
HAL Id: hal-01948681
https://hal.science/hal-01948681v1

Preprint submitted on 8 Dec 2018 (v1), last revised 21 Feb 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Translating Simulink Models to Modelica using the Nsp
Platform

Jean-Philippe Chancelier, Sébastien Furic, Pierre Weis

To cite this version:
Jean-Philippe Chancelier, Sébastien Furic, Pierre Weis. Translating Simulink Models to Modelica
using the Nsp Platform. 2018. �hal-01948681v1�

https://hal.science/hal-01948681v1
https://hal.archives-ouvertes.fr

Translating Simulink Models to Modelica using the Nsp Platform

Jean-Philippe Chancelier1 Sébastien Furic2 Pierre Weis2

1Université Paris-Est, CERMICS (ENPC), F-77455 Marne-la-Vallée cedex 2, France,
jean-philippe.chancelier@enpc.fr

2INRIA Paris, 75589 Paris, France, {sebastien.furic,pierre.weis}@inria.fr

Abstract
We present a new Simulink (Simulink) to Modelica (Mod-
elica) translation chain embedded into Nsp. Translated
models can be edited (original Simulink diagrams are pre-
served through translation) and simulated. This transla-
tion chain makes use of the Simport tool, originally de-
signed to translate Simulink models to Scicos models, and
also relies on Modelicac, i.e. Scicos’ Modelica companion
compiler.

Using some examples, we demonstrate the effective-
ness of the translation process and detail some techni-
cal aspects of it. This new Nsp feature extends Nsp’s
simulation capabilities and makes it a reference platform
for users looking for means to simulate Simulink models
within a Modelica framework. Resulting Modelica code
can even be exported to other Modelica compatible tools.
Keywords: Nsp; Simulink; Modelica

1 Introduction
Nsp is a Matlab-like numerical environment which can run
the Scicos modeling environment, a Simulink-like block
diagram editor and simulator.

From 2003 to 2008, in the course of funded projects
SimPA and SimPA2, a Modelica compiler named Modeli-
cac has been developed allowing Scicos to handle genuine
Modelica models. This integration of Modelica within
Scicos has been the subject of several papers published
at the Modelica conference (Nikoukhah and Najafi, 2008;
Nikoukhah and Furic, 2009). The purpose of Modelica
is to serve as a high-level description language to extend
Scicos expressiveness: Modelica allows users to compose
“acausal” models where the original environment forced
users to describe their models as block diagrams.

In this paper we focus on a new application of Modelica
within Scicos under Nsp, that is as a target language for
Simulink model translation.

Several Simulink to Modelica translation tools have al-
ready been proposed in the past, we mention in partic-
ular Mike Dempsey’s Simelica and AdvancedBlocks li-
brary (Dempsey, 2003) and Dirk Reusch’s Coselica ini-
tiative (Reusch). AdvancedBlocks was a fairly complete
library of Modelica blocks which allowed users to use
Modelica blocks as a one-to-one replacement for Simulink
blocks. Up to our knowledge this work remains the most
advanced effort in that direction. It is however no longer

maintained. Coselica is a library of signal models that
allows users to better exploit Modelica from within Sci-
cos by proposing a large set of Modelica submodels in the
same spirit as the standard Modelica library (MSL) but
with a simpler structure. Many Simulink-like blocks are
available in Coselica.

The approach presented here differs from Mike
Dempsey’s approach in that translation of original blocks
is not attempted on a one-to-one basis. Instead, a tool
named Simport translates Simulink models by replacing,
if necessary, groups of blocks in the original Simulink
models with one or several blocks of the target block lan-
guage (currently, Scicos native of Modelica) so that orig-
inal semantics is preserved with a high degree of confi-
dence.

We give in this paper a detailed description of this new
translation chain hosted by the Nsp environment.

2 Involved Tools
As mentioned above, the translation chain relies on a com-
bination of several tools. We give hereafter a short de-
scription of each of them.

2.1 Nsp, a Programming Environment for Nu-
merical Applications

Nsp (Nsp) is a mature Matlab-like Scientific Software
Package developed under the GPL license. Nsp features
a high-level, safe imperative programming language with
automatic memory management. This language can be
used interactively, giving users an easy access to efficient
numerical routines; It can also be used as a more conven-
tional programming language to extend Nsp’s capabilities.

Nsp contains internally a class system with simple in-
heritance and interface implementation. When used as an
interactive computing environment, it comes with online
help facilities and an easy access to GUI facilities and
graphics.

A large set of libraries are available and it is moreover
easy to implement new functionalities. External libraries
can also be used: this requires writing some wrapper code
(also called interface) to live in harmony with Nsp’s inter-
nal state. The interface mechanism can be either static or
dynamic. By using dynamic functionalities one is able to
build toolboxes.

Nsp shares many traits with other Matlab-like Scientific
Softwares such as Matlab, Octave, ScilabGtk (ScilabGtk;

Campbell et al., 2006), and also with scripting languages
such as Python.

The main toolbox used in this work is Scicos that we
describe now.

2.2 Scicos, a Block Diagram Modeler and Sim-
ulator

Scicos (Scicos) is a graphical dynamical system modeler
and simulator originally developed in the Metalau project
at INRIA, Paris-Rocquencourt center. With Scicos, users
can create block diagrams to model and simulate the dy-
namics of hybrid dynamical systems and compile models
into executable code. Scicos is used for signal process-
ing, systems control, queuing systems, and to study phys-
ical and biological systems. Extensions allow generation
of component-based modeling of electrical and hydraulic
circuits using the Modelica language.

We describe in this paper the Scicos/Nsp version of Sci-
cos maintained and developed at ENPC. Scicos/Nsp is a
Nsp toolbox and runs in the Nsp environment. Having ac-
cess to Nsp functions when designing simulation models
is of great importance.

Scicos users often needs to use Nsp functions such as
those dedicated to filter design for signal processing or
controller design in the construction of simulation mod-
els. Nsp programming language can be used for batch
processing of multiple simulation tasks, and more gener-
ally, models designed by Scicos can be used as functions
in Nsp. Nsp graphical facilities can be used for post pro-
cessing simulation results. But the integration of Scicos
and Nsp goes beyond that. Scicos editor is entirely writ-
ten in Nsp language. This provides many advantages and
was in particular of tremendous importance in the current
work, indeed: Scicos model data structure is a Nsp struc-
ture and thus Scicos models can be programmatically ma-
nipulated and build using Nsp scripts. We use this facility
in two ways. First to obtain Scicos models from Simulink
models, using the fact that the Simport converter produces
a Nsp script whose execution in Nsp produces a Scicos
model data structure. Second, using Nsp scripts we are
able to convert, in a Scicos model data structure, some
Scicos blocks to Modelica blocks.

In the conversion process from Simulink to Modelica,
the scicos compiler/scheduler also plays a key role. It is
used to infer dimensions and types used in the Modelica
blocs. This is quite an exciting feature since it gives the
possibility to have Modelica blocks for which the Model-
ica associated model is not a fixed Modelica class but a
specific one adapted to specific dimensions and types gen-
erated on the fly.

2.3 Modelicac, a Simple Yet Useful Modelica
Compiler

Development of Modelicac started in 2003 as a joint work
between Inria and TNI-Valiosys (now Dassault Systèmes)
in the course of the SimPA (SIMulation pour le Procédé
et l’Automatique) french funded project. The goal was to

Mux

MScope

Q

Q

D.

u1<=u2
MScope

Continuous
Fix Delay

Figure 1. A mixed Scicos-Modelica model as displayed by Sci-
cos’s editor

make Scicos compatible with a significant subset of the
Modelica language in order for users to be able to de-
scribe complex hybrid models without having to resort to
low-level block diagram descriptions. Indeed, building a
block diagram from a physical model requires 1)perform-
ing a complete analysis of physical phenomena into play
(to determine which elementary blocks to use in the dia-
gram), and 2)determining how data flows between blocks
(to connect elementary blocks together). On the other
hand, Modelica tools considerably ease physical model
construction by automatically analysing the overall struc-
ture of physical models described in a much more user-
friendly way: familiar physical components (e.g. springs,
transistors, hydraulic pumps, etc.) can be used to build
models. Translation from this high-level description to
low-level data flow is performed automatically in a quite
satisfactory way, which frees users from a painful work.
Moreover, even slight modifications of physical models
may require considerable changes in corresponding block-
diagram descriptions; this is not the case with a high-level
description.

In its initial version, Modelicac essentially focussed on
the “continuous part” of hybrid models. This mainly com-
prises differential equations and event-trigerring mecha-
nisms (e.g. , “when equations”). Difference equations
were however also be described, although with many re-
strictions, because the idea was to discourage users from
writing discrete equations in Modelica. Indeed, Scicos is
primarily a hybrid modelling environment and, in particu-
lar, it handles discrete, event-trigered changes, much more
robustly than Modelica because of its synchronous roots.

In the course of the SimPA project, the Scicos editor has
been extended to enable graphical handling of Modelica,
native Scicos, as well as hybrid Modelica-Scicos blocks in
the same design (see Figure 1).

This combination of synchronous and Modelica-based
features offered enough modelling expressiveness to en-
able useful libraries to be developed. Coselica is one
of these libraries, and is one of the ingredients of our
Simulink to Modelica translation chain.

In 2005, the funded project SimPA2 started, having as
objective the enhancement of the original Modelicac com-
piler. Among others, support of multiple-file Modelica
libraries and interactive initialization of complex hybrid
systems have been added.

As a result, the new Modelicac compiler was able to
compete with industrial compilers (it even ranked number
two in terms of performance on an industrial thermohy-
draulic benchmark proposed by EDF in 2009).

Today, the Scicos toolbox with its Modelica-compatible
extension is freely available under several environments
including Scilab, ScicosLab and Nsp.

2.4 Simport, a Simulink Model Importer for
Scicos

Simport (Chancelier et al., 2016, 2015) is a comprehensive
Simulink import assistant for the Scicos and Altair Acti-
vate block system modelers: Simport reads a textual repre-
sentation of a Simulink model (MDL or SLX file format)
and generates the corresponding equivalent Scicos model.

Automating the translation of Simulink models, Sim-
port alleviates the migration process from Simulink to Sci-
cos. Furthermore, Simport allows easy embedding of ex-
isting Simulink models or part of models into a Scicos
development.

Simport supports a large subset of Simulink basic
blocks, but exotic blocks from specific Simulink libraries
have no Scicos equivalent; in such a case, Simport gen-
erates an empty Scicos super block to incorporate the
mandatory hand written Simulink block translation.

Based on compilation techniques, Simport is a fast and
reliable translator from Simulink models to Scicos or Al-
tair Activate models.

Simport is distributed with Nsp Scicos (Scicos) and Ac-
tivate (Altair Activate)

Simport based professional migration services are
available by Sciworks Technologies, see http://
sciworkstech.com/

Simport is a comprehensive Simulink import assistant
for Scicos (and Simulate, the Altair’s Scicos version)

• Entirely written in the functional language Objective
Caml (91 kloc)

• Designed as a compiler (semantics passes + code
generation)

• Easy to maintain and extend

Joint work with Jean-Philippe Chancelier, François
Delebecque, Clément Franchini, Ramine Nikoukhah,
Pierre Weis.

2.4.1 Capabilities
Simport translates Simulink models to Scicos models:

• preserving model hierarchy and diagram topology

• respecting visual aspects of the original model

• aiming to preserve semantics consistency

• supporting both MDL and SLX file formats

2.4.2 Simport translator front-end

From text files, the front-end generates explicit Simulink
model description

• (1) Parsing (lex/yacc) from MDL text to shadow
MDL abstract syntax trees (AST)

• (2) Semantics analysis to obtain deep syntax from
shadow syntax (deep syntax contains the semantics
of the source)

• (3) Translation from deep syntax to explicit syntax

• inheritance is made explicit,
• links encoding is analyzed and translated to

Scicos links encoding (generate Scicos split
and port blocks)

2.4.3 Simport translator middle-end

From explicit Simulink model description to abstract tar-
get code

The abstract target code is an abstract API (Application
Programmer Interface) for Scicos

• Target code instructions: API function calls for
model construction (block instantiation and param-
eterization, links, . . .)

• Middle-end generates abstract target code (lists of
API function calls)

• Abstract target code is host language independant
(NSP or Scilab for Scicos, HyperMath for Simulate
target)

2.4.4 Simulink block translation

From explicit Simulink blocks to corresponding Scicos
blocks.

Middle-end maps explicit Simulink model description
to abstract target code

Middle-end maps Simulink bloks in explicit Simulink
models to abstract target code that generates Scicos
blocks

Middle-end maps Simulink bloks to Scicos blocks us-
ing the block translation library

2.4.5 Simport block translation library

Translation of individual Simulink blocks to abstract tar-
get code.

Each Simulink source block is translated either

• into a single basic block, if there exists an equivalent
Scicos block, or

• into a super-block that implements the Simulink
block via a combination of Scicos blocks, or

• into an empty super-block for user completion, if the
Simulink block translation is unsupported

http://sciworkstech.com/
http://sciworkstech.com/

2.4.6 Simport specialized block translation
Block translation is not a one to one mapping

According to its actual parameters, a Simulink block
may

• map to one of two unrelated Scicos basic blocks

• map to a Scicos basic block or a special-purpose Sci-
cos super-block,

• map to a couple of two Scicos super-blocks

2.4.7 Specialized translation for Abs
Simulink block Abs maps either to a single Scicos basic
block, or a super-block, according to sample-time param-
eter

• if sample-time is inherited (i.e. sample-time parame-
ter is -1) then Abs maps to the ABS_VALUEi Sci-
cos basic block

• otherwise, Abs maps to a super-block with a
SampleCLK Scicos basic block to activate a
ABS_VALUEi Scicos basic block

Simport translation library covers a large subset of
Simulink basic blocks, in particular the so-called action
blocks

2.4.8 Action block translation
Middle-end maps Simulink action blocks to a pair of
super-blocks

• the actioned block, a Scicos super-block that imple-
ments the Simulink action block body behavior

• the action event generator, a Scicos super-block
that activates the actioned block according to the
Simulink activation specification

Note: Simulink action blocks can observe events (e.g.
number of activation so far)

The action event generator outputs data to the actioned
block to implement this behavior

2.4.9 Simport back-end: API to host code
The back-end translates abstract target code to concrete
code of the Scicos host language

In addition, the back-end provides

• Definition of simulation parameters

• Handling syntax and semantics peculiarities of the
host language (e.g. constant π)

• Embedding of various outputs to the host language
(e.g. Matlab expressions and Matlab supporting M-
files)

2.4.10 SLX file format translation
SLX files are the current output format for Simulink;
file format is OPC (Open Packaging Convention): a zip
archive with XML files describing the model.

SLX files are translated into MDL shadow abstract syn-
tax trees:

• Uncompress the SLX file

• Parse the model XML files

• Analyze the XML AST

• Translate XML AST to MDL shadow AST

Call the Simport front-end at semantics analysis step
and proceed as before

2.4.11 SLX specific difficulties
• Finding MDL equivalent in the verbose XML AST

• Handling new features in SLX that did not exist in
MDL

→ we extend the Simport MDL fragment accordingly

2.4.12 Demo (1)
Given the Simulink model described in Figure 2 and saved
as file model.mdl.

Figure 2. Segway controller as a Simulink model

We translate it into Nsp using the command
simport -tl nsp model.mdl. We now get file
model.nsp whose execution in Nsp produce build the
Scicos model displayed in Figure 3.

1
Mm

PhiUndX2

[-11..

PhiUndX1

[-11..

Phi2

[-10..

Phi1

[-12..

Mux5

Mux
Mux4

MuxMux3

Mux
Mux2

Mux

Msw

control

M_Port
switch

C
o
n
tro

lle
rS
e
le
c
t

3

4d
X

3X
2d
P
h
i

1P
h
i

Figure 3. Segway controller as a Scicos model

2.4.13 Demo (2)
Simulation of the Simulink model, gives:

(picture of the Simulink model simulation result)
Simulation of the translated Scicos model gives:

(picture of the Scicos model simulation result)

2.4.14 Limitations

• Some Simulink basic blocks are not covered

• Partial coverage of some semantic constructions (for
instance EnableAndTrigger action port)

• No translation for Stateflow and Simscape (no Scicos
equivalent)

• No S-function support

• Limited support for Matlab blocks (syntactic transla-
tion)

3 Translation from Simulink to Mod-
elica

The Translation from Simulink to Modelica is imple-
mented as a two step process. First, as already described,
using Simport, we can translate a Simulink model into a
Scicos model. Second, using Nsp scripts we are able to
convert a Scicos model into an hybrid Modelica-Scicos
model. Conversion is obtained by 1) translation of Scicos
blocks to Modelica blocks, and 2) addition in the model
of converters along the links which connect Scicos Blocks
to Modelica-Scicos blocks. The hybrid Modelica-Scicos
models can be edited and simulated in Scicos editor; thus,
even if during the Translation process we cannot obtain a
full Modelica model1, the resulting hybrid model may still
be used for simulation because users have the possibility
to complete untranslated parts thanks to the Scicos editor.

In Figure 4 a Scicos model used to simulate the Lorenz
dynamical system is shown. The same model after conver-
sion to Modelica is shown in Figure 5. As it can be seen in
Figure 5 the Scopes are not translated to Modelica blocks
and converters from Modelica signals to Scicos signals are
inserted in the links connected to the entry ports of scopes.

When converters are available, Scicos blocks are re-
placed by Modelica blocks as a one-to-one process. We
have developed a specific library of Modelica blocks to
ease the replacement. For example Scicos integrator
blocks are replaced by MB_Integral Modelica blocks.
For some translation we could rely on the already avail-
able library Coselica (Reusch), but for many blocks it can-
not work because of sizes limitations of Coselica blocks.
For example the Coselica Integrator is limited to 1-
dimensional signals while the Scicos INTEGRAL_m block
may have n-dimensional entries. One way to encompass
that difficulty is to rely on the possibility to generate su-
per blocks for enabling n-dimensional block operations
from 1-dimensional basic blocks (See Figure 7 for an ex-
ample with adder). We have chosen this approach for
the converter blocks (See Figure 6) as explained below,
but we have also implemented specific blocks which are

1In case some blocks are unknown to Simport. Indeed, Simulink
blocks are black boxes, so Simport cannot translate blocks or combina-
tions of blocks that are not already described in its tranlation tables.

Figure 4. A Scicos model as displayed by Scicos’s editor

Figure 5. Scicos model after Modelica conversion as displayed
by Scicos’s editor

able to deal with n-dimensional signals. For example, the
MB_Integral block is a Modelica-Scicos block which
has the particularity that the block at compilation time will
dynamically produce a Modelica model for each instance
of the block in a specific model. As an example, in Fig-
ure 5 each MB_Integral Modelica block integrate a 4-
dimensional variable without saturation and thus the gen-
erated code will be given by

model integral2
parameter Real xinit[4,1] = {{ 20 },{ 19.9900 },{

20.0100 },{ 20.0110 }};
RealInput u[4];
RealOutput y[4](signal(start=xinit[:,1]));

equation
der(y[1].signal) = u[1].signal;
der(y[2].signal) = u[2].signal;
der(y[3].signal) = u[3].signal;
der(y[4].signal) = u[4].signal;

end integral2;

Most of the one-to-one block conversion follows the same
mechanism. Building a library of Modelica-Scicos blocks
is an on-going work and it only contains around 20 blocks
at present. Indeed, this Library can also be used to di-
rectly build models in the Scicos editor, it complements
the set of Modelica block available in scicos giving access
to modelica counterpart of known Scicos blocks.

The one-to-one block conversion is in fact also a multi-
step process. We proceed as follows.

First block-to-block conversions are performed but con-
verted Modelica-Scicos blocs are not fully usable because
they lack local information (for example the final matrix
sizes are unknown at first step). Notice that this first step
requires Nsp evaluation of block parameters since they
may be used to infer types and dimensions. For example
the sizes of a Gain block parameter gives the input/output
port sizes of the block, except when the parameter size if
1. But in order to obtain the sizes of a given Gain block
parameter we need to evaluate Nsp expressions, since pa-
rameters can be given through context (produced by sim-
port from Matlab companion files).

In a second step, links are modified and converters are
inserted where appropriate. Notice however that convert-
ers sizes are also unknown.

In a third step, sizes and types are obtained by call-
ing the scicos model compiler. However, since the scicos
model compiler only infers types and dimension for Sci-
cos blocks this step requires a hidden conversion of the hy-
brid Modelica-Scicos model into a pure scicos model be-
fore trying to infer sizes and types. When sizes and types
are inferred for a Modelica-Scicos block, its internal Mod-
elica code can be generated. The code is thus consistent
with respect to sizes, types and parameters.

The fact that models can be manipulated and gener-
ated programmatically is also used in the conversion pro-
cess. We illustrate this point by describing more pre-
cisely MB_MO2Sn the block used to convert Modelica sig-
nals to Scicos Signals. The communication between Sci-
cos and Modelica can only be realized using scalar links
(for historical reasons, not because of limitations of any
of the languages), thus to be able to have converters on

Figure 6. Scicos internal model of a 4-dimensional Modelica to
Scicos converter

1

1

2

3

4

5

1

1

+

1

1

-1

1

+

1

-1

1

1

+

1

1

-1

1

+

1

-1

Figure 7. Scicos internal model of a generated 5-dimensional
addition block

links which transfer n-dimensional signals we have im-
plemented a block named MB_MO2Sn as a super-block.
That is, the MB_MO2Sn block contains a model and this
model is generated dynamically when the used link sig-
nal size is known. We give in Figure 6 the internal model
of a 4-dimensional Modelica to Scicos converter as used
in the model displayed in Figure 5. It contains four 1-
dimensional Modelica to Scicos converter. As an other
example, to illustrate the possibility to generate models
by program we give in Figure 7 an example of a model
which performs a 5-dimensional addition of Modelica sig-
nals. Implementing a n-dimensional adder block could
be implemented that way even if we have chosen to di-
rectly embed the Modelica n-dimensional adder block in
a unique block.

As already pointed above, during the conversion from
Scicos models to Modelica-Scicos models, inferring types
and sizes is of utmost importance and it partially relies on
Nsp block parameter and context expression evaluation.
This is mostly why the conversion cannot completely be
performed by Simport. Indeed, inferring types and sizes
could be implemented directly in Simport if evaluation of
Matlab expression was not required in the process.

~

2

R= 0.2

-
+

C
=

 0
.1

L
=

 0
.0

0
0

1

A

V

MScope

Figure 8. A mixed Scicos-Modelica model of a RLC circuit

3.1 Translation from Modelica to C
Modelica source code is translated to C thanks to the Mod-
elicac compiler. The idea is as follow. Once the model is
being run by the user, Scicos gathers all the blocks whose
execution semantics is described by means of Modelica
code into a unique Modelica program whose source code
is given to Modelicac. This program is actually a high-
level description of the Modelica part of the model. The
following listing illustrates what such a description looks
like. It contains the Modelica description generated by
Scicos for the model of Figure 8:
model RLC_circuit_test_im

parameter Real VA_VsourceAC_(fixed=false) =
2.000000e+00 "VA_VsourceAC_";

parameter Real f_VsourceAC_(fixed=false) =
1.000000e+00 "f_VsourceAC_";

parameter Real R_Resistor_(fixed=false) =
2.000000e-01 "R_Resistor_";

parameter Real C_Capacitor_(fixed=false) =
1.000000e-01 "C_Capacitor_";

parameter Real v_Capacitor_(fixed=false) =
0.000000e+00 "v_Capacitor_";

parameter Real L_Inductor_(fixed=false) =
1.000000e-04 "L_Inductor_";

VsourceAC VsourceAC_(VA=VA_VsourceAC_,
f=f_VsourceAC_);

Resistor Resistor_(R=R_Resistor_);
Capacitor Capacitor_(C=C_Capacitor_,

v(start=v_Capacitor_));
Inductor Inductor_(L=L_Inductor_);
CurrentSensor CurrentSensor_;
Ground Ground_;
VoltageSensor VoltageSensor_;
OutPutPort OutPutPort_;
OutPutPort OutPutPort_1;

equation
connect (CurrentSensor_.n,VoltageSensor_.n);
connect (Capacitor_.p,VoltageSensor_.n);
connect (Inductor_.p,VoltageSensor_.n);
connect (Ground_.p,VsourceAC_.n);
connect (CurrentSensor_.p,VsourceAC_.n);
connect (VoltageSensor_.p,Resistor_.p);
connect (Inductor_.n,Resistor_.p);
connect (Capacitor_.n,Resistor_.p);
connect (Resistor_.n,VsourceAC_.p);
CurrentSensor_.i = OutPutPort_.vi;
VoltageSensor_.v = OutPutPort_1.vi;

end RLC_circuit_test_im;

Modelica programs generated by Scicos contain five (pos-
sibly empty) sections declaring respectively:

• the parameters of the model,

• the components appearing in the model (i.e. model-
ica “blocks” used to build the model),

• the connectors to and from the Scicos world (de-
clared as InPutPorts and OutPutPorts),

• the connection equations (corresponding to links
between components of the model, introduced by
means of the connect keyword), and

• the correspondence between some Scicos ports and
some Modelica connectors used to exchange infor-
mation between both worlds (introduced by means
of an equal sign).

From such Modelica programs Modelicac generates na-
tive, C-based Scicos blocks. It starts by resolving the
names appearing in the Modelica description and instanti-
ates required classes (found in libraries) to form the set of
all equations governing the dynamics of the Modelica part
of the model. It then flattens the structure of the Modelica
model, simplifies equations, and generates C code. The
following listing is the result of calling Modelicac with
previous Modelica code:
/* Scicos block’s entry point */

void RLC_circuit_test_im(
scicos_block *block,
int flag)

{
int *ipar = GetIparPtrs(block);
double *rpar = GetRparPtrs(block);
double *z = GetDstate(block);
double *x = GetState(block);
double *xd = GetDerState(block);
double *res = GetResState(block);
double **y = GetOutPtrs(block);
double **u = GetInPtrs(block);
double **work= GetPtrWorkPtrs(block);
double *g = GetGPtrs(block);
double *alpha= NULL;
double *beta = NULL;
int *jroot = GetJrootPtrs(block);
int *mode = GetModePtrs(block);
int nevprt = GetNevIn(block);
int *xprop = GetXpropPtrs(block);

/* Intermediate variables */
double v0;

if (flag == 0) {
res[0] =

(x[1]+x[0]*
(*GetRealOparPtrs(block,3))+
sin(6.28318530718*

GetScicosTime(block)*
(*GetRealOparPtrs(block,2)))*

(*GetRealOparPtrs(block,1)))*(1.0);
res[1] = x[2]+ xd[1]*(*GetRealOparPtrs(block,4))-x[0];
res[2] = xd[2]*(*GetRealOparPtrs(block,6))-x[1];

} else if (flag == 1) {
if (!areModesFixed(block)) {

y[0][0] = x[0]; /* OutPutPort_.vo */
y[1][0] = -x[1]; /* OutPutPort_1.vo */

} else {
y[0][0] = x[0]; /* OutPutPort_.vo */
y[1][0] = -x[1]; /* OutPutPort_1.vo */

}
} else if (flag == 2 && nevprt < 0) {
} else if (flag == 4) {

x[0] = 0.0; /* Resistor_.i */
x[1] = (*GetRealOparPtrs(block,5)); /* Capacitor_.v */
x[2] = 0.0; /* Inductor_.i */
if (GetNopar(block)<6){

SetBlockError(block,-21);
return;

}
SetAjac(block,1);

} else if (flag == 5) {
} else if (flag == 6) {
} else if (flag == 7) {

xprop[0] = -1; /* Resistor_.i (algebraic) */
xprop[1] = 1; /* Capacitor_.v (state) */
xprop[2] = 1; /* Inductor_.i (state) */

} else if (flag == 9) {
} else if (flag == 10) {

alpha=GetAlphaPt(block);
beta =GetBetaPt(block);
res[0] = (*GetRealOparPtrs(block,3))*(1.0)*alpha[0];
res[1] = -alpha[0];
res[3] = (1.0)*alpha[1];
res[4] = (*GetRealOparPtrs(block,4))*beta[1];
v0 = -alpha[1];
res[5] = v0;
res[7] = alpha[2];
res[8] = (*GetRealOparPtrs(block,6))*beta[2];
res[9] = alpha[0];
res[12] = v0;

}

return;
}

Finally, a new native Scicos block running the gener-
ated C code is created by Scicos and connected to the Sci-
cos part of the original model in place of the Modelica
blocks. Scicos then performs the simulation of the result-
ing model.

4 Conclusion and Future Work
In this paper we have shown that NSP can be used as a
powerful environment to translate, possibly edit, and sim-
ulate some Simulink models. The tool chain comprises
two external tools, namely Simport and Modelicac, and
the Scicos toolbox with its hybrid Scicos-Modelica library
Coselica.

This addition to NSP allows users to simulate many
Simulink models with few changes, if any. Moreover,
original models can be edited after translation, and pos-
sibly connected to native Scicos models, or to modelica
models. This opens many interesting perpectives for users
willing to run heterogeneous models at a very high level,
using the graphical editor provided by Scicos as the sole
GUI.

Several enhancements can be made to this preliminary
work. The most significant enhancement would proba-
bly consists in enriching the translation tables of Simport,
to allow more Simulink models to be translated automati-
cally.

5 Acknowledgements
We would like to thank Ramine Nikoukhah from Altair for
his considerable help in the design and implementation of
the tools we used, in particular Scicos of course, but also
Modelicac and Simport.

References
Altair Activate. Multi-Disciplinary System Simulation.

URL https://solidthinking.com/product/
activate.

Stephen Campbell, Jean-Philippe Chancelier, and Ramine
Nikoukhah. Modeling and Simulation in Scilab/Scicos.
Springer, 2006. ISBN: 978-0-387-27802-5.

Jean-Philippe Chancelier, Fraņois Delebecque, Clément Fran-
chini, Ramine Nikoukhah, and Pierre Weis. Simport: A
Simulink Model Importer for Scicos. In The 3rd International
Workshop on Simulation at the System Level, École Normale
Supérieure de Cachan, France, 2015.

Jean-Philippe Chancelier, Fraņois Delebecque, Clément Fran-
chini, Ramine Nikoukhah, and Pierre Weis. Simport. In
ISC’2016 Bucharest, 2016.

Mike Dempsey. Automatic translation of simulink models into
modelica using simelica and the advancedblocks library. In
Proceedings of the 3rd International Modelica Conference,
Linköping, Sweden, pages 115–124, 2003.

Modelica. The modelica language specification. URL https:
//modelica.org/documents.

Ramine Nikoukhah and Sébastien Furic. Towards a full inte-
gration of modelica models in the scicos environment. In
Proceedings of the 7th International Modelica Conference,
Como, Italy, pages 641–645, 2009.

Ramine Nikoukhah and Masoud Najafi. Initialization of mod-
elica models in scicos. In Proceedings of the 6th Interna-
tional Modelica Conference, Bielefeld, Germany, pages 37–
46, 2008.

Nsp. A Numerical computing environment (GPL). URL
http://cermics.enpc.fr/~jpc/nsp-tiddly/
mine.html.

Dirk Reusch. Coselica toolbox für scicoslab. URL
http://www.kybdr.de/software#coselica_
toolbox_fuer_scicoslab.

Scicos. Block diagram modeler/simulator. URL http://
www.scicos.org/.

ScilabGtk. Gtk+ version of Scilab. URL http://www.
scilabgtk.org.

Simulink. System modeling and simulation. URL https://
www.mathworks.com/products/simulink.html.

https://solidthinking.com/product/activate
https://solidthinking.com/product/activate
https://modelica.org/documents
https://modelica.org/documents
http://cermics.enpc.fr/~jpc/nsp-tiddly/mine.html
http://cermics.enpc.fr/~jpc/nsp-tiddly/mine.html
http://www.kybdr.de/software#coselica_toolbox_fuer_scicoslab
http://www.kybdr.de/software#coselica_toolbox_fuer_scicoslab
http://www.scicos.org/
http://www.scicos.org/
http://www.scilabgtk.org
http://www.scilabgtk.org
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

	Introduction
	Involved Tools
	Nsp, a Programming Environment for Numerical Applications
	Scicos, a Block Diagram Modeler and Simulator
	Modelicac, a Simple Yet Useful Modelica Compiler
	Simport, a Simulink Model Importer for Scicos
	Capabilities
	Simport translator front-end
	Simport translator middle-end
	Simulink block translation
	Simport block translation library
	Simport specialized block translation
	Specialized translation for Abs
	Action block translation
	Simport back-end: API to host code
	SLX file format translation
	SLX specific difficulties
	Demo (1)
	Demo (2)
	Limitations

	Translation from Simulink to Modelica
	Translation from Modelica to C

	Conclusion and Future Work
	Acknowledgements

