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In this paper, we study the null controllability of a space-time fractional order parabolic equation involving fractional diffusion and Caputo fractional time derivative of orders s ∈ (0, 1) and γ ∈ (0, 1]. We prove that the system under consideration is not null controllable. Moreover, we generalize some existing results about the null controllability of fractional order parabolic systems. We introduce the adjoint system of space-time fractional order parabolic equation which is used to study the duality relationship between observability and controllability in Hilbert spaces.

Introduction

In this article, we consider the space-time fractional state equation

     ∂ γ t u -A s u = a(x)v(t), (x, t) ∈ Q = Ω × (0, T ), u(x, 0) = u 0 , x ∈ Ω, u(0, t) = u(L, t) = 0, t ∈ (0, T ), (1) 
where Ω = (0, L) (L > 0), T > 0 is a real number, s ∈ (0, 1) and γ ∈ (0, 1], u 0 , a ∈ L 2 (Ω), and v ∈ L 2 (0, T ). The fractional derivative in time ∂ γ t for γ ∈ (0, 1) is the left-sided Caputo fractional derivative of order γ with respect to t.

The well-posedness of the system (1) follows from [START_REF] Antil | A space-time fractional optimal control problem: an analysis and discretization[END_REF][START_REF] Nochetto | A pde approach to space-time fractional parabolic problems[END_REF]. Existence and uniqueness of the weak solution follows from Theorem 6 of [START_REF] Nochetto | A pde approach to space-time fractional parabolic problems[END_REF].

Researchers are actively involved in study of fractional differential equations due to their importance and applications in various fields of science and engineering. Many physical phenomena are modeled using fractional ordinary/partial differential equations, for example, spatially disordered systems, porous media, fractal media, turbulent fluids and plasmas, biological media with traps, binding sites or macro-molecular crowding, stock price movements etc. For further details we refer the readers to Bouchaud and George [START_REF] Bouchaud | Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications[END_REF], Burq and Hitrik [START_REF] Burq | Energy decay for damped wave equations on partially rectangular domains[END_REF] and Metzler and Klafter [START_REF] Metzler | The random walk's guide to anomalous diffusion: a fractional dynamics approach[END_REF][START_REF] Metzler | The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics[END_REF].

The problem of null controllability of fractional parabolic systems is studied by various researchers. In [START_REF] Micu | On the controllability of a fractional order parabolic equation[END_REF], Micu and Zuazua studied the null controllability of fractional order parabolic systems and proved that parabolic system with fractional order Laplacian is not null controllable whenever s ≤ 1 2 . Miller studied the controllability of anomalous diffusions generated by the fractional Laplacian in [START_REF] Miller | On the controllability of anomalous diffusions generated by fractional Laplacian[END_REF]. L Ü studied the null controllability of of fractional order parabolic systems with fractional order Laplacian in [START_REF]Bang-bang principle of time optimal controls and null controllability of fractional order parabolic equations[END_REF]. In [START_REF] Zheng | Observability estimate for the fractional order parabolic equations on measurable sets[END_REF], Zheng and Ali obtained observability estimates and studied the null controllability of of fractional order parabolic systems with fractional order Laplacian. In [START_REF] Zuazua | On the lack of controllability of fractional in time ODE and PDE[END_REF], L Ü and Zuazua studied the null controllability of time fractional systems. Yang studied the null-controllability of a fractional order diffusion equations in [START_REF] Yang | Null-controllability of a fractional order diffusion equation[END_REF].

The problem of null controllability of space-time fractional order parabolic systems investigated in this article seems new. Results obtained in this paper are in contrast with results proved by L Ü and Zuazua [START_REF] Zuazua | On the lack of controllability of fractional in time ODE and PDE[END_REF]. Here, we prove that the system is null controllable for γ ∈ (1/2, 1) and it is not null controllable for γ ∈ (0, 1/2]. The rest of the paper is organized as follows. In section 2, we give some preliminary definitions and known results to be used further. In section 3, we state and prove the theorem about null controllability of system (1). In section 4, we study the duality relationship between observability and controllability.

Preliminaries

In this section, we will state some definitions and state/prove some introductory results which we use for further analysis.

Definition 1

The left-sided Caputo fractional derivative of order γ ∈ (0, 1] with respect to t is defined by

∂ γ t u(x, t) := 1 Γ(1 -γ) t 0 1 (t -r) γ ∂u(x, r) ∂r dr, ( 2 
)
where Γ is the Gamma function.

Definition 2

The two-parameter Mittag-Leffler function of the complex variable w is defined as

e α,β (w) = ∞ k=0 w k Γ(αk + β) , α > 0, α, β ∈ R. ( 3 
)
where Γ is the Gamma function.

For any f ∈ L 2 (Ω), define f k = L 0 f (x)φ k (x)dx. Suppose a(x) ∈ L 2 (Ω) satisfies a k = L 0 a(x)φ k (x)dx = 0, k = 1, 2, • • • . (4) 
We define the set

H e,T,γ := f ∈ L 2 (Ω) : ∞ k=1 f 2 k σ 2 k /a 2 k ? |e γ,1 (-λ s k T γ )| < ∞ ,
where {λ s k } are the eigenvalues of the operator A s , and e γ,1 is the Mittag-Leffler function. Consider the time-fractional order linear differential equation defined by

D γ x(t) = cx(t) + dψ(t), 0 < γ ≤ 1, (5) 
where ψ(t) ∈ L 2 (0, T ). Solution of the system ( 5) is given by the following lemma:

Lemma 1 The solution of the system ( 5) is of the form

x(t) = Ψ 0 (t)x 0 + d t 0 Ψ(t -s)x(s)ds,
where

Ψ 0 (t) = e γ,1 (ct γ ) = ∞ k=0 c k t kγ Γ(γk + 1)
, and

Ψ(t) = t γ-1 e γ,γ (ct γ ) = ∞ k=0 c k t (k+1)γ-1 Γ(γ(k + 1)) .
Proof. It follows from the Theorem 2.5 of [START_REF] Kaczorek | Selected problems of fractional systems theory[END_REF]. By W ρ,µ 2,T , we denote the class of entire functions h(w) of order ρ and of type ≤ T , satisfying the following condition

∞ 0 |h(y)| 2 y µ dy < ∞, -1 < µ < 1.
The parametric representation of this class can be obtained by using the following Wiener-Paley type theorem from [START_REF] Djrbashian | Harmonic analysis and boundary value problems in the complex domains[END_REF].

Lemma 2 The class W ρ,µ
2,T is same as the collection of functions h(w) which can be represented as follows:

h(w) = T 0 e (1/ρ,ν) φ(τ )τ ν-1 zτ 1/ρ dτ,
where ν = (1 + µ + ρ)/2ρ and φ ∈ L 2 (0, T ). The function φ is unique and can be determined almost everywhere by the formula

φ(τ ) = 1 √ 2π d dτ ∞ 0 exp(-iτ t) -1 -it exp i π 2 (1 -ν)t f t 1/ρ t ν-1 dt
for all τ ∈ (0, T ).

We apply the method of separation of variables to solve the following homogeneous system corresponding the system (1). If a solution of the following homogeneous system

∂ γ t u -A s u = 0,
is of the form u(x, t) = T (t)X(x), then for some constant λ, we have

D γ T (t) + λT (t) = 0, and -A s X(x) + λX(x) = 0. (6) 
It is well-known that the eigenvalues λ s k and eigenfunctions φ k (x) of ( 6) satisfy

λ k = π 2 k 2 L 2 , k ∈ N, (7) 
and

L 0 φ m (x)φ n (x)dx = δ mn ,
where δ mn is Kronecker delta. Also, {φ k } ∞ k=1 forms an orthonormal basis for L 2 (Ω). Now, let u(x, t) be the solution of system (1), then we have

u(x, t) = ∞ k=1 T k (t)φ k (x), u(x, 0) = ∞ k=1 µ k φ k (x), a(x) = ∞ k=1 a k φ k (x), where T k (t), k = 1, 2, 3, • • • are solutions of D γ T k (t) + λ k T k (t) = a k v(t). (8) 
Null controllability of system (1) is defined as follows:

Definition 3 System (1) is said to be null controllable in time T > 0, if for every initial data u 0 ∈ L 2 (Ω) and a ∈ L 2 (Ω), there exists a control v ∈ L 2 (0, T ) such that the corresponding solution u of system (1) satisfies u(x, T ) = 0 for all x ∈ Ω.

Null controllability

Now, we are ready to state and prove the controllability results for system [START_REF] Antil | A space-time fractional optimal control problem: an analysis and discretization[END_REF]. First, we prove the following positive result about the null controllability of system (1).

Theorem 1 Let a ∈ L 2 (Ω) be a function satisfying (4). Given T > 0, for 1 2 < γ < 1, 1 2 < s < 1, with γ < s < 2γ, and any u 0 ∈ H E,T,γ such that

u 0 (x) = ∞ k=1 µ k φ k (x) and a(x) = ∞ k=1 a k φ k (x),
there exists a control v ∈ L 2 (0, T ) such that the solution of the system (1) satisfies u(x, T ) = 0.

The problem of null controllability in Theorem 1 can be stated as follows.

Problem 1 Does there exists v(t) such that for each k = 1, 2, 3, • • • , the solution T k (t) of ( 8) satisfies

T k (T ) = 0, T k (0) = µ k ? (9) 
Comparing ( 8) with ( 5) and applying Lemma 1, we have

T k (t) = e γ,1 (-λ s k t γ )T k (0) + a k t 0 (t -τ ) γ-1 e γ,γ (-λ s k (t -τ ) γ )v(τ )dτ.
Let ξ = T -τ , and for each control function v(t) define χ(ξ) as follows:

χ(ξ) = v(T -τ ).
Then [START_REF]Bang-bang principle of time optimal controls and null controllability of fractional order parabolic equations[END_REF] gives us

- µ k e γ,1 (-λ s k T γ ) a k = T 0 e γ,γ (-λ s k ξ γ )χ(ξ)ξ γ-1 dξ,
for a k = 0. We assume that the sequence {θ k } ∞ k=1 defined by

θ k = - µ k e γ,1 (-λ s k T γ ) a k , (10) satisfies 
∞ k=1 θ 2 k < ∞, (11) 
which is equivalent to say that u 0 ∈ H E,T,γ . Finally, the Problem 1 can be replaced by the following moment problem.

Problem 2 (Moment Problem) Let the sequence of real numbers {θ j } ∞ j=1 be defined by [START_REF] Zheng | Observability estimate for the fractional order parabolic equations on measurable sets[END_REF], satisfies [START_REF] Zuazua | On the lack of controllability of fractional in time ODE and PDE[END_REF]. Let T > 0 be fixed. Determine a real valued function χ(t) ∈ L 2 (0, T ) such that, for a j = 0 T 0 e γ,γ (-λ s j t γ )χ(t)t γ-1 dt = θ j , j = 1, 2, 3,

• • • . ( 12 
)
We solve the above moment problem by constructing bi-orthogonal sequence. A sequence {χ k (t)} ∞ k=1 ⊂ L 2 (0, T ) is a bi-orthogonal sequence to the family of functions {e γ,γ (λ

s j t γ )t γ-1 } ∞ j=1 in L 2 (0, T ) if and only if T 0 e γ,γ (-λ s j t γ )χ k (t)t γ-1 dt = δ jk ,
where δ jk is a Kronecker delta. If {χ k (t)} ∞ k=1 is a bi-orthogonal sequence to the family of functions {e γ,γ (-λ s j t γ )t γ-1 } ∞ j=1 , then from ( 12), we can conclude that a control v(t) can be defined by

v(t) = ∞ j=1 θ j χ j (t), t ∈ (0, T ),
provided that the series converges in L 2 (0, T ).

For any natural number n, define the function

G n (z) = k∈N,k =n 1 + z λ s k λ s k λ s k -λ s n . Lemma 3 For each n ∈ N, G n (z) is an entire function of exponential type A 1 = ∞ j=1 1 λ s j , satisfying
G n (-λ s j ) = δ nj Proof. For any complex number z, we have

|G n (z)| ≤ exp ∞ k=1 ln 1 + z λ s k + ln 1 + λ s n λ s k -λ s n = exp(∆ 1 (z, λ s k ) + ∆ 2 (λ s k , λ s n )). Then, we have ∆ 1 (z, λ s k ) = ∞ k=1 ln 1 + z λ s k ≤ A 1 |z|,
where

A 1 = ∞ k=1 1 λ s k . (13) 
The series on right hand side of ( 13) converges if and only if s > 1 2 . Furthermore,

∆ 2 (λ s k , λ s n ) = ∞ k=1 ln 1 + λ s n λ s k -λ s n ≤ ∞ k=1 λ s n |λ s k -λ s n | = A 2 .
Thus, we have

|G n (z)| ≤ A 2 exp(A 1 |z|).
We follow [START_REF] Glass | A complex analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF] to prove the existence of a bi-orthogonal sequence. Fix the constant A 1 defined by (13) and define

s(t) = A 1 - A 2 π √ t, (14) 
where A 2 ∈ R + . Let ν be the restriction of the measure ds(t) to the interval [A 3 , ∞) where A 3 ∈ R + depends on A 2 , and [•] denotes the integral part. As in [START_REF] Glass | A complex analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF], we define

h(z) = ∞ 0 log 1 - z 2 t 2 d[ν](t), (15) 
F (z) = exp(h((z -i) 2 )). (16) 
Then F (z) is an entire function.

Lemma 4 For T > 0, 1 2 < γ < 1 and 1 2 < s < 1 with γ < s < 2γ, there exists a bi-orthogonal sequence {χ k (t)} ∞ k=1 to the family {e γ,γ (-λ s j t γ )t γ-1 } ∞ j=1 in L 2 (0, T ) with the following property

χ k (t) L 2 (0,T ) ≤ A λ s/γ k F (-λ s k ) sin T λ s/γ k , ( 17 
)
where A ∈ R + is independent of λ s k and f (w) is as defined in (16).

Proof. For any m ∈ N, sin T λ s/γ m = 0. So, we define the function

Φ m (w) = λ s/γ m sin T λ s/γ m G m (w) F (w) F (-λ s m ) sin T w s/γ w s/γ . ( 18 
)
Using Lemma 1 in [START_REF] Glass | A complex analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF], we have

|F (x)| ≤ Aexp(-A 1 |x|), (19) 
where A 1 is as defined in [START_REF] Kaczorek | Selected problems of fractional systems theory[END_REF] and A is a positive constant which does not depend on F (x).

As the function sin T z s/γ z s/γ is entire (refer to [START_REF] Glass | A complex analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF]), the function Φ m (w) is an entire function of order s/γ, type ≤ T . Using Lemma 3, along with (16), ( 18) and ( 19) we obtain

∞ 0 |Φ m (x)| 2 x η 0 dx < ∞, where -1 < η 0 < 0, 1 -η 0 = s/γ. (20) 
Thus, for η 0 as defined in (20

), Φ m (z) ∈ W 1/γ,η 0 2,T
. By Lemma 2, we have

Φ m (z) = T 0 e γ,γ (zt 1/γ )χ m (t)t γ-1 dt, (21) 
where χ m (t) is in L 2 (0, T ). Also, we have the following inverse representation

χ m (t) = 1 √ 2π d dt ∞ 0 exp(-iτ t) -1 -iτ exp(iτ (1 -γ) π 2 )Φ m (τ 1/γ )τ γ-1 dτ
for t ∈ (0, T ). Thus, we have the estimate (17). Now, we prove the Theorem 1. Proof. [Theorem 1] For T > 0, we construct a control v ∈ L 2 (0, T ) of system (1) with the initial data u 0 given by

u 0 = ∞ k=1 µ k φ k (x),
and the function a(x) given by a

(x) = ∞ k=1 a k φ k (x)
as follows:

v(t) = ∞ m=1 µ m e γ,1 (-λ s m T γ )F (-λ s m ) sin T λ s/γ m a m λ s/γ m χ m (t), t ∈ (0, T ). (22) 
Using ( 11), (17), (18), ( 19) and (21) together, we conclude that the series in (22) converges in L 2 (0, T ). From Lemma 3, (18) and (21) it follows that v verifies [START_REF] Yang | Null-controllability of a fractional order diffusion equation[END_REF].

Remark 1 In [START_REF] Zuazua | On the lack of controllability of fractional in time ODE and PDE[END_REF], L Ü and Zuazua proved that the system (1) is not null controllable for any γ ∈ (0, 1) and this non null controllability is independent of fractional power of Laplacian. Our result is in contrast with their conclusion.

Theorem 2 Given T > 0, for 0 < γ < 1, 0 < s ≤ 1 2 , any a ∈ L 2 (Ω) and any u 0 ∈ H E,T,γ system (1) is not null controllable.

Proof. As series in (13) diverges for 0 < s ≤ 1 2 , we conclude the non null controllability of system (1) by using Theorem 3.1 in [START_REF] Micu | On the controllability of a fractional order parabolic equation[END_REF].

Duality relationship and observability

In this section we state the adjoint system of the system (1). Also, we mention the relationship between null controllability of system (1) and observability of system (23). The adjoint of the system (1) is defined by      ∂ γ t p + A s p = 0, in Q, p(0, t) = p(L, t) = 0, t ∈ (0, T ), p(x, T ) = p T (x),

x ∈ Ω,

where p T (x) ∈ L 2 (Ω). We state the following Proposition 4.1 from [START_REF] Zuazua | On the lack of controllability of fractional in time ODE and PDE[END_REF], which gives relationship between null controllability of system (1) and initial observability of system (23). Theorem 3 The system (1) is null controllable in time T > 0 if and only if the system (23) is initially observable.

We have the following Corollary 1 to Theorem 1 which follows from theorem 3.

Corollary 1 For given T > 0, and any p T ∈ L 2 (Ω), if 1 2 < γ < 1, 1 2 < s < 1, with γ < s < 2γ, then the system (23) is initially observable. Also,we have the following Corollary 2 to Theorem 2 which follows from theorem 3.

Corollary 2 For any T > 0, and any p T ∈ L 2 (Ω), if 0 < γ < 1, 0 < s ≤ 1 2 then, the system (23) is not initially observable.