to the potential risk of clogging (Hua et al., 2018; Knowles et al., 2011; Nivala et al., 2012; Yang et al., 2018). Yet, the sludge layer may contribute positively to the treatment efficiency. For example, suspended solids removal, water retention and the biodegradation or retention of pollutants may be improved (Chazarenc & Merlin, 2005; Kim et al., 2013; Molle, 2014). On the other hand; the retention of most of feed organic matter within the sludge layer may limit the efficiency of subsequent denitrification (Lee et al., 2009; Van Oostrom & Russell, 1994). The effective roles of the sludge layer in the system may depend on its structural, compositional and reactional properties which are controlled by numerous factors, such as the composition of the influent wastewater, the operating conditions of the plant, or other local environmental factors (Fu et al., 2015). Although extensive work has already been published on similar issues in the fields of natural wetlands (Grasset et al., 2017; Rouwane et al., 2017), anthropic sediment (Badin, 2009; Huot, 2013), activated sludge (Alvarenga et al., 2015; Lachassagne, 2015), or sludge drying reed beds (SDRB) (Collard et al., 2017; Nielsen, 2011; Nielsen & Bruun, 2015; Nielsen & Larsen, 2016; Nielsen & Willoughby, 2005; Vincent et al., 2012), very few studies have focused on VFCWs'

surface sludge deposits (Bois et al., 2015; Chazarenc & Merlin, 2005; Kim et al., 2013; Kim et al., 2015). Molle (2014) and Perron et al. (2007) reported the influence of the VFCW plant design and operating conditions, such as organic and hydraulic loads or feed and rest periodicity. Kim et al. (2013), reported that although mainly organic, sludge deposits contained significant amounts of inorganic constituents originating from the local geological background or generated by possible operations of pretreatment of the influent such as phosphate precipitation by FeCl₃ addition. Kim et al. (2013) and Kania et al. (2018, 2018a) investigated the extent of organic matter evolution within the sludge deposits, such as mineralization. Finally, the authors of this study reported structural properties data of surface sludge deposits in a recent article (Kania et al., 2018b). In the specific context of sludge drying reed bed systems, few studies investigated the mineralization of the sludge and the organic matter stabilization (Masciandaro et al., 2017; Nielsen, 2005; Nielsen et al., 2014; Peruzzi et al., 2017; Peruzzi et al., 2013).

The objective of the present study was to contribute to a better description of the properties of sludge deposits using chemical, biological and thermochemical methods. Samples from fourteen VFCW sewage treatment plants in operation in France were analyzed to assess whether specific typologies would be observed and, if so, identify the dominant factors of influence, especially with regards to the particulate organic matter (POM).

2. Materials and methods

2.1. Sites of investigation

Fourteen French VFCW sewage treatment plants located in the south-eastern part of France, were selected for the study. The treatment plants were all equipped with a preliminary gridding stage set between 3 and 30 mm to remove coarse solids and debris. Four of them were also equipped with a sand trap (Table 1). Three typical types of VFCW process designs were represented in the selected plants:

- Process type I, usually referred to as the "classical French system", where gridded, unsettled raw wastewater was percolated through two successive stages of vertical flow filters.
- Process type II, where an additional stage of aerobic biological trickling filter was used to treat gridded wastewater prior to the two successive stages of vertical flow filters,
- Process type III, comprising the same operations as in type II plus the introduction of a FeCl₃ solution into the outlet of the aerobic trickling filter in order to precipitate phosphorus prior to infiltration through the two successive stages of filters.

VFCW	Process		P	rocess line sta	Number of years of	Nominal capacity	Average		
plants	type	Gridding / sieving	Sand fran			operation at sampling date	(Population Equivalent)	hydraulic load (m ³ / y)	
BAG1			Yes	Yes No No No No No No No No No Yes Yes Yes Yes Yes	No	Unsaturated	11	1100	56940
BAG2			No				8	500	23725
SABAG			No				7	800	81030
VIL	Classical French		No				7	350	11315
BAG3	VFCW		No				4	290	6935
PRE			No				1	700	51830
RAM		Yes	No				0.5	350	13505
BAY			No				7	1200	32850
MIN	- AZOE®		No				6	1000	25185
NEU	AZOE-N®		Yes				4	1600	75555
VER			No		Yes	Partially	11	1100	44165
ORB	AZOE-NP [®]		Yes			saturated	5	1500	126290
COR			No				0.5	1000	51830
МАТ	AZOE-P®		Yes			Unsaturated	5	1600	68620

Table 1 Characteristics of the 14 French VFCW sewage treatment plants selected for the study.

3 These processes were further divided into two sub-categories according to the level of 4 saturation of the first-stage filter as shown in Table 1. Full drainage (unsaturated conditions) 5 was implemented to ensure good aeration in all process type I plants ("classical French system") and in some plants of process types II and III patented as AZOE[®] and AZOE-P[®] respectively. 6 7 Partially saturated conditions were implemented in the other plants of types II and III (patented as AZOE-N[®] and AZOE-NP[®]) in the objective to allow aeration of the upper unsaturated zone 8 9 for nitrification, and anoxic conditions in the lower flooded zone for denitrification. More 10 details were given in a previous article (Kania et al., 2018b; Kim et al., 2014).

11 2.2. Sampling and preparation of the sludge deposits samples

12 Sludge deposits were sampled in winter time between January and March 2015 from 13 most wetlands, COR was sampled in November 2015 and RAM and PRE in February 2017 due 14 to their more recent dates of implementation of these wetlands. The annual load of dry solids 15 varied from one constructed wetland to another depending on its nominal design and its actual 16 operating conditions. It was estimated between 20 and 35 kg of dry solids per year and m² of 17 first stage filter cells. At the time of the field sampling operations, the sludge layer had not yet 18 been removed from any of the wetlands and it has not been removed since. The lower part of 19 the layer therefore contained deposits from the very beginning of the plant operation, whereas 20 the upper part contained fresh deposits. The entire depth of the sludge layer was sampled on 21 each site in order to obtain average samples representative of the mean composition of the 22 sludge deposits over the whole period of operation of the VFCW plants.

All samples were taken following the same protocol from the stage filters. A few kilograms of deposits were taken by shoveling the entire depth of the sludge layer from 5 to 10 spots (depending on the filter size) at the surface of the cell under resting period for 0-1 week. The sampling spots were randomly located at a distance of at least 5 m one from each other and at least 2 m from the feed pipes. The samples taken from each spot were treated on site to extract manually reeds rhizomes, and possible traces of gravels. They were then carefully homogenized by quarting and mixing together with shovels. The representative samples from each plant thereby constituted were then taken to the laboratory within a maximum of 4 h. They were transported to the lab by car placed in a non-heated trunk at a maximal temperature of 10°C due to the winter season. There, an aliquot fraction of each sample was used to determine water content and the organic content of the dry solids. The rest was dried in thin layers at 35°C for one day, finely grinded and stored at 4°C.

35 **2.3. Analytical methods**

36 2.3.1. General analytical parameters

Upon reception in the laboratory, a few grams of fresh samples from each plant were dried in triplicates in an oven at 105°C until they reached a constant mass in order to determine their humidity. Dry solids were then burnt in an oven at 550°C for four hours to determine their organic matter contents. The rest of each sample was spread in thin layers of 1-2 cm on a laboratory bench and air-dried for 1 day at 35°C, then grinded down to less than 1 mm to obtain "dry powdered samples" which were stored at 4°C and used for all the other analyses.

Elemental analyses were done by alkaline fusion (LiBO₂) followed by acid digestion (HNO₃) and subsequent analyses of the solutions by inductively coupled plasma atomic emission spectrometry (ICP-AES) (IRIS Advantage ERS, Thermo Scientific). The following elements were analyzed : silicon (Si), aluminum (Al), iron (Fe), manganese (Mn), magnesium (Mg), calcium (Ca), sodium (Na), potassium (K), titanium (Ti) and phosphorus (P). Trace metals chromium (Cr), copper (Cu), nickel (Ni), zinc (Zn), cadmium (Cd) and lead (Pb) were analyzed using a Sciex Perkin Elmer ELAN 5000a. ICP-mass spectrometer.

50 Organic carbon contents were determined by burning at 1400°C 1g of dry powdered 51 samples, previously de-carbonated with acid and under high temperature, and by infrared absorption with a Carbon - Sulfur EMIA 320V2 (HORIBA). Total nitrogen contents were
measured by burning 1g of powdered samples at 1050°C under a flow of helium and oxygen
mixture in microanalyzer designed and developed at UMR 5280 Institute of Analytical Sciences
which operates according to the Dumas method.

56

2.3.2. Thermogravimetric and differential thermal analysis (TGA/DSC)

57 Thermogravimetric analyses (TGA) were carried out using a METTLER TOLEDO 58 TGA analyzer whose temperature precision was $\pm 0.5^{\circ}$ C and microbalance sensitivity less than 59 ± 0.1 mg. A dry mass of ± 20 mg of each sample was heated from 35°C to 900°C at a rate of 60 10°C/min, under a flow of air of 50 mL per minute. The analyses were done in duplicates and 61 blank experiments were carried under the same conditions as the assays but without any sample. 62 The mass loss due to thermal degradation of the sample was recorded as a function of the 63 temperature. Heat fluxes were also recorded during the process by differential scanning 64 calorimetry (DSC).

R_{TGA} index was calculated from experimental data as the ratio of the mass loss recorded between 200 and 400°C (Δ m₁) to that recorded between 400 and 600°C (Δ m₂), as proposed by several authors (Stevenson, 1982 ; Fernandez et al., 2012). In each given range of temperature, the unit mass heat release, also called "energy density" E (in J.mg⁻¹), was also calculated from the ratio between the surface area of the corresponding peak in DSC profiles over the mass loss recorded in the same range of temperatures (E₁ and E₂). The R_{DSC} index was finally calculated as the ratio of E₂/E₁ (Achour, 2008).

72 2.3.3. Determination of humification rate

73 The contents in humic-like and fulvic-like substances (referred to as HULIS and FULIS, 74 respectively) were analyzed to evaluate the humification degree of the organic matter in the 75 sludge deposits (Albrecht, 2007). The protocol for the HULIS and FULIS extraction was 76 adapted from Serra-Wittling et al. (1996). HULIS and FULIS were extracted by suspending for 77 2 h under constant agitation 1 g of powdered samples in 50 mL of a 0.1 M sodium hydroxide 78 aqueous solution. The suspensions were then centrifuged at 10 000 g for 15 min and vacuum 79 filtered at 0.45 µm using Sartorius cellulose acetate filters. The solutions, containing HULIS 80 and FULIS fractions were analyzed for total organic carbon (TOC) using a Shimadzu TOC-L 81 analyzer, then acidified to pH 1.5 with 1 M sulfuric acid aqueous solution and left at rest 82 overnight at +4°C to allow precipitation of HULIS fraction. FULIS fraction was collected in 83 solution by centrifugation at 6000 g for 15 min followed by filtration at 0.45µm. The solution 84 was analyzed for TOC using the same protocol as for the HULIS + FULIS extracts.

The proportion of HULIS + FULIS in the organic matter was taken as an indicator of the degree of humification of the sludge organic matter and calculated as follows:

87 Humification rate =
$$100 \text{ x} \frac{[\text{HULIS}] + [\text{FULIS}]}{\text{TOC}}$$
 (1)

88 2.3.4. Biodegradation under aerobic conditions

89 Respirometric assays were conducted to evaluate the biodegradability of the sludge 90 deposits considered here as an indicator of stability of their organic matter. A given mass of 91 each powdered sample, calculated to contain 75.5 mg of organic matter, was introduced into 92 500 mL BOD flasks containing 10 mL of a mineral medium made of an aqueous solution of 28.25 g.L⁻¹ KH₂PO₄ :146.08 g.L⁻¹ K₂HPO₄: :3.66 g.L⁻¹ CaCl₂ : 28.64 g.L⁻¹ NH₄Cl : 3.06 g.L⁻¹ 93 MgSO₄, 0.7 g.L⁻¹ FeSO₄ and 0.4 g.L⁻¹ ZnSO₄ (Liu et al., 2015b). The flasks were then inoculated 94 95 with 10 mL of a seed suspension prepared from biological sludge obtained from a municipal 96 wastewater activated sludge treatment plant located in Villeurbanne (France) and cultivated in 97 the laboratory prior to the beginning of the assays. They were finally spiked with ca. 0.2 mL of 98 a 5 g. L^{-1} allylthio-urea aqueous solution used as a nitrification inhibitor, hermetically closed by 99 manometric caps to monitor pressure variations, and incubated at 30±1°C in the dark. Carbon 100 dioxide formed from biodegradation was trapped by sodium hydroxide pellets placed in a 101 specific compartment in the headspace of the test flasks. The recorded pressure therefore 102 decreased proportionally to the oxygen consumed and was subsequently converted into BOD 103 values expressed in mg O_2 per g of sludge TOC.

Biodegradability was finally calculated according to eqn. (2) from the ratio between the cumulated consumption of O_2 (g) over 14 days of incubation (BOD₁₄) and the theoretical oxygen demand (ThBOD) of 2667 mg O_2 per g of TOC (corresponding to a consumption of 32 g O_2 for a complete bio-oxidation of 12 g C based on a stoichiometry of 1 mole of O_2 for 1 mole of C assuming that carbon in the sludge organic constituents was at an average degree of oxidation of zero).

110 Biodegradability (%) =
$$\frac{\text{BOD}_{14} (\text{gO}_2 \text{ per g TOC})}{2.667} \times 100$$
 (2)

111 **3. Results and discussion**

112 **3.1. Organic content and elemental composition**

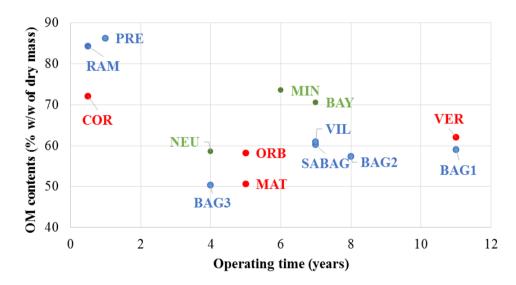
113 3.1.1. Organic content

Table 2 shows the average contents in organic matter and organic carbon analyzed in the surface deposits samples. Organic matter (OM) contents ranged between 50.3 and 86.2% of total dry weight (% w/ w). Regardless of their wetland of origin, the surface deposits were therefore in all cases mostly organic material.

Table 2 General composition of sludge deposits samples.

VFCW labels ^a	OM ^b	TOC ^c	Si ^d	Ca ^d	Al ^e	Fe ^d	Mg ^e	Na ^f	K ^d	Mn ^e	Ti ^e	\mathbf{P}^{d}	TN ^g	TOC/TN	Cr ^e	Cu ^d	Ni ^d	Zn ^e	Cd^{f}	\mathbf{Pb}^{d}	\sum_{h} metals
VFC W labels	% w/w of DM		% w/w of DM									mg.kg DM ⁻¹									
BAG1	59.0	24.7	7.7	2.6	2.1	1.0	0.3	0.2	0.5	0.02	0.2	1.2	4.0	6.2	49.8	338.0	23.2	615.6	1.0	43.7	1071
BAG2	57.4	24.2	13.3	2.9	2.0	0.9	0.3	0.2	0.7	0.01	0.2	0.8	3.3	7.2	41.4	363.8	21.7	810.2	1.2	37.2	1276
SABAG	60.3	21.0	11.6	2.6	1.8	1.4	0.3	0.2	0.6	0.04	0.2	1.1	3.6	5.8	46.3	1162.0	23.1	557.4	1.0	33.4	1823
VIL	60.9	22.7	10.5	2.4	2.4	1.2	0.3	0.1	0.5	0.01	0.3	1.2	3.4	6.7	46.5	425.2	18.0	430.0	0.6	31.9	952
BAG3	50.3	18.4	13.2	3.5	2.4	1.4	0.3	0.3	0.7	0.02	0.2	1.0	3.1	5.9	59.3	282.3	25.1	481.4	1.0	34.7	884
PRE	86.2	36.4	2.1	2.5	0.4	0.2	0.1	0.1	0.2	<d.l.< td=""><td>0.1</td><td>0.5</td><td>1.5</td><td>24.7</td><td>19.3</td><td>216.9</td><td>7.7</td><td>463.1</td><td>0.4</td><td>13.6</td><td>721</td></d.l.<>	0.1	0.5	1.5	24.7	19.3	216.9	7.7	463.1	0.4	13.6	721
RAM	84.3	32.3	3.4	3.2	0.6	0.3	0.2	0.1	0.2	<d.l.< td=""><td>0.1</td><td>0.7</td><td>2.1</td><td>15.6</td><td>18.4</td><td>304.7</td><td>10.0</td><td>481.0</td><td>0.6</td><td>18.1</td><td>833</td></d.l.<>	0.1	0.7	2.1	15.6	18.4	304.7	10.0	481.0	0.6	18.1	833
BAY	70.5	28.5	3.3	4.7	1.5	0.5	0.3	0.1	0.3	0.01	0.2	1.9	4.5	6.4	34.5	232.9	20.3	968.9	1.5	121.5	1380
MIN	73.5	28.2	5.0	3.5	1.3	0.6	0.4	0.2	0.4	0.02	0.3	1.4	4.8	5.9	51.9	195.9	30.3	731.6	0.9	32.2	1043
NEU	58.6	21.7	9.6	3.7	2.3	1.2	0.4	0.3	0.7	0.04	0.2	1.1	3.6	6.0	51.8	223.9	26.9	573.9	1.2	45.4	923
VER	62.0	23.0	5.7	3.8	2.1	3.5	0.3	0.1	0.4	0.02	0.2	2.0	3.8	6.1	57.4	622.5	30.5	1218.5	1.6	64.2	1995
ORB	58.2	22.7	7.3	3.8	2.0	3.5	0.3	0.1	0.5	0.03	0.2	1.6	3.6	6.2	74.0	379.6	36.7	952.9	1.3	48.9	1493
COR	72.0	24.7	2.8	4.6	0.8	5.2	0.3	0.2	0.5	0.02	0.2	2.5	4.1	5.9	51.4	691.4	21.0	908.8	1.0	37.2	1711
MAT	50.6	14.0	11.2	1.6	3.2	5.9	0.4	0.4	1.2	0.5	0.3	2.0	2.5	5.5	57.6	201.7	23.4	744.7	1.1	68.7	1097

OM: Organic Matter; DM: Dry Matter; DL = Detection Limit


^a See Table 1

 b Analytical results from the replicates of each sample did not exceed $\pm 2.5\%$ c Relative uncertainty of 1-2%

119 120 121 122 123 ^d Relative uncertainty of 5%

- 125 126 127
- ^e Relative uncertainty of 10% ^f Relative uncertainty of 15% ^g Relative uncertainty of 0.3% ^h \sum metals = [Cr] + [Cu] + [Ni] + [Zn] + [Cd] + [Pb].

128 Fig. 1 illustrates the plot of organic matter contents of the surface deposits vs. the 129 number of years of operation of the VFCW sewage treatment plants of origin. The graph 130 showed that deposits from young systems with newly established thin sludge layers of about 1-131 3 cm contained larger concentrations of organic matter than those from older systems of >3132 years with a sludge layer of about 10-25 cm thick. This observation suggested that hydrolysis 133 and / or mineralization of POM progressively reduced the organic matter content of the deposits 134 within the sludge layer. However, although COR, RAM and PRE samples were all taken from 135 young plants (1 year and less), COR sample was less organic than those from RAM and PRE. 136 Time was therefore not the only factor of influence. Other analytical results discussed below 137 have to be considered to explain this observation.

138

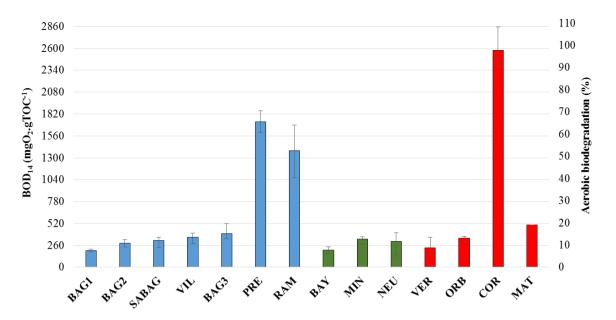
Fig. 1. Organic matter contents of the surface deposits versus operating time of their VFCW plants of
 origin. Blue dots: Classical French system with no additional treatment. Green dots: additional treatment
 on trickling filter only. Red dots: trickling filter and FeCl₃ addition.

142

143 3.1.2. Elemental compositions

The contents in major elements were quite similar in all the samples, except for MAT which exhibited high Mg, Na, K and Mn concentrations (Table 2), probably due to atypical local conditions as discussed in the sections below. Phosphorus (P) contents in the sludge deposits from plants with FeCl₃ injection (2.0; 1.6; 2.5 and 2.0% w/w in VER, ORB, COR and

148 MAT, respectively), were two-fold higher than in the plants without any additional treatment 149 where P concentrations ranged between 0.5 and 1.2% w/w of dry matter. This result confirmed 150 the good efficiency of FeCl₃ injection to precipitate phosphorus. The samples from plants with 151 a trickling filter also revealed slightly higher P contents (1.2%; 1.9% and 1.5% in NEU, BAY 152 and MIN samples respectively) than those with no additional treatment at all. This observation 153 could be attributed to the assimilation of phosphorus within the biofilm in the trickling filter, 154 which after detachment would be subsequently retained within the surface sludge layer and 155 induce a relative increase in P contents (Andersson, 2009). Total Nitrogen (TN) contents ranged 156 between 1.5 and 4.8% w/w of dry mass in all the samples. These results were close to those 157 reported in sludges from lagoons sewage treatment plants, but lower than those found in 158 suspended solids from activated sludge systems (Vincent, 2011). COR sample exhibited a TN 159 concentration of 4.1% w/w of dry mass, which was about double of the concentrations measured 160 in the samples of similar age RAM and PRE (1.5 and 2.1% w/w of dry mass, respectively). This 161 observation may be explained by the interactions (complexation, coagulation, precipitation) of 162 soluble N species with FeCl3 used in COR plant. Other authors (Boucher et al., 1999; Hamdani 163 et al., 2004; Poon & Chu, 1999) reported the effect of FeCl₃ on the removal of TN from dairy 164 effluents. This effect was observable here in young-age plants but not in older plants (Table 2), 165 showing that other ageing effects became predominant over the years of operation.


166Table 2 showed that the contents in trace metals were in the same order of magnitude in167all the samples. The accumulation of trace metals and other micropollutants is a potential168environmental concern when considering land application or nutrients recovery from the169dredged sludge (Fang et al., 2016; Gautier et al., 2017; Kim et al., 2016; Peccia & Westerhoff,1702015; Peysson et al., 2013). Total contents in Cd, Cr, Ni, Pb, Cu and Zn in the sludge deposits171analyzed here ranged in most cases between ca. 0.9 and 1.6, 35 and 74, 18 and 37, 32 and 69,172196 and 425, 430 and 953 mg.kg DM⁻¹ respectively. These concentrations were in the ranges

173 classically reported in activated sludge, respectively 1-10 for Cd, 10-100 for Cr, Ni and Pb and 100-1000 mg.kg DM⁻¹ for Zn and Cu (Lachassagne, 2015). A few samples revealed however 174 175 relatively high contents in some elements. Sludge deposits from SABAG plant exhibited a high 176 copper concentration (1162 mg.kg DM⁻¹), samples from VER a high zinc concentration (1218.5 mg.kg DM⁻¹) and samples from BAY a high lead contents (121.5 mg.kg DM⁻¹). These 177 178 observations may be related to the specific nature of anthropic discharges (domestic, industrial 179 or both) to the sewage water in the water catchments of the respective constructed wetlands 180 (Chipasa, 2003; Ustun, 2009; Vriens et al., 2017). Table 2 showed the concentrations of trace 181 metals analyzed in the 14 sludge deposit samples. As an informative reference, these 182 concentrations may be compared to the upper limit concentrations of a series of trace metals 183 considered in French regulation for land application of sludge (decree N° 97-1133 of 8/01/1998), 184 expressed in mg of element per kg of DM: Cd and Hg 10 DM; Cr and Cu 1000, Ni 200; Pb 800; Zn 3000; Cr+Cu+Ni+Zn 4000. It was observed that the concentrations increased in time from 185 around 780 mg.kg⁻¹ of DM in young plants RAM and PRE to \geq 1200 in the older "classical" 186 187 VFCW plants, suggesting a progressive accumulation of trace metals in the sludge deposits 188 over the years of operation, which may be explained in part by their sorption onto POM and/or 189 mineral fractions of the sludge deposits. The implementation of additional treatment did not 190 induce observable differences of total metal concentration in the samples from mature plants. The average concentrations were 1201±386 mg.kg DM⁻¹ in samples from classical VFCW (no 191 additional treatments), 1115±237 mg.kg DM⁻¹ in samples from AZOE[®] treatment plants, and 192 1529±450 mg.kg DM⁻¹ in AZOE-NP[®] treatment plants. Regarding sludge deposits from the 193 194 young plants, the effect of FeCl₃ addition (co-precipitation with and/or sorption onto flocculated 195 mineral and organic phases) may explain here again the observed difference between the 196 samples from COR (ca 1711 mg.kg DM⁻¹) and RAM and PRE (721 and 833 mg.kg DM⁻¹ 197 respectively) as already discussed by El Samrani et al. (2008) and Fu & Wang (2011). The

situation in the sludge layer in the VFCW seems in many aspects comparable with the sludge
layer building up in SDRB systems. In sludges from reed bed systems, very similar contents
were indeed reported for TOC and TN (Masciandaro et al., 2017; Nielsen et al., 2014; Peruzzi
et al., 2013), and trace metals (Caicedo et al., 2015; Matamoros et al., 2012; Nielsen & Bruun,
201 2015).

203 **3.2. Biodegradability of sludge deposits' organic matter**

204 Fig. 2 shows the results of cumulated O₂ consumption measured over 14 days of 205 incubation at 30°C of the sludge deposits samples. It can be seen that the samples from the 206 mature plants exhibited respiration levels ranging between 200 and 500 mgO₂.TOC⁻¹ in 14 days 207 of incubation, which may be considered as low values according to the scale used for compost 208 (Wood et al., 2009) and with respect to the theoretical maximum of 2667 mg O_2 per g of TOC. 209 These results therefore revealed the poor biodegradability and/or bioavailability of the organic 210 matter in these samples. The samples from the youngest three plants PRE, RAM and COR 211 exhibited drastically higher respiration levels (1729, 1387 and 2577 mg O₂ per g of TOC 212 respectively), indicating that their organic matter was readily biodegradable and bioavailable in 213 the conditions of the assays. Vincent (2011) reported that fresh organic matter from raw 214 wastewater was responsible for the major part of O₂ consumption in "classical French" VFCWs.

215

Fig. 2. Aerobic biodegradation measured over 14 days of incubation at 30°C on the surface sludge
deposits sampled from French VFCW sewage treatment plants of different types. Classical system with
no additional treatment (blue bars); additional treatment on trickling filter only (green); trickling filter
and FeCl₃ addition (red).

Results obtained from the analysis of sludge deposits from VFCW sewage treatment plants of increasing ages therefore showed that both the organic contents of the sludge deposits and the biodegradability of their organic matter decreased over time, suggesting the occurrence of both mineralization and humification processes. Similar phenomena were reported in other environmental media (Albrecht, 2007; Francou, 2003).

225 **3.3. Indicators of maturation of particulate organic matter**

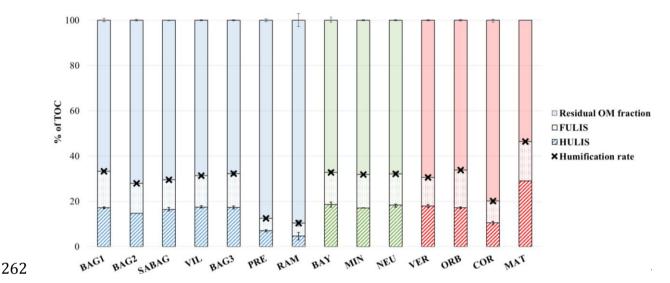
226 3.3.1. TOC/TN ratio

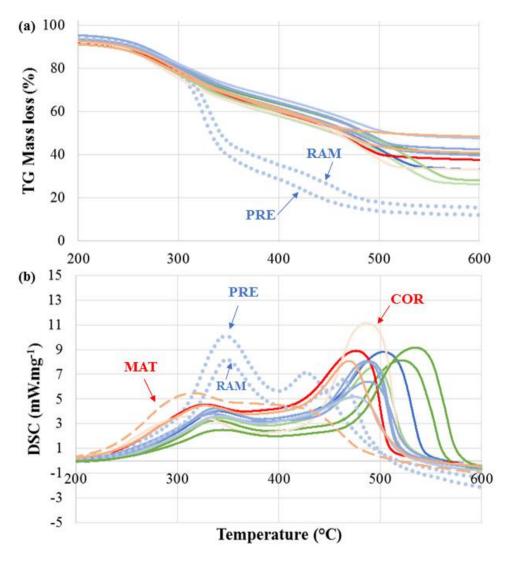
TOC/TN ratio is a parameter classically used to monitor the progress of biodegradation in the processes of organic waste composting (Iglesias Jiménez & Perez Garcia, 1989; Zahra El Ouaqoudi et al., 2015). The ratio normally decreases over time since biodegradation releases carbon (in the form of CO₂) whereas nitrogen remains within the waste material during composting operations. Compost is considered mature when the ratio falls below 15 (Zahra El Ouaqoudi et al., 2015). Grimaud (1996) also reported that secondary sludge from conventional domestic wastewater treatment would exhibit a TOC/TN ratio between 6 and 12, whereasprimary sludge would be above 12.

235 Based on these studies, the ratio was tentatively used here as an indicator of the 236 evolution of organic matter in the sludge deposits. Table 2 showed that low values between 5.5 237 and 7.2 were measured in sludge deposits taken from VFCW plants of three years and more, 238 whereas samples from the young plants RAM and PRE exhibited much higher values of 24.7 239 and 15.6 respectively. COR sample however, although also originating from a young plant, 240 revealed a low TOC/TN value of 5.9. The ratio TOC/TN ratio was however considered non-241 relevant as an indicator of POM evolution in VFCW. As a matter of fact, unlike composting 242 where N is not exported from waste material, the conditions of evolution of surface sludge 243 deposits in VFCW allowed both the release of N in the form of soluble and leachable species 244 and/or the accumulation of N species from wastewater via complexation and/or adsorption. 245 Other authors (Brewer & Sullivan, 2003; Huang et al., 2006) also reported that TOC/TN ratio 246 was not sufficient or not always relevant to discriminate the level of maturity of OM. Other 247 indicators widely used in published studies, such as the humification rate, were therefore 248 considered.

249 3.3.2. Humification rate

250 The contents in HULIS and FULIS fractions analyzed in the different samples, 251 expressed as % w/w of organic carbon, and the calculated humification rate are shown in Fig. 252 3. The humification rate of almost all the samples from mature plants were found to be relatively 253 high and very similar, ranging from 27.9±0.5 to 33.8±0.9% w/w of sludge TOC. This indicator 254 was therefore consistent with the results discussed above relative to the biostability of their 255 organic matter. Masciandaro et al. (2017) obtained very similar values (humification rate 256 between 23.7 and 30.4%) in sludge treatment reed bed systems and concluded to the 257 effectiveness in stabilizing sludge organic matter. One sample however, also collected from a mature plant, MAT, exhibited on this indicator a much higher value than all other samples, as
high as ca. 46.4±2.8%, suggesting that the organic matter in this sample was particularly
humified, although it did not exhibit the smallest biodegradability in Fig. 2. The particular
properties of this sample are discussed below.




Fig. 3. Distribution of organic carbon in sludge deposits (SD) organic fractions, and humification rate
measured in the 14 VFCWs sludge deposits. Classical system with no additional treatment (blue);
additional treatment on trickling filter only (green); trickling filter and FeCl₃ addition (red).

266 Samples from the young plants RAM and PRE showed lower values of humification 267 rates, 12.5±0.6 and 10.3±2.9% respectively, which were relatively close to level reported for 268 activated sludge (16.5% in Riffaldi (1982) and 10.9% in Li et al. (2011)). COR sample however 269 exhibited a humification rate of ca 20.1±1.6% w/w of TOC which was comprised between the 270 levels measured in the other two young plants RAM and PRE and in mature plants. This 271 observation was attributed to the transformation of the organic matter through the trickling filter 272 and the detachment of biofilm fragments which may favor the formation of humic-like 273 substances as reported by other authors (Maeng et al., 2015; Zhao et al., 2013).

274 **3.4. Thermal analyses**

TGA and DSC profiles obtained from thermal analyses of the sludge deposits samples are shown in Fig. 4 in the range of temperatures between 200° and 600°C known to induce

thermal degradation of organic compounds of natural origins (Torres-Climent et al., 2015). The 277 278 first part of the graphs, from 200°C to 400°C, was considered to correspond to the degradation 279 of relatively labile organic compounds, such as hemicelluloses, cellulose and some aliphatic 280 compounds (Chen et al., 2015; Gomez et al., 2007; Som et al., 2009; Zahra El Ouaqoudi et al., 281 2015). The second part between 400 and 600°C was considered associated to more complex 282 and stable organic compounds such as lignin and other high molecular weight poly-aromatic 283 structures such as humic and fulvic substances (Chen et al., 2015; Cuypers et al., 2002; Melis 284 & Castaldi, 2004; Zahra El Ouaqoudi et al., 2015).

285

Fig. 4. Mass loss (a) and differential scanning calorimetry (b) profiles recorded from surface sludge
 deposits from 14 French VFCW sewage treatment plants. Classical system with no additional treatment
 (blue); additional treatment on trickling filter only (green); trickling filter and FeCl₃ addition (red).

289

For all samples, except RAM and PRE, TGA profiles showed that around 1/4 to 1/3 of 290 291 the initial dry mass (26.2 to 35.1% w/w of dry mass) was degraded between 200 and 400°C. 292 The mass losses between 400 and 600°C were in the same order of magnitude as from 200 to 293 400°C, ranging between 19.8 and 32.4% w/w of dry mass. RAM and PRE samples, taken from 294 the youngest VFCW plants, exhibited different patterns, with about 2/3 of initial dry mass 295 degraded between 200 and 400°C (66.4 and 66.1% w/w of dry mass respectively), and only 296 around 16% w/w of initial dry mass degraded between 400 and 600°C. Similar results were 297 reported for activated sludge by Magdziarz et al. (2013), with around 50% degradation of initial 298 dry mass between 200 and 400°C and 20% w/w of dry mass above 400°C. MAT sample 299 exhibited an atypical profile. Although between 200 and 400°C the mass loss was 32.0% w/w 300 of dry mass as in almost all samples, above 400°C the mass loss was the lowest of all samples 301 (11.1%).

302 The thermal degradation processes were logically exothermic since the analyses were 303 made in the presence of air (DSC profiles in Fig. 4). The heat released per unit mass of organic 304 matter oxidized in the assays was related to the energy of inter-atomic bounds and the degree 305 of oxidation of carbon in the organic constituents. It can be observed that the ratio E_1 between 306 200 and 400°C was much smaller than E_2 between 400 and 600°C (Table 3). The thermal 307 degradation was therefore much less exothermic per unit mass of organic constituents below 308 400°C than above 400°C. It was therefore concluded that the POM constituents degraded below 309 400°C were composed of molecules such as carbohydrates with relatively weak inter-atomic 310 bounds such as C–O, C–C and C–N (activation energy of 350–412 kJ.mol⁻¹) (Leinweber & 311 Schulten, 1992), and a relatively high degree of oxidation of carbon indicative of the 312 oxygenation index of the molecules (Barré et al., 2016; Soucémarianadin et al., 2018). The 313 organic constituents degraded above 400°C were considered to contain more C=C bounds of higher energy (activation energy of 520-840 kJ.mol⁻¹) such as in humic-like substances, lignin 314

- and lignocellulosic complexes (Magdziarz & Wilk, 2013), with carbon at a lower degree of
- 316 oxidation, such as in (poly)-aromatic compounds (Leinweber & Schulten, 1992).

	R _{TGA}	$\mathbf{E_1}$	$\mathbf{E_2}$	R _{DSC}
	K TGA	J.m	N DSC	
BAG1	0.95	8.6	20.7	2.4
BAG2	0.75	10.5	16.7	1.6
SABAG	0.83	9.2	15.4	1.7
VIL	0.77	8.9	19.1	.2
BAG3	0.76	10.2	21.2	2.1
PRE	0.24	8.9	24.1	2.9
RAM	0.28	7.9	24.6	3.2
BAY	0.92	6.6	16.3	2.5
MIN	1.05	6.0	17.3	2.4
NEU	0.85	8.0	17.7	2.2
VER	0.76	11.7	22.0	1.9
ORB	0.76	9.5	15.6	1.7
COR	0.79	8.5	18.7	2.2
MAT	0.35	13.6	18.7	1.4

317

Table 3 R_{TGA} , E_1 , E_2 and R_{DSC} values for 14 VFCW sludge deposits.

318

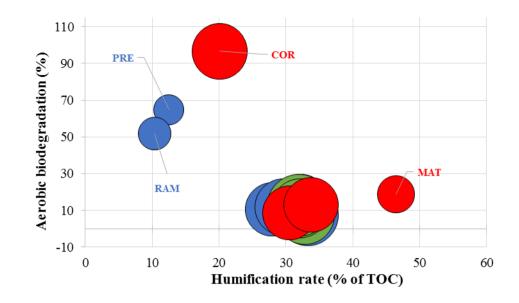
319 The thermal indices R_{TGA} and R_{DSC} were calculated and the results given in Table 3. For 320 all samples except those from the youngest plants PRE and RAM, the R_{TGA} index was between 321 0.8 and 1.1, indicating the presence of relatively stable organic constituents. For comparison, 322 compost is considered mature for an R_{TGA} index above 0.8 (Som et al., 2009; Zahra El Ouagoudi 323 et al., 2015). R_{TGA} indexes of PRE and RAM samples were 0.2 and 0.3 respectively, confirming 324 the previous discussions related to the predominance of labile organic compounds in these 325 samples and the lower humification rate. R_{DSC} values were found between 1.6 and 3.2. Samples 326 from the young plants RAM and PRE showed a higher index than those from the mature plants, 327 confirming their lower stability (Achour, 2008).

328 COR sample exhibited again a particular profile, with R_{TGA} and R_{DSC} indexes closer to 329 the group of mature plants than young plants. These results therefore confirmed the effects of 330 the additional treatments, notably the trickling filter, on the characteristics of sludge deposits in 331 young-age VFCW plants. Finally, the TGA/DSC analysis allowed to highlight the particular behavior of MAT sample which did not feature a clear bimodal pattern but showed instead a peak around 320°C followed by a shoulder at 445°C. The particularities of MAT sample are further discussed below.

335 **3.5. Multi-parameter cross-analysis of sludge deposits characteristics**

336 3.5.1. Inter-comparison of the 14 sludge deposits

A correlation analysis was conducted on the different parameters of OM maturity and stability used in this study. Results gathered in Table 4 showed that OM content was relatively correlated with aerobic biodegradation and R_{DSC} , and anti-correlated with the humification rate. A high organic content was typical of young-age VFCW plants, where fresh organic matter was readily biodegradable and poorly humified. R_{DSC} index was anti-correlated with the humification rate and R_{TGA} was not significantly correlated to any other indexes.

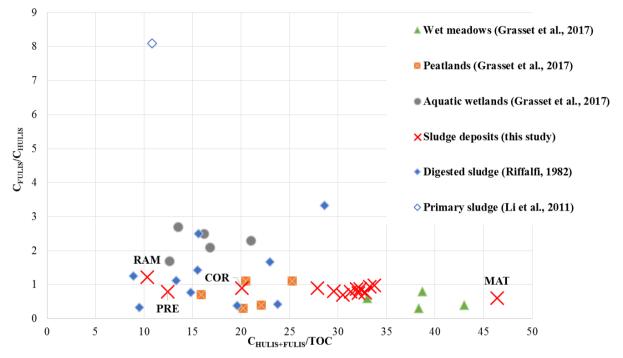

Table 4 Correlation coefficients (and P-value) between the parameters of biological, chemical and
 thermal characterization. Correlation coefficients shown in bold were considered statistically significant,
 with P<0.05.

	ОМ	Humification rate	Aerobic biodegradation	R _{TGA}	R _{DSC}
OM	1	-0.834 (2.10 ⁻⁴)	0.623 (0.02)	-0.363	0.828 (3.10-4)
Humification rate		1	-0.702 (0.01)	0.427	-0.750 (2.10 ⁻³)
Aerobic biodegradation			1	-0.467	0.436
R _{TGA}				1	-0.253
R _{DSC}					1

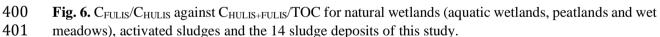
346

To allow a relevant and discriminant graphical representation of the different SD samples with respect to their characteristics, the most discriminant parameter within each type of analyses was selected (namely biological, thermochemical, and chemical analyses). Based on the results shown in the previous sections, biodegradability and humification were selected as the biological and chemical parameters. Based on the statistical correlation assessment, R_{TGA} index was selected as the thermochemical parameter because it did not show significant

353 correlations with the first two parameters according to Table 4, and was therefore considered 354 to provide independent additional information. The corresponding 3-D representation shown in 355 Fig. 5 clearly revealed distinct typologies of samples. A first group was identified with the 356 samples from the young-age VFCW plants RAM, PRE and COR. COR sample was positioned 357 slightly apart from RAM and PRE samples, underlining the influence of the additional 358 treatments on the characteristics of the sludge deposits within the young-age of the VFCW 359 plants. A second group was clearly formed with the samples from the mature plants. This group 360 was very homogeneous, revealing the very strong similarities in the characteristics of the sludge 361 deposits of the VFCW plants of three years of operation and more, regardless of the 362 implementation or not of additional treatments and other local conditions. Sludge samples from 363 mature VFCW plants exhibited a humification rate between 20 and 40%, an OM biodegradation 364 rate between 0 and 35%, and a R_{TGA} between 0.75 and 1. Finally, MAT sample was excluded 365 from both previous groups in the graphical representation of Fig. 5. Its overall characteristics 366 were therefore distinct from either groups of young-age and mature VFCW plants. MAT plant was actually an atypical VFCW plant as compared to the others. For example, a predominance 367 368 of baby's wipes was observed at the surface of the first filter when the sludge deposits were 369 sampled. These wipes are made of about 60% polyester and 40% cellulose for most of them 370 and affect the composition of the sludge deposits. Fig. 5 therefore allowed to clearly identify a 371 third group of samples whose characteristics revealed a particular situation.



372


Fig. 5. Differentiation of sludge samples according to their indices related to the stability and maturity
 of the OM. Each sample is represented with a circle whose center is positioned according to the
 biodegradation rate and humification rate of the samples, and diameter is proportional to their R_{TGA}
 indices. Classical system with no additional treatment (blue); additional treatment on trickling filter only
 (green); trickling filter and FeCl₃ addition (red).

378 3.5.2. Comparison to other samples at different levels of POM evolution

379 Although some debates still remain on the subject, it is usually considered in the 380 literature that ageing of natural particulate organic matter (POM) occurs via (i) the hydrolysis 381 and mineralization of at least part of the most readily biodegradable constituents and (ii) the 382 rearrangement of the remaining constituents into complex supra-structures usually called 383 humus and usually considered as made of humic-like and fulvic-like substances. These 384 phenomena are considered to increase (i) the proportion of HULIS+FULIS within the 385 particulate organic matter and (ii) the proportion of HULIS vs. FULVIC within humus fraction. 386 To assess the extents to which these processes occurred in the sludge deposits, Fig. 6 illustrates 387 the plot of the ratio FULIS concentration/HULIS concentration of the samples as a function of 388 the overall proportion of HULIS+FULIS within the total organic carbon of the samples. Data 389 reported by Grasset et al. (2017) for different types of samples from natural systems were 390 included in Fig. 6, along with other data calculated for activated sludges using the results of 391 other studies (Li et al., 2011; Riffaldi, 1982). Fig. 6 illustrated the maturation pattern of natural 392 organic matter from the early stages of evolution (fresh OM) in the top left part to the mature 393 state in the bottom right of the graph. The VFCW sludge deposits samples appeared as two 394 major groups in Fig. 6. The samples from young VFCW plants (RAM, PRE and to a lesser 395 extent COR) constituted a first group situated at an earlier stage of maturation from the second 396 group made of the samples from the mature VFCW plants. COR sample was actually positioned 397 between the young and mature groups, revealing the effects of the additional treatments 398 discussed previously.

399

Altogether, the spots showing the VFCW sludge deposits exhibited a specific state of evolution of the organic matter as compared to the other samples. Their position in the graph revealed a specific typology of samples, despite the differences existing amongst them. Most sludge deposits samples were positioned between the spot of digested sludge samples and peatlands and the spot of wet meadows. On the contrary, RAM, PRE and COR samples were positioned close to the area of peatlands and digested sludge samples.

408 **4. Conclusions**

409 Biological, chemical and thermochemical methods were applied to characterize surface 410 sludge deposits sampled from 14 French VFCW sewage treatment plants. Results clearly 411 revealed the existences of two groups of samples. The dominant factor of distinction between 412 the two groups was the age of the VFCW plant of origin. The first group corresponded to sludge 413 deposits taken from VFCW plants which were still in their first year of operation at the time the 414 samples were collected. These samples exhibited a high content of organic matter of high 415 biodegradability, high thermal lability, and low humification. Although the number of samples 416 in this category (3) was low to permit a straightforward generalization, it was observed that the 417 implementation of additional treatments in one of the three VFCW plants of this group modified 418 the characteristics of its sludge deposits in terms of humification rate and thermal behavior. 419 This observation showed that the presence of additional treatments modified the characteristics 420 of the sludge deposits into a signature close to that of samples from mature systems. The second 421 group gathered samples from 10 distinct French VFCW plants in a remarkably homogenous 422 manner. The plants of origin were three years of age or more. Their sludge deposits were characterized by a lower organic content, lower biodegradability and thermal lability, and 423 424 higher humification than those of the first group. This common set of properties was favorable 425 to a relative accumulation of trace metals, which were analyzed at higher concentrations in this 426 group of samples. However, the concentrations measured were found compatible with a land 427 application practice should the sludge have to be dredged out from the filters for maintenance. 428 One last sample, although originating from a mature VFCW plant, revealed quite different 429 properties as compared to the other ten samples of the group. This observation could not be 430 explained by the implementation of additional treatments. Rather, it revealed that the sample was identified as "atypical", suggesting a particular situation in the VFCW plant of origin. 431

432 This study therefore showed that the organic matter captured within the surface sludge433 layer in French VFCW sewage treatment plants was submitted to a relatively rapid evolution

434 process over the very first year of operation of the plants. After one to three years of operation, 435 a certain equilibrium was established, resulting from the balance between the flow of fresh 436 POM continuously brought to the surface and the evolution of the rest of the deposits within 437 the depth of the layer. This equilibrium state was found to be remarkably similar in all the plants 438 of 3 years and more, regardless of the implementation of additional treatments, local conditions, 439 and time. Surface sludge deposits therefore appeared as integrative tracers of the evolution of 440 the system.

441 Acknowledgments

The authors would like to thank the technicians of DEEP laboratory Richard Poncet and Hervé Perier-Camby for their contributions, the SARM (Service d'Analyse des Roches et des Mineraux – CNRS – CRPG) and the ISA (Institut des Sciences Analytiques) for the elementary analyses. They are grateful to the reviewers for their contribution to the improvement of this manuscript, but also to SCIRPE and CIFRE (Conventions Industrielles de Formation pour la REcherche) for funding this research project.

448 **References**

Achour, F. 2008. PhD Thesis. Caractérisation de la Matière Organique dans les Ordures
Ménagères - Recherche d'Indicateurs de Stabilité (Characterization of Organic Matter in

- 451 Household Rubbish Search for Stability Indicators). in: Industrial and Urban Environmental
- 452 Sciences, The National Institute of Applied Sciences of Lyon. Lyon, France, pp. 173.
- Albrecht, R. 2007. PhD Thesis. Co-Compostage de Boues de station d'épuration et de Déchets
 Verts (Co-Compostage of sludge from wastewater treatment plant and waste Green). in:
 Biosciences of Environment, University of Paul Cezanne, Aix-Marseille III. Marseille, France,
 pp. 189.
- Alvarenga, P., Mourinha, C., Farto, M., Santos, T., Palma, P., Sengo, J., Morais, M.C., CunhaQueda, C. 2015. Sewage sludge, compost and other representative organic wastes as
 agricultural soil amendments: Benefits versus limiting factors. Waste management, 40, 44-52.
- Andersson, S. 2009. PhD Thesis. Characterization of bacterial biofilms for wastewater
 treatment. in: School of Biotechnology, Royal Institute of Technology Stockholm, Sweden, pp.
 63.
- Badin, A.-L. 2009. PhD Thesis. Répartition et influence de la matière organique et des
 microorganismes sur l'agrégation et le relargage de polluants dans des sédiments (Distribution
 and influence of organic matter and microorganisms on the aggregation and release of
 pollutants in sediments). in: Industrial and Urban Environmental Sciences, National Institute of
 Applied Sciences of Lyon. Lyon, France, pp. 238.
- Barré, P., Plante, A.F., Cécillon, L., Lutfalla, S., Baudin, F., Bernard, S., Christensen, B.T.,
 Eglin, T., Fernandez, J.M., Houot, S., Kätterer, K., Le Guillou, C., Macdonald, A., van Oort,

- F., Chenu, C. 2016. The energetic and chemical signatures of persistent soil organic matter
 Biogeochemistry, 130, 1–12.
- Bellin, I. 2016. L'épuration végétalisée s'ouvre à de nouveaux marchés. L'eau, l'industrie, les
 nuisances, 390, 67-76.
- 474 Bois, P., Laurent, J., Nuel, M., Wanko, A. 2015. Indicateurs de Colmatage de FPR à EV. Etude
- 475 comparative de 4 stations de traitement après 10 ans de fonctionnement. TSM Ingénierie
- 476 écologique, 9, 43-55.
- Boucher, V., Revel, J.C., Guiresse, M., Kaemmerer, M., Bailly, J.R. 1999. Water, Air, and Soil
 Pollution, 112(3/4), 229-239.
- Brewer, L.J., Sullivan, D.M. 2003. Maturity and Stability Evaluation of Composted Yard
 Trimmings. Compost Science & Utilization, 11(2), 96-112.
- 481 Caicedo, P.V., Rahman, K.Z., Kuschk, P., Blumberg, M., Paschke, A., Janzen, W., Schüürmann,
- 482 G. 2015. Comparison of heavy metal content in two sludge drying reed beds of different age.
 483 Ecological Engineering, 74, 48-55.
- 484 Chazarenc, F., Merlin, G. 2005. Influence of surface layer on hydrology and biology of gravel
 485 bed vertical flow constructed wetlands. Water science and technology, 15(n°9), 91-97.
- Chen, J., Mu, L., Cai, J., Yin, H., Song, X., Li, A. 2015. Thermal characteristics and kinetics of
 refining and chemicals wastewater, lignite and their blends during combustion. Energy
 Conversion and Management, 100, 201-211.
- Chipasa, K.B. 2003. Accumulation and fate of selected heavy metals in a biological wastewater
 treatment system. Waste management, 23(2), 135-143.
- 491 Collard, M., Teychene, B., Lemee, L. 2017. Comparison of three different wastewater sludge
 492 and their respective drying processes: Solar, thermal and reed beds Impact on organic matter
 493 characteristics. Journal of environmental management, 203(Pt 2), 760-767.
- Cuypers, C., Grotenhuis, T., Nierop, K.G.J., Maneiro Franco, E., De Jager, A., Rulkens, W.
 2002. Amorphous and condensed organic matter domains: the effect of persulfate oxidation on
 the composition of soil/sediment organic matter. Chemosphere, 48, 919-931.
- El Samrani, A.G., Lartiges, B.S., Villieras, F. 2008. Chemical coagulation of combined sewer
 overflow: heavy metal removal and treatment optimization. Water research, 42(4-5), 951-60.
- Fang, W., Wei, Y., Liu, J. 2016. Comparative characterization of sewage sludge compost and
 soil: Heavy metal leaching characteristics. Journal of hazardous materials, 310, 1-10.
- Fernandez, J.M., Plaza, C., Polo, A., Plante, A.F. 2012. Use of thermal analysis techniques (TGDSC) for the characterization of diverse organic municipal waste streams to predict biological
- 503 stability prior to land application. Waste management, 32(1), 158-64.
- Francou, C. 2003. PhD Thesis. Stabilisation de la matière organique au cours du compostage
 de déchets urbains (Stabilization of organic matter in the urban waste composting). in:
 Agricultural Sciences, National agricultural Institute Paris Grignon. Paris, France, pp. 288.
- 507 Fu, F., Wang, Q. 2011. Removal of heavy metal ions from wastewaters: a review. Journal of 508 environmental management, 92(3), 407-18.

- 509 Fu, G., Guo, Z., Zhang, J., Chen, Z., Wong, M.-H. 2015. Organic matter transplant improved
- 510 purification performance of newly built constructed wetlands. Ecological Engineering, 83, 338-
- 511 342.
- 512 Gautier, M., Kania, M., Merlot, L., Lupsea-Toader, M., Kim, B., Michel, P., Blanc, D., Gourdon,
- 513 R. 2017. Investigation of heavy metals leaching from VFCWs sludge deposit to evaluate
- 514 potential risks associated to land application. The 7th International Symposium for Wetland
- 515 Pollutant Dynamics and Control (WETPOL), Big Sky, Montana (USA), pp. 2.
- 516 Gomez, X., Cuetos, M.J., Garcia, A.I., Moran, A. 2007. An evaluation of stability by 517 thermogravimetric analysis of digestate obtained from different biowastes. Journal of hazardous 518 materials, 149(1), 97-105.
- Grasset, C., Rodriguez, C., Delolme, C., Marmonier, P., Bornette, G. 2017. Can Soil Organic
 Carbon Fractions Be Used as Functional Indicators of Wetlands? Wetlands, 37(6), 1195–1205.
- Hamdani, A., Chennaoui, M., Assobhei, O., Mountadar, M. 2004. Caractérisation et traitement
 par coagulation-décantation d'un effluent de laiterie. Le Lait, 84(3), 317-328.
- Hua, G., Kong, J., Ji, Y., Li, M. 2018. Influence of clogging and resting processes on flow
 patterns in vertical flow constructed wetlands. The Science of the total environment, 621, 11421150.
- Huang, G.F., Wu, Q.T., Wong, J.W.C., Nagar, B.B. 2006. Transformation of organic matter
 during co-composting of pig manure with sawdust. Bioresource technology, 97(15), 1834-1842.
- 528 Huot, H. 2013. PhD Thesis. Formation, fonctionnement et évolution d'un Technosol
- 529 (Formation, functionning and evolution of a Technosol). in: Agronomic Sciences, National
- School for Agronomy and Food Science University of Lorraine. Vandoeuvre-lès-Nancy,France, pp. 394.
- Iglesias Jiménez, E., Perez Garcia, V. 1989. Evaluation of city refuse compost maturity: a
 review Biological wastes, 27, 115-142.
- Kania, M. (2018b). Caractérisation des dépôts de surface des filtres plantés de roseaux à
 écoulement vertical. Rôle et évolution de la matière organique particulaire. Doctoral thesis ;
 INSA de Lyon, France ; June 1st, 2018, 265 pages
- Kania, M., Gautier, M., Ni, Z., Bonjour, E., Guégan, R., Michel P., James, P., Liu, J., Gourdon
 R. (2018a). Analytical indicators to characterize particulate organic matter evolutions in vertical
 flow constructed wetlands Science of the total environment, 622-623, 801-813.
- Kania, M. Gautier, M., Michel P., Gourdon, R. (2018c) Study of aggregation in surface sludge
 deposits from 14 French vertical flow constructed wetlands using particle size distribution and
 dynamic vapor sorption analyses. Water Science & Technology ,77(1), 79-90.
- Kim, B., Gautier, M., Michel, P., Gourdon, R. 2013. Physical-chemical characterization of
 sludge and granular materials from a vertical flow constructed wetland for municipal
 wastewater treatment. Water Science and Technology 68, 2257-63.
- 546 Kim, B., Gautier, M., Prost-Boucle, S., Molle, P., Michel, P., Gourdon, R. 2014. Performance 547 evaluation of partially saturated vertical-flow constructed wetland with trickling filter and

- chemical precipitation for domestic and winery wastewaters treatment. Ecological Engineering,71, 41-47.
- 550 Kim, B., Gautier, M., Rivard, C., Sanglar, C., Michel, P., Gourdon, R. 2015. Effect of aging on
- phosphorus speciation in surface deposit of a vertical flow constructed wetland. Environmental
 science & technology, 49(8), 4903-10.
- Kim B., Gautier M., Simidoff A., Sanglar C., Chatain V., Michel P., Gourdon R. 2016 pH and
 Eh effects on phosphorus fate in constructed wetland's sludge surface deposit. Journal of
 Environmental Management. 183, 175-181;
- 556 Knowles, P., Dotro, G., Nivala, J., García, J. 2011. Clogging in subsurface-flow treatment 557 wetlands: Occurrence and contributing factors. Ecological Engineering, 37(2), 99-112.
- 558 Lachassagne, D. 2015. PhD Thesis. Devenir de micropolluants présents dans les boues
- 559 d'épuration, du traitement à l'épandage agricole : Application aux micropolluants métalliques
- 560 (Cd, Cu) et organiques (médicaments) issus du traitement biologique conventionnel d'effluents
- urbains ou hospitaliers (Becoming of micropollutants in sewage sludge, from treatment to agricultural application: Application to metallic (Cd, Cu) and organic micropollutants (drugs)
- agricultural application: Application to metallic (Cd, Cu) and organic micropollutants (drugs) resulting from the conventional biological treatment of urban or hospital effluents). in:
- 564 Environment Sciences, University of Limoges, Limoges, France, pp. 269.
 - Lee, C.G., Fletcher, T.D., Sun, G. 2009. Nitrogen removal in constructed wetland systems.
 Engineering in Life Sciences, 9, 11-22.
 - Leinweber, P., Schulten, H.-R. 1992. Differential thermal analysis, thermogravimetry and insource pyrolysis-mass spectrometry studies on the formation of soil organic matter.
 Thermochimica Acta 200, 151–167.
 - Li, X., Xing, M., Yang, J., Huang, Z. 2011. Compositional and functional features of humic
 acid-like fractions from vermicomposting of sewage sludge and cow dung. Journal of hazardous
 materials, 185(2-3), 740-8.
 - Liu, R., Zhao, Y., Doherty, L., Hu, Y., Hao, X. 2015a. A review of incorporation of constructed
 wetland with other treatment processes. Chemical Engineering Journal, 279, 220-230.
 - Liu, X., Bayard, R., Benbelkacem, H., Buffière, P., Gourdon, R. 2015b. Evaluation of the
 correlations between biodegradability of lignocellulosic feedstocks in anaerobic digestion
 process and their biochemical characteristics. Biomass and Bioenergy, 81, 534-543.
 - Maeng, M., Choi, E., Dockko, S. 2015. Reduction of organic matter in drinking water using a
 hybrid system combined with a rock biofilter and membrane in developing countries.
 International Biodeterioration & Biodegradation, 102, 223-230.
 - Magdziarz, A., Wilk, M. 2013. Thermogravimetric study of biomass, sewage sludge and coal
 combustion. Energy Conversion and Management, 75, 425-430.
 - Masciandaro, G., Peruzzi, E., Nielsen, S. 2017. Sewage sludge and waterworks sludge
 stabilization in sludge treatment reed bed systems. Water science and technology, 76(2), 355363.

- Matamoros, V., Nguyen, L.X., Arias, C.A., Nielsen, S., Laugen, M.M., Brix, H. 2012. Musk
 fragrances, DEHP and heavy metals in a 20 years old sludge treatment reed bed system. Water
 research, 46(12), 3889-96.
- 589 Melis, P., Castaldi, P. 2004. Thermal analysis for the evaluation of the organic matter evolution
- during municipal solid waste aerobic composting process. Thermochimica Acta, 413(1-2), 209-214.
- Molle, P. 2014. French vertical flow constructed wetlands: a need of a better understanding of the role of the deposit layer. Water Science and Technology, 69(1), 106-12.
- Nielsen, S. 2005. Mineralization of hazardous organic compounds in a sludge reed bed and
 sludge storage. Water Science & Technology, 51(9), 109-117.
- Nielsen, S. 2011. Sludge treatment reed bed facilities--organic load and operation problems.
 Water science and technology, 63(5), 941-7.
- 598 Nielsen, S., Bruun, E.W. 2015. Sludge quality after 10-20 years of treatment in reed bed systems.
- 599 Environmental science and pollution research international, 22(17), 12885-91.
- Nielsen, S., Peruzzi, E., Macci, C., Doni, S., Masciandaro, G. 2014. Stabilisation and
 mineralisation of sludge in reed bed systems after 10-20 years of operation. Water science and
 technology, 69(3), 539-45.
- Nielsen, S., Willoughby, N. 2005. Sludge treatment and drying reed bed systems in Denmark.Water and Environment Journal, 19, 296-305.
- Nivala, J., Knowles, P., Dotro, G., Garcia, J., Wallace, S. 2012. Clogging in subsurface-flow
 treatment wetlands: measurement, modeling and management. Water research, 46(6), 1625-40.
- Peccia J. and Westerhoff P. 2015. We Should Expect More out of Our Sewage Sludge,
 Environmental science & technology, 49 (14), 8271–8276
- 609 Perron, V., Hébert, M. 2007. Caractérisation des boues d'épuration municipales. Vecteur
 610 environnement, 48-52.
- Peruzzi, E., Macci, C., Doni, S., Iannelli, R., Masciandaro, G. 2017. Stabilization process in
 reed bed systems for sludge treatment. Ecological Engineering, 102, 381-389.
- 613 Peruzzi, E., Nielsen, S., Macci, C., Doni, S., Iannelli, R., Chiarugi, M., Masciandaro, G. 2013.
- 614 Organic matter stabilization in reed bed systems: Danish and Italian examples. Water science
- 615 and technology, 68(8), 1888-94.
- 616 Peysson, W., Vulliet, E. 2013. Determination of 136 pharmaceuticals and hormones in
- 617 sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by
- analysis with liquid chromatography-time-of-flight-mass spectrometry. Journal ofchromatography. A, 1290, 46-61.
- 620
- 621 Poon, C.S., Chu, C.W. 1999. The use of ferric chloride and anionic polymer in the chemically
- 622 assisted primary sedimentation process. Chemosphere, 39(10), 1573-1582.
- 623 Riffaldi, R. 1982. Humic Substances in Sewage Sludges. Environmental Pollution, 3(Serie B),
- 624 139-146.

- 625 Rouwane, A., Grybos, M., Bourven, I., Rabiet, M., Guibaud, G. 2017. Waterlogging and soil
- 626 reduction affect the amount and apparent molecular weight distribution of dissolved organic
- 627 matter in wetland soil: a laboratory study. Soil Research.
- 628 Semeraro, T., Giannuzzi, C., Beccarisi, L., Aretano, R., De Marco, A., Pasimeni, M.R., Zurlini,
- 629 G., Petrosillo, I. 2015. A constructed treatment wetland as an opportunity to enhance
- 630 biodiversity and ecosystem services. Ecological Engineering, 82, 517-526.
- 631 Serra-Wittling, C., Barriuso, E., Houot, S. 1996. Impact of composting type on composts
 632 organic matter characteristics. The Science of composting, Bertoldi edition, Bologne
- Som, M.P., Lemee, L., Ambles, A. 2009. Stability and maturity of a green waste and biowaste
 compost assessed on the basis of a molecular study using spectroscopy, thermal analysis,
 thermodesorption and thermochemolysis. Bioresource technology, 100(19), 4404-16.
- 636 Soucémarianadin, L., Cécillon, L., Chenu, C., Baudin, F., Nicolas, Cyril Girardin, M., Barré, P.
- 637 2018. Is Rock-Eval 6 thermal analysis a good indicator of soil organic carbon lability? A
- 638 method-comparison study in forest soils. Soil Biology and Biochemistry 117, 108–116.
- 639 Stevenson, F.J. 1982. Humus chemistry: genesis, composition, reactions. John Wiley & Sons,640 New York.
- 641 Torres-Climent, A., Gomis, P., Martin-Mata, J., Bustamante, M.A., Marhuenda-Egea, F.C.,
- 642 Perez-Murcia, M.D., Perez-Espinosa, A., Paredes, C., Moral, R. 2015. Chemical, Thermal and 643 Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during
- 644 Composting. PloS one, 10(9), e0138925.
- Ustun, G.E. 2009. Occurrence and removal of metals in urban wastewater treatment plants.Journal of hazardous materials, 172(2-3), 833-8.
- Van Oostrom, A.J., Russell, J.M. 1994. Denitrification in constructed wastewater wetlands
 receiving high concentrations of nitrate. Water science and technology, 29(4), 7-14.
- 649 Vincent, J. 2011. PhD Thesis. Les lits de séchage de filtres plantés de roseaux pour le traitement
- 650 de boues activées et les matières de vidange (Sludge drying reed beds for treatment of sludge
- activated and septage). in: Chemical Sciences and Food science, University of Montpellier II.
- Montpellier, France, pp. 236.
- Vincent, J., Forquet, N., Molle, P., Wisniewski, C. 2012. Mechanical and hydraulic properties
- of sludge deposit on sludge drying reed beds (SDRBs): influence of sludge characteristics andloading rates. Bioresource technology, 116, 161-9.
- 656 Vriens, B., Voegelin, A., Hug, S.J., Kaegi, R., Winkel, L.H.E., Buser, A.M., Berg, M. 2017.
- 657 Quantification of Element Fluxes in Wastewaters: A Nationwide Survey in Switzerland.
- Environmental science & technology, 51(19), 10943-10953.
- Wood, M., Wallace, P., Becvar, A., Waller, P. 2009. Review of Stability Testing. Final ReportWRAP.
- 661 Wu, S., Kuschk, P., Brix, H., Vymazal, J., Dong, R. 2014. Development of constructed wetlands
- 662 in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted 663 review. Water research, 57, 40-55.

- Yang, M., Lu, M., Sheng, L., Wu, H. 2018. Study of the spatial and temporal distribution of
 accumulated solids in an experimental vertical-flow constructed wetland system. The Science
 of the total environment, 628-629, 509-516.
- Zahra El Ouaqoudi, F., El Fels, L., Lemée, L., Amblès, A., Hafidi, M. 2015. Evaluation of
 lignocelullose compost stability and maturity using spectroscopic (FTIR) and thermal
 (TGA/TDA) analysis. Ecological Engineering, 75, 217-222.
- 670 Zhao, Q., Zhong, H., Wang, K., Wei, L., Liu, J., Liu, Y. 2013. Removal and transformation of
- 671 organic matters in domestic wastewater during lab-scale chemically enhanced primary
- 672 treatment and a trickling filter treatment. Journal of Environmental Sciences, 25(1), 59-68.