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Sociocultural theory (Vygotsky, 1978) has left the process of internalization relatively unexplored. 

In the Learning Through Activity (LTA) research program, we use basic constructs of 

constructivism to address this issue. The goal of our empirical and theoretical work has been to 

elaborate an integrated theory of mathematics learning and teaching. Towards this end and 

grounded in our empirical research, we have engaged in explicating reflective abstraction for 

mathematical concepts and developing a design approach for fostering reflective abstraction. The 

LTA approach is complimentary to a problem-solving approach; learning engendered by the LTA 

approach is not dependent on the uncertainty inherent in solving authentic problems. 
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trajectories. 

In Simon (2009), I argued that different theories of learning can be thought of as different tools for 

research affording different kinds of work. It is the job of mathematics education 

researchers/theorists to not only develop and articulate theories, but to specify the work for which 

they are designed. Such specification allows fruitful discussion about the relationship of different 

theories and the possibilities of particular multi-theoretical approaches. In this paper, I describe a 

developing theory and the work for which it is intended. 

Background 

In the Learning Through Activity (LTA) research program, we use multiple theories. In particular, 

we use sociocultural theories to think about cultural factors and the role of artifacts, social theories 

to think about the norms negotiated in situations of learning and teaching, and cognitive 

(constructivist) theories to think about the development of particular concepts. The latter has been 

our primary theoretical tool and the theoretical area to which we have been contributing.  

Sociocultural theory views all knowledge as socially constructed. Knowledge development 

proceeds from a social level to an individual level through a process termed “internalization” 

(Vygotsky, 1978). Bereiter (1985) wrote, “How does internalization take place? It is evident from 

Luria’s first-hand account (1979) of Vygotsky and his group that they recognized this as a problem 

yet to be solved (p. 206). My colleagues and I see constructivism as a theory that has the potential 

to explicate internalization. 

Constructivism, particularly the work of Piaget (1985), is a major theory of learning and has been 

the basis of important research on the learning of mathematics (Steffe & Kieren, 1994). However, 

Piaget’s work has not had a comparable effect on mathematics pedagogy.1 DiSessa and Cobb 

(2004) observed, “Piaget’s theory is powerful and continues to be an important source of insight. 

However, it was not developed with the intention of informing design and is inadequate, by itself, to 

                                                 

1 I use “pedagogy” to refer to all contributions to instruction, instructional design, instructional planning, and teaching. 



do so deeply and effectively” (p. 81). We believe that it is Piaget’s later work on reflective 

abstraction, rather than his earlier work on equilibration, that has the potential to be the basis for 

pedagogical theory development.  

The goal of our empirical and theoretical work is to elaborate an integrated theory of mathematics 

learning and teaching. This involves articulating a theory of conceptual learning that is useful for 

orienting mathematics pedagogy and building on that theory to explicate mathematics instructional 

design and teaching. Towards this end and grounded in our empirical research, we have engaged in 

explicating reflective abstraction for mathematical concepts and developing a design approach for 

fostering reflective abstraction. This empirical and theoretical work has focused on the learning and 

teaching of mathematical concepts (as opposed to problem solving or other areas of mathematics 

learning), and on the generation of hypothetical learning trajectories (Simon, 1995), including the 

design of task sequences. 

The term “mathematical concept” is an underspecified construct. Because it is central to our 

empirical and theoretical work, I have characterized the construct for research and development 

purposes (Simon, 2017). I refer to one aspect of that characterization here: 

A mathematical concept is a researcher’s articulation of intended or inferred student knowledge 

of the logical necessity involved in a particular mathematical relationship. 

Elaborating reflective abstraction 

Outline of the theory2 

One challenge that we accepted in explaining the development of new mathematical concepts was 

that the explanation must account for building more advanced concepts from prior concepts. Thus, 

we endeavored to describe a recursive structure in which the result of conceptual development at 

one level serves as a building block of a concept at the next level. Piaget (1980, p. 90) described 

reflective abstraction as a “coordination of actions.” We built on this idea in the following way. 

1. We specify a concept as a complex of a goal and an action (represented as Gn-An) 

constructed through reflective abstraction. We represent the prior concepts of the learner as 

G0-A0 and the concept whose development we are attempting to explain as G1-A1.   

2. The learning process begins with the learner setting a new goal (generally in response to a 

mathematical task) and calling on a sequence of available actions to achieve that goal. This 

sequence of available actions is what we call an activity, represented as (A0a → A0b → A0c). 

An activity is the precursor to a new concept.  

3. The actions that are part of the activity do not exist in isolation. Each is part of an existing 

concept (e.g., G0a-A0a), and each is called upon, because the goal of that existing concept 

(e.g., G0a) is a subgoal of the activity used to solve the task. Thus, the set of actions that 

make up the activity are part of a set of concepts that are activated to achieve the goal 

(solution of the task). Thus, whereas Piaget defined reflective abstraction as a coordination 

                                                 

2 This description has been abbreviated. In particular, there is no discussion of the stages of concept development. For a 

full treatment of reflective abstraction and discussion of the stages, see Simon, Placa and Avitzur (2016). 



of actions, we assert that this coordination takes place in the context of a coordination of 

concepts. This point is important, because it allows us to explain how concepts build on 

concepts recursively. 

4. The coordination of actions results in a new, higher-level action linked to a goal (G1-A1). 

Reflective abstraction results in a learned anticipation. That is, the learner can now solve the 

task without going through the sequence of actions that was originally necessary, but rather 

by enacting the higher-level action. (This will be demonstrated in the example.)  

Example from data 

The following example is taken from Simon, Placa and Avitzur (2016). The data derived from a 

single-subject teaching experiment focusing on learning fraction concepts. Kylie was 10 years old at 

the time of the study. “R” refers to the researcher, Simon, and “K” to Kylie. 

In this example, Kylie is developing an abstraction of recursive partitioning (i.e., a unit fraction 

of a unit fraction). Hackenberg and Tillema (2009) defined recursive partitioning as “partitioning 

a partition in service of a non-partitioning goal, such as determining the size of 1/3 of 1/5 of one 

yard in relation to the whole yard” (p. 2).  

• Task 4.1: [Using JavaBars, R draws a bar on the screen.] This is one third of a unit. Make a 

bar that is one sixth of a unit. Kylie made it clear that she did not know how to just “cut up” the 

bar on the screen. She made the whole by iterating the third three times and then cut the first 

third in half. She indicated immediately that one of the small pieces is one sixth. 

• Task 4.2: This is one fifth of a unit. Make one tenth of a unit. Kylie used the same process. 

She iterated the one fifth 5 times to make the whole and then partitioned the first fifth into two 

subparts. She reported, “Here, you have one tenth of a unit.” 

• Task 4.3: This is one third of a unit. Make one ninth of a unit. This time Kylie immediately 

divided the one-third bar into three pieces (without iterating to make the whole). 

K: One of those is one ninth. 

R: How do you know? 

K: Because, um. How many times does three go into nine? . . . Three times. And it’s one third! 

So. Three times three is nine, and one of—if you cut it up into thirds again. That is, um. . . . And 

you take one, it would be . . . one third. . . . But that’s really one ninth of a unit. 

Kylie seemed to indicate that she thought about what number of parts would iterate three times 

to the whole. She therefore knew that one third of the one third would iterate nine times in the 

whole. 

• Task 4.4: This is one fifth of a unit. Make one twentieth of a unit. She immediately cut the 

fifth into four pieces. She went on to complete two more tasks in this way. (pp. 77-78) 

In this example, Kylie developed an abstraction that taking 1/m of 1/n creates 1/mn, that is, a part 

that when iterated mn times recreates the unit. The example illustrates several aspects of the theory 

discussed above. Initially, Kylie had no way to think about making 1/mn by simply partitioning 1/n. 

However, she did have knowledge that allowed her to make 1/mn. That is, she had concepts that she 



was able to call on producing a sequence of actions (an activity) to achieve her goal. She 

conceptualized 1/n of a unit as a part that can be iterated n times to make the unit. She also knew 

that she could partition the unit to make any unit fraction. In Task 4.1, she called on these two 

concepts. She sequentially iterated the original part, 1/3, three times to make the unit and then 

partitioned the unit to make 1/6 of a unit. However, because the unit bar that she created was 

already partitioned into three parts, she called on her concept of partitive division (6 divided by 3) 

to determine how many times to partition each of the three parts. Thus, Kylie created an activity 

made up of three actions involving three extant concepts: iterating the part to make the unit, using 

partitive division to determine the number of subparts per part, partitioning a subpart. 

The activity Kylie employed for Tasks 4.1 and 4.2 led to the abstraction that was apparent in Task 

4.3 and beyond. In Task 4.3, Kylie no longer needed to go through the sequence of actions used in 

the preceding tasks. The actions that made up the activity were now coordinated into a single 

higher-level action. She knew immediately in Task 4.4 that cutting 1/5 into 4 subparts allows a 

subpart to iterate 5x4 times to the whole.3 That is, she had developed an anticipation that the 

denominator of the part has a multiplicative effect on the number of times the subpart iterates to the 

unit. 

Building a pedagogical theory: the LTA instructional approach 

As stated our goal was to generate a theory of mathematics concept learning that can serve as a 

basis for mathematics pedagogy. In this section, I describe how we have built an instructional 

design approach on the basis of the explication of reflective abstraction, discussed above.  

The first two steps in our design of instructional sequences are part of various design approaches. In 

Step 1, we specify the prior knowledge needed to engage with the sequence. This is particularly 

important in our design approach, because it identifies the concepts that students can call upon as 

components of their activity. In Step 2, we identify specific learning goals
 

for the students, that is, 

we articulate the particular abstractions we intend to promote. 

Step 3 makes direct use of our explication of reflective abstraction. In this step, we specify an 

activity (sequence of concepts/actions) available to the (actual or hypothetical) students that could 

serve as the raw material for the intended abstraction. There are two requirements here. First, the 

students must be able to call on the activity. Second, the researchers/designers must be able to 

describe how the students could come to the abstraction as a result of engaging in the activity. In 

our example above, the activity would be iterating the part to make the unit and then partitioning the 

unit by subdividing each part – the number of partitions determined through partitive division.  

Step 4 involves generating a sequence of tasks designed to elicit the activity specified in Step 3 (in 

our example Tasks 4.1-4.4) and promote reflective abstraction. Sometimes the tasks that promote 

the activity are sufficient as in the example presented (by the third task, Kylie had made the 

abstraction). In some cases, subsequent tasks are created that restrict the student’s ability to carry 

out the sequence of actions in the activity – prompting the students to use developing anticipations 

                                                 

3 Although Kylie’s justification was given for Task 4.3, I refer to the numbers from Task 4.4, because in Task 4.3, the 

use of 1/3 as both the fraction of the unit and the fraction of the part makes articulation of the ideas confusing. 



if available. For example, in our work on promoting a reinvention/abstraction of the multiplication 

of fractions algorithm, Kylie had developed a reasoned activity beginning with thinking through the 

effect of the denominator of the multiplier on the denominator of the multiplicand. Her reasoning 

then included the numerator of the multiplicand and finally the numerator of the multiplier. Each 

step was dependent on the prior one. To promote and elicit use of a developing anticipation, we 

gave her tasks with the denominators hidden and asked for the numerator of the product. She was 

only able to do these tasks when she had developed sufficient anticipation of the effect of the 

numerator of the multiplicand in the context of her activity. In other cases, particular tasks are 

sequenced to increase the probability that students will attend to the commonality in their activity. 

In Simon et al (2010), Erin was reinventing/abstracting a common-denominator algorithm for 

multiplication of fractions. She had developed diagram solutions to division tasks whose dividend 

and divisor had common denominators. She had also developed the ability to talk through a diagram 

solution (without drawing). For example, she was able to talk through 37/31 ÷ 17/31. However, she 

also made it clear that without talking through the solution, she could not come up with the 

quotient. At this point, I gave her consecutively two tasks with the same pair of numerators, but 

different common denominators (e.g., 7/167 ÷ 2/167 and 7/103 ÷ 2/103). Although she needed to 

talk through the first, she was able to give the answer immediately to the second. Not only that, she 

was able to elegantly explain the abstraction she had made and do subsequent tasks (involving 

common denominators) simply by dividing the numerators. 

I have highlighted the first four steps. However, as in other approaches to instruction, these steps 

might be followed by symbolization, introduction of vocabulary, and institutionalization of ideas.4 

A couple of clarifications are in order. First, when we refer to a task, it includes the resources 

available to the students for solving it. Second, the goal of our research is to specify a sequence of 

tasks that can promote a particular abstraction. Thus, the sequence should work without the 

instructor asking leading questions, telling or showing solutions, or giving hints or suggestions. 

Also, the sequence should allow students to make the abstraction without needing to hear the 

solutions of others. This does not mean that there is not a role for teachers. The teacher is important 

in developing norms for the mathematical work, promoting justification at appropriate times, 

introducing symbols and vocabulary, and leading discussions that institutionalize the learned 

abstraction. Also, teachers should be able to monitor student progress and modify task sequences in 

response to student progress. 

Affordances of the LTA instructional approach 

To provide a context for discussing the affordances of the LTA instructional approach, I first 

discuss a commonly used and important approach to instruction, a problem-solving approach. I will 

then highlight some of the contrasts and complementarities between the LTA approach and a 

problem-solving approach.5 

                                                 

4 See also Simon (2016). 

5 Discussion of contrast with Harel’s DNR can be found in Simon (2013). 



Although there is no single problem-solving approach, I will discuss some typical features. One of 

the main strengths of a problem-solving approach is the engagement of students in the critical 

activity of mathematical problem solving, attacking a problem for which the student has no solution 

at the outset. I will not highlight here the abilities and dispositions that can be developed through 

regular engagement in problem solving; these have been well documented. Rather, I will focus on 

one feature of this approach that provides a contrast with the LTA approach. Problem solving is by 

definition uncertain. There is no assurance that those who engage in solving an authentic problem 

will succeed in solving it. When a diverse set of students in a mathematics class attempt to solve a 

problem, it is likely that only those who are the stronger problem solvers and who have the more 

powerful mathematical concepts will succeed in solving the problem. The other students must try to 

follow the reasoning (in small groups or whole class discussions) of their more able peers.  

The LTA approach is intended to provide a complimentary approach, one in which learning of a 

concept is not dependent on the uncertainty inherent in attempting to solve authentic problems. If an 

LTA sequence is designed effectively, students should be successful in solving every task in the 

sequence.6 In the LTA approach the learning (the new abstraction) is not the ability to solve the 

task. Rather it is the insight that is gleaned through the students’ solutions to tasks using available 

activity. In our example, Kylie was successful in solving each of the four tasks.  She was not trying 

to learn anything – just to solve the tasks presented. However, by the third task, she understood 

something that she had not understood at the beginning of the instructional sequence. 

We conceive of the LTA instructional approach as a technology for engendering the construction of 

particular mathematical concepts on the basis of particular prior knowledge. I call attention to two 

potential contributions of this approach: 

1. For concepts that tend to be difficult to teach and learn, the LTA approach provides a 

technology for building up those understandings (promoting particular abstractions). 

2. For students who have previously been unsuccessful in learning mathematical concepts, it 

provides a specific methodology for building up their conceptual foundation.    

Affordances of the LTA theory for research and development 

The elaboration of reflective abstraction discussed above provides a lens for looking at conceptual 

learning in different situations, not just in situations designed using the LTA instructional approach. 

For example, the LTA elaboration of reflective abstraction could be used to understand conceptual 

learning in the context of a problem-solving approach to instruction. How do we explain the success 

or failure of a lesson for particular students? Of course, the students’ prior knowledge and problem 

solving skills are important. But how can we consider the usefulness of the problem or problems? 

The LTA elaboration of reflective abstraction allows for analysis of the students’ activity and its 

relationship to the abstraction that they make. 

                                                 

6 Of course, there is no curriculum that works flawlessly for all students. The issue is not whether we can create a 

sequence in which every student can solve every task. Rather the issue is that we intentionally create tasks that we 

predict students will be able to solve. This is in contrast to putting them in a problem-solving situation. 



In Simon (1995), I postulated the construct of a hypothetical learning trajectory (HLT). An HLT 

can describe a hypothesized trajectory for a single lesson or for a sequence of concepts in a 

conceptual area (also referred to as a “learning progression”). Learning trajectories has become a 

hot area for mathematics education researchers. HLTs are not just a series of conceptual steps 

through which learners progress, they involve articulation of sequences of learning situations and 

hypotheses of how these situations will be used by the students to learn the target concepts. 

The LTA integrated theory of teaching and learning can provide the framework for learning 

trajectories in various conceptual areas. As a framework, it provides a basis for selecting and 

sequencing tasks and for hypothesizing how the students will abstract from their activity in working 

with those tasks. In our current project, we designed, enacted, and modified in teaching experiments 

nine trajectories for different concepts involving fractions.7 This work has been grounded in and 

contributed to the LTA theory of teaching and learning. Also essential to the design and 

modification of the trajectories has been (but beyond the scope of this short paper) our work on 

reversibility (Simon, Kara, Placa, & Sandir, 2016) and on the stages of concept development 

(Simon, Placa, & Avitzur, 2016). Both build on the theory described in this paper. 
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