
HAL Id: hal-01948681
https://hal.science/hal-01948681v2

Submitted on 21 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Translating Simulink Models to Modelica using the Nsp
Platform

Jean-Philippe Chancelier, Sébastien Furic, Pierre Weis

To cite this version:
Jean-Philippe Chancelier, Sébastien Furic, Pierre Weis. Translating Simulink Models to Modelica
using the Nsp Platform. 13th International Modelica Conference, Mar 2019, Regensburg, Germany.
�10.3384/ecp19157841�. �hal-01948681v2�

https://hal.science/hal-01948681v2
https://hal.archives-ouvertes.fr

Translating Simulink Models to Modelica using the Nsp Platform

Jean-Philippe Chancelier1 Sébastien Furic2 Pierre Weis2

1Université Paris-Est, CERMICS (ENPC), 77455 Marne-la-Vallée 2, France,
jean-philippe.chancelier@enpc.fr

2 Inria Paris, 2 rue Simone Iff, 75589 Paris, France & Université Paris-Est, CERMICS (ENPC), 77455
Marne-la-Vallée 2, France {sebastien.furic,pierre.weis}@inria.fr

Abstract
We present a new Simulink (Simulink) to Modelica (Mod-
elica) translation chain embedded into Nsp. Translated
models can be edited (original Simulink diagrams are pre-
served through translation) and simulated. This transla-
tion chain makes use of the Simport tool, originally de-
signed to translate Simulink models to Scicos models, and
also relies on Modelicac, i.e. Scicos’ Modelica companion
compiler.

Using some examples, we demonstrate the effective-
ness of the translation process and detail some techni-
cal aspects of it. This new Nsp feature extends Nsp’s
simulation capabilities and makes it a reference platform
for users looking for means to simulate Simulink models
within a Modelica framework. Resulting Modelica code
can even be exported to other Modelica compatible tools.
Keywords: Nsp; Simulink; Modelica

1 Introduction
Nsp (Nsp) is a Matlab-like numerical environment which
can run the Scicos modeling environment, a Simulink-like
block diagram editor and simulator.

From 2003 to 2008, in the course of funded projects
SimPA and SimPA2, a Modelica compiler named Modeli-
cac has been developed allowing Scicos to handle genuine
Modelica models. This integration of Modelica within
Scicos has been the subject of several papers published
at the Modelica conference (Nikoukhah and Najafi, 2008;
Nikoukhah and Furic, 2009). The purpose of using Mod-
elica is to serve as a high-level description language to
extend Scicos expressiveness: Modelica allows users to
compose “acausal” models where the original environ-
ment forced users to describe their models as block dia-
grams.

In this paper we focus on a new application of Modelica
within Scicos under Nsp, that is as a target language for
Simulink model translation.

Several Simulink to Modelica translation tools have al-
ready been proposed in the past, we mention in partic-
ular Mike Dempsey’s Simelica and AdvancedBlocks li-
brary (Dempsey, 2003) and Dirk Reusch’s Coselica ini-
tiative (Reusch). AdvancedBlocks was a fairly complete
library of Modelica blocks which allowed users to use
Modelica blocks as a one-to-one replacement for Simulink

blocks. Up to our knowledge this work remains the
most advanced effort in that direction. It is however no
longer maintained. In the Scicos software environment,
the Coselica library offers signal models to allow users
to better exploit Modelica from within Scicos by propos-
ing a large set of Modelica submodels in the same spirit as
the standard Modelica library (MSL). Many Simulink-like
blocks are also available in Coselica.

The approach presented here differs from Mike
Dempsey’s and Dirk Reusch’s approaches in that trans-
lation of original blocks is not attempted on a one-to-one
basis. Instead, we use a two steps translation process: the
first step translates the Simulink model into an equivalent
Scicos native model; the second step translates the Scicos
native model to Modelica code.

To handle the initial Simulink to Scicos translation,
we use an external tool named Simport: it translates a
Simulink model by translating each block in the original
Simulink model with one or several blocks of the Scicos
native block library, so that original semantics is preserved
with a high degree of confidence.

For the second step, we developed a set of Nsp special
purpose compilation routines to translate Scicos blocks to
genuine Modelica blocks. When a Scicos block has a di-
rect Coselica equivalent, the compilation routine simply
emits thre corresponding Coselica block; when there is
no Coselica equivalent, the compilation routine generates
an entirely new block containing ad-hoc Modelica code
to handle the Scicos block behavior. Using this compile-
time Modelica code generation and the two steps transla-
tion process was the key ideas to fill the huge semantic gap
between Simulink and Modelica.

We give in this paper a detailed description of this new
translation chain hosted by the Nsp environment.

2 Involved Tools
As mentioned above, the translation chain relies on a com-
bination of several tools. We give hereafter a short de-
scription of each of them.

2.1 Nsp, a Programming Environment for Nu-
merical Applications

Nsp (Nsp) is a mature Matlab-like Scientific Software
Package developed under the GPL license. Nsp features
a high-level, safe imperative programming language with

automatic memory management. This language can be
used interactively, giving users an easy access to efficient
numerical routines; It can also be used as a more conven-
tional programming language to extend Nsp’s capabilities.

Nsp contains internally a class system with simple in-
heritance and interface implementation. When used as an
interactive computing environment, it comes with online
help facilities and an easy access to GUI facilities and
graphics.

A large set of libraries are available and it is moreover
easy to implement new functionalities. External libraries
can also be used: this requires writing some wrapper code
(also called interface) to live in harmony with Nsp’s inter-
nal state. The interface mechanism can be either static or
dynamic. By using dynamic functionalities one is able to
build toolboxes.

Nsp shares many traits with other Matlab-like Scientific
Softwares such as Matlab, Octave, ScilabGtk (ScilabGtk;
Campbell et al., 2006), and also with scripting languages
such as Python.

The main toolbox used in this work is Scicos that we
describe now.

2.2 Scicos, a Block Diagram Modeler and Sim-
ulator

Scicos (Scicos) is a graphical dynamical system modeler
and simulator originally developed in the Metalau project
at INRIA, Paris-Rocquencourt center. With Scicos, users
can create block diagrams to model and simulate the dy-
namics of hybrid dynamical systems and compile models
into executable code. Scicos is used for signal process-
ing, systems control, queuing systems, and to study phys-
ical and biological systems. Extensions allow generation
of component-based modeling of electrical and hydraulic
circuits using the Modelica language.

We consider in this paper the Scicos/Nsp version of Sci-
cos maintained and developed at ENPC. Scicos/Nsp is a
Nsp toolbox and runs in the Nsp environment. Having ac-
cess to Nsp functions when designing simulation models
is of great importance.

Scicos users often needs to use Nsp functions such as
those dedicated to filter design for signal processing or
controller design in the construction of simulation mod-
els. Nsp’s programming language can be used for batch
processing of multiple simulation tasks, and more gener-
ally, models designed by Scicos can be used as functions
in Nsp. Nsp’s graphical facilities can be used for post pro-
cessing simulation results. But the integration of Scicos
and Nsp goes beyond that. The Scicos editor is entirely
written in Nsp’s language. This provides many advan-
tages and was in particular of tremendous importance in
the current work, indeed: Scicos model data structure is
a Nsp structure and thus Scicos models can be program-
matically manipulated and build using Nsp scripts. We
use this facility in two ways. First to obtain Scicos mod-
els from Simulink models, using the fact that the Simport
converter produces a Nsp script whose execution in Nsp

produces a Scicos model data structure. Second, using
Nsp scripts we are able to convert, in a Scicos model data
structure, some Scicos blocks to Modelica blocks.

In the conversion process from Simulink to Modelica,
the scicos compiler/scheduler also plays a key role. It
infers dimensions and types used in the Modelica blocs.
This is quite an exciting feature since it gives the possibil-
ity to have Modelica blocks for which the associated Mod-
elica model is not a fixed Modelica class but a specific one
adapted to specific dimensions and types generated on the
fly.

2.3 Modelicac, a Simple Yet Useful Modelica
Compiler

Development of Modelicac started in 2003 as a joint work
between Inria and TNI-Valiosys (now Dassault Systèmes)
in the course of the SimPA (SIMulation pour le Procédé
et l’Automatique) french funded project. The goal was to
make Scicos compatible with a significant subset of the
Modelica language in order for users to be able to de-
scribe complex hybrid models without having to resort to
low-level block diagram descriptions. Indeed, building a
block diagram from a physical model requires 1)perform-
ing a complete analysis of physical phenomena into play
(to determine which elementary blocks to use in the dia-
gram), and 2)determining how data flows between blocks
(to connect elementary blocks together). On the other
hand, Modelica tools considerably ease physical model
construction by automatically analysing the overall struc-
ture of physical models described in a much more user-
friendly way: familiar physical components (e.g. springs,
transistors, hydraulic pumps, etc.) can be used to build
models. Translation from this high-level description to
low-level data flow is performed automatically in a quite
satisfactory way, which frees users from a painful work.
Moreover, even slight modifications of physical models
may require considerable changes in corresponding block-
diagram descriptions; this is not the case with a high-level
description.

In its initial version, Modelicac essentially focussed on
the “continuous part” of hybrid models. This mainly com-
prises differential equations and event-trigerring mecha-
nisms (e.g. , “when equations”). Difference equations
were however also be described, although with many re-
strictions, because the idea was to discourage users from
writing discrete equations in Modelica. Indeed, Scicos is
primarily a hybrid modelling environment and, in particu-
lar, it handles discrete, event-trigered changes, much more
robustly than Modelica because of its synchronous roots.

In the course of the SimPA project, the Scicos editor has
been extended to enable graphical handling of Modelica,
native Scicos, as well as hybrid Modelica-Scicos blocks in
the same design (see Figure 1).

This combination of synchronous and Modelica-based
features offered enough modelling expressiveness to en-
able useful libraries to be developed. Coselica is one
of these libraries, and is one of the ingredients of our

Mux

MScope

Q

Q

D.

u1<=u2
MScope

Continuous
Fix Delay

Figure 1. A mixed Scicos-Modelica model as displayed by Sci-
cos’s editor

Simulink to Modelica translation chain.
In 2005, the funded project SimPA2 started, having as

objective the enhancement of the original Modelicac com-
piler. Among others, support of multiple-file Modelica
libraries and interactive initialization of complex hybrid
systems have been added.

As a result, the new Modelicac compiler was able to
compete with industrial compilers (it even ranked number
two in terms of performance on an industrial thermohy-
draulic benchmark proposed by EDF in 2009).

Today, the Scicos toolbox with its Modelica-compatible
extension is freely available under several environments
including Scilab, ScicosLab and Nsp.

2.4 Simport, a Simulink Model Importer for
Scicos

2.4.1 Capabilities

The Simport (Chancelier et al., 2016, 2015) development
started in 2007 at Inria: it has now turned into a compre-
hensive Simulink import assistant for the Scicos and Altair
Activate block system modelers: Simport reads a textual
representation of a Simulink model (MDL or SLX file for-
mat) and generates the corresponding equivalent Scicos
model.

Based on compilation techniques, Simport is a fast and
reliable translator from Simulink models to Scicos or Al-
tair Activate models.

Simport is a free software distributed with Nsp Sci-
cos (Scicos) and Activate (Altair Activate).

2.4.2 Capabilities

Simport aims at preserving the original Simulink model
semantics: simport performs passes of semantic analysis
to explicit the Simulink model meaning and translate it
into an equivalent Scicos model.

In any case, the resulting Scicos model preserves the

model hierarchy and diagram topology, and the visual as-
pects of the original model.

Simport also supports both the MDL and SLX formats
as input for Simulink models.

2.4.3 Simulink block translation

Simport maps Simulink bloks to Scicos blocks using the
block translation library. More precisely, each Simulink
source block is translated either into

• a single basic block, if there exists an equivalent Sci-
cos block,

• a super-block that implements the Simulink block via
a combination of Scicos blocks,

• an empty super-block for user completion, if the
Simulink block translation is unsupported

The Simport translation library covers a large subset of
Simulink basic blocks, in particular the so-called action
blocks.

2.4.4 Simport generated code

The Simport back-end translates explicit semantics of
Simulink models to concrete code of the Scicos host lan-
guage (Nsp or Oml). In addition, the concrete code pro-
vides the definition of simulation parameters and embeds
various outputs to the host language (e.g. Matlab support-
ing M-files).

2.4.5 Example

Given the Simulink model described in Figure 2 and saved
as file model.mdl.

Figure 2. Segway controller as a Simulink model

We translate it into Nsp using the command
simport -tl nsp model.mdl. We now get file
model.nsp whose execution in Nsp produce build the
Scicos model displayed in Figure 3.

2.4.6 Limitations

Simport indeed supports a large subset of Simulink basic
blocks, but exotic blocks from specific Simulink libraries
cannot be translated since they have no Scicos equivalent;

1
Mm

PhiUndX2

[-11..

PhiUndX1

[-11..

Phi2

[-10..

Phi1

[-12..

Mux5

Mux
Mux4

MuxMux3

Mux
Mux2

Mux

Msw

control

M_Port
switch

C
o
n
tro

lle
rS
e
le
c
t

3

4d
X

3X
2d
P
h
i

1P
h
i

Figure 3. Segway controller as a Scicos model

in such a case, Simport generates an empty Scicos super
block to incorporate the mandatory hand written Simulink
block translation.

3 Translation from Simulink to Mod-
elica

The Translation from Simulink to Modelica is imple-
mented as a two step process. First, as already described,
using Simport, we translate a Simulink model into a Sci-
cos model. Second, using Nsp scripts we convert the Sci-
cos model into an hybrid Modelica-Scicos model. Conver-
sion is obtained by 1) translation of Scicos blocks to Mod-
elica blocks, and 2) addition in the model of converters
along the links which connect Scicos Blocks to Modelica-
Scicos blocks. The hybrid Modelica-Scicos models can be
edited and simulated in Scicos editor; thus, even if during
the Translation process we cannot obtain a full Modelica
model1, the resulting hybrid model may still be used for
simulation because users have the possibility to complete
untranslated parts thanks to the Scicos editor.

Figure 4 is a Scicos model simulating the Lorenz dy-
namical system. The same model after conversion to Mod-
elica is shown in Figure 5. As it can be seen in Figure 5 the
Scopes are not translated to Modelica blocks and convert-
ers from Modelica signals to Scicos signals are inserted in
the links connected to the entry ports of scopes.

When converters are available, Scicos blocks are re-
placed by Modelica blocks as a one-to-one process. We
have developed a specific library of Modelica blocks
to ease the replacement. For example Scicos integra-
tor blocks are replaced by MB_Integral Modelica
blocks. For some translation we rely on the already
available library Coselica (Reusch), but for many blocks
a direct Coselica translation fails because of size lim-

1In case some blocks are unknown to Simport. Indeed, Simulink
blocks are black boxes, so Simport cannot translate blocks or combina-
tions of blocks that are not already described in its translation tables.

Figure 4. A Scicos model as displayed by Scicos’s editor

Figure 5. Scicos model after Modelica conversion as displayed
by Scicos’s editor

itations of Coselica blocks. For example the Coselica
Integrator is limited to 1-dimensional signals while
the Scicos INTEGRAL_m block may have n-dimensional
entries. One way to encompass that difficulty is to gen-
erate super blocks for enabling n-dimensional block oper-
ations from 1-dimensional basic blocks (See Figure 7 for
an example with adder). We have chosen this approach
for the converter blocks (See Figure 6) as explained be-
low, but we also implemented specific blocks to deal with
n-dimensional signals. For example, the MB_Integral
block is a special purpose Modelica-Scicos block which
produces at compile time a new Modelica model for each
instance of the block in a specific model. As an example,
in Figure 5 each MB_Integral Modelica block inte-
grate a 4-dimensional variable without saturation and thus
the generated code will be given by

model integral2
parameter Real xinit[4,1] = {{ 20 },{ 19.9900 },{

20.0100 },{ 20.0110 }};
RealInput u[4];
RealOutput y[4](signal(start=xinit[:,1]));

equation
der(y[1].signal) = u[1].signal;
der(y[2].signal) = u[2].signal;
der(y[3].signal) = u[3].signal;
der(y[4].signal) = u[4].signal;

end integral2;

Most of the one-to-one block conversion follows the same
mechanism. Building a library of Modelica-Scicos blocks
is an on-going work and for the time being it only contains
about 20 blocks. Indeed, this Library can also be used to
directly build models in the Scicos editor, it complements
the set of Modelica block available in Scicos giving access
to Modelica counterpart of known Scicos blocks.

The one-to-one block conversion is in fact also a multi-
step process. We proceed as follows.

First block-to-block conversions are performed but con-
verted Modelica-Scicos blocs are not fully usable because
they lack local information (for example the final matrix
sizes are unknown at first step). Notice that this first step
requires Nsp evaluation of block parameters since they
may be used to infer types and dimensions. For example
the sizes of a Gain block parameter gives the input/output
port sizes of the block, except when the parameter size if
1. But in order to obtain the sizes of a given Gain block
parameter we need to evaluate Nsp expressions, since pa-
rameters can be given through context (produced by Sim-
port from Matlab companion files).

In a second step, links are modified and converters are
inserted where appropriate. Notice however that convert-
ers sizes are also unknown.

In a third step, sizes and types are obtained by call-
ing the Scicos model compiler. However, since the Sci-
cos model compiler only infers types and dimension for
Scicos blocks this step requires a hidden conversion of the
hybrid Modelica-Scicos model into a pure Scicos model
before trying to infer sizes and types. When sizes and
types are inferred for a Modelica-Scicos block, its internal
Modelica code can be generated. The code is thus consis-
tent with respect to sizes, types and parameters.

Figure 6. Scicos internal model of a 4-dimensional Modelica to
Scicos converter

1

1

2

3

4

5

1

1

+

1

1

-1

1

+

1

-1

1

1

+

1

1

-1

1

+

1

-1

Figure 7. Scicos internal model of a generated 5-dimensional
addition block

The fact that models can be manipulated and gener-
ated programmatically is also used in the conversion pro-
cess. We illustrate this point by describing more precisely
MB_MO2Sn the block used to convert Modelica signals
to Scicos Signals. The communication between Scicos
and Modelica can only be realized using scalar links (for
historical reasons, not because of limitations of any of
the languages), thus to have converters on links which
transfer n-dimensional signals we have implemented a
block named MB_MO2Sn as a super-block. That is, the
MB_MO2Sn block contains a model and this model is gen-
erated dynamically when the link signal size is known.
We give in Figure 6 the internal model of a 4-dimensional
Modelica to Scicos converter as used in the model dis-
played in Figure 5. It contains four 1-dimensional Mod-
elica to Scicos converters. To illustrate the possibility to
generate models by program, we give in Figure 7 an exam-
ple of a model which performs a 5-dimensional addition
of Modelica signals. Implementing a n-dimensional adder
block could be implemented that way, even if we chose to
directly embed the Modelica n-dimensional adder block in
a unique block.

As already pointed above, during the conversion from
Scicos models to Modelica-Scicos models, inferring types

~

2

R= 0.2

-
+

C
=

 0
.1

L
=

 0
.0

0
0

1

A

V

MScope

Figure 8. A mixed Scicos-Modelica model of a RLC circuit

and sizes is of utmost importance and it partially relies on
Nsp block parameter and context expression evaluation.
This is mostly why the conversion cannot completely be
performed by Simport. Indeed, inferring types and sizes
could have been implemented directly in Simport, if eval-
uation of Matlab expression were not required in the pro-
cess.

3.1 Translation from Modelica to C
Modelica source code is translated to C thanks to the Mod-
elicac compiler. The idea is as follow. Once the model is
being run by the user, Scicos gathers all the blocks whose
execution semantics is described by means of Modelica
code into a unique Modelica program whose source code
is given to Modelicac. This program is actually a high-
level description of the Modelica part of the model. The
following listing illustrates what such a description looks
like. It contains the Modelica description generated by
Scicos for the model of Figure 8:
model RLC_circuit_test_im

parameter Real VA_VsourceAC_(fixed=false) =
2.000000e+00 "VA_VsourceAC_";

parameter Real f_VsourceAC_(fixed=false) =
1.000000e+00 "f_VsourceAC_";

parameter Real R_Resistor_(fixed=false) =
2.000000e-01 "R_Resistor_";

parameter Real C_Capacitor_(fixed=false) =
1.000000e-01 "C_Capacitor_";

parameter Real v_Capacitor_(fixed=false) =
0.000000e+00 "v_Capacitor_";

parameter Real L_Inductor_(fixed=false) =
1.000000e-04 "L_Inductor_";

VsourceAC VsourceAC_(VA=VA_VsourceAC_,
f=f_VsourceAC_);

Resistor Resistor_(R=R_Resistor_);
Capacitor Capacitor_(C=C_Capacitor_,

v(start=v_Capacitor_));
Inductor Inductor_(L=L_Inductor_);
CurrentSensor CurrentSensor_;
Ground Ground_;
VoltageSensor VoltageSensor_;
OutPutPort OutPutPort_;
OutPutPort OutPutPort_1;

equation
connect (CurrentSensor_.n,VoltageSensor_.n);
connect (Capacitor_.p,VoltageSensor_.n);
connect (Inductor_.p,VoltageSensor_.n);
connect (Ground_.p,VsourceAC_.n);
connect (CurrentSensor_.p,VsourceAC_.n);
connect (VoltageSensor_.p,Resistor_.p);
connect (Inductor_.n,Resistor_.p);
connect (Capacitor_.n,Resistor_.p);
connect (Resistor_.n,VsourceAC_.p);

CurrentSensor_.i = OutPutPort_.vi;
VoltageSensor_.v = OutPutPort_1.vi;

end RLC_circuit_test_im;

Modelica programs generated by Scicos contain five (pos-
sibly empty) sections declaring respectively:

• the parameters of the model,

• the components appearing in the model (i.e. Model-
ica “blocks” used to build the model),

• the connectors to and from the Scicos world (de-
clared as InPutPorts and OutPutPorts),

• the connection equations (corresponding to links
between components of the model, introduced by
means of the connect keyword), and

• the correspondence between some Scicos ports and
some Modelica connectors used to exchange infor-
mation between both worlds (introduced by means
of an equal sign).

From such Modelica programs Modelicac generates na-
tive, C-based Scicos blocks. It starts by resolving the
names appearing in the Modelica description and instanti-
ates required classes (found in libraries) to form the set of
all equations governing the dynamics of the Modelica part
of the model. It then flattens the structure of the Modelica
model, simplifies equations, and generates C code. The
following listing is the result of calling Modelicac with
previous Modelica code:
/* Scicos block’s entry point */

void RLC_circuit_test_im(
scicos_block *block,
int flag)

{
int *ipar = GetIparPtrs(block);
double *rpar = GetRparPtrs(block);
double *z = GetDstate(block);
double *x = GetState(block);
double *xd = GetDerState(block);
double *res = GetResState(block);
double **y = GetOutPtrs(block);
double **u = GetInPtrs(block);
double **work= GetPtrWorkPtrs(block);
double *g = GetGPtrs(block);
double *alpha= NULL;
double *beta = NULL;
int *jroot = GetJrootPtrs(block);
int *mode = GetModePtrs(block);
int nevprt = GetNevIn(block);
int *xprop = GetXpropPtrs(block);

/* Intermediate variables */
double v0;

if (flag == 0) {
res[0] =

(x[1]+x[0]*
(*GetRealOparPtrs(block,3))+
sin(6.28318530718*

GetScicosTime(block)*
(*GetRealOparPtrs(block,2)))*

(*GetRealOparPtrs(block,1)))*(1.0);
res[1] = x[2]+ xd[1]*(*GetRealOparPtrs(block,4))-x[0];
res[2] = xd[2]*(*GetRealOparPtrs(block,6))-x[1];

} else if (flag == 1) {
if (!areModesFixed(block)) {

y[0][0] = x[0]; /* OutPutPort_.vo */
y[1][0] = -x[1]; /* OutPutPort_1.vo */

} else {
y[0][0] = x[0]; /* OutPutPort_.vo */
y[1][0] = -x[1]; /* OutPutPort_1.vo */

}
} else if (flag == 2 && nevprt < 0) {
} else if (flag == 4) {

x[0] = 0.0; /* Resistor_.i */
x[1] = (*GetRealOparPtrs(block,5)); /* Capacitor_.v */
x[2] = 0.0; /* Inductor_.i */
if (GetNopar(block)<6){

SetBlockError(block,-21);
return;

}
SetAjac(block,1);

} else if (flag == 5) {
} else if (flag == 6) {
} else if (flag == 7) {

xprop[0] = -1; /* Resistor_.i (algebraic) */
xprop[1] = 1; /* Capacitor_.v (state) */
xprop[2] = 1; /* Inductor_.i (state) */

} else if (flag == 9) {
} else if (flag == 10) {

alpha=GetAlphaPt(block);
beta =GetBetaPt(block);
res[0] = (*GetRealOparPtrs(block,3))*(1.0)*alpha[0];
res[1] = -alpha[0];
res[3] = (1.0)*alpha[1];
res[4] = (*GetRealOparPtrs(block,4))*beta[1];
v0 = -alpha[1];
res[5] = v0;
res[7] = alpha[2];
res[8] = (*GetRealOparPtrs(block,6))*beta[2];
res[9] = alpha[0];
res[12] = v0;

}

return;
}

Finally, a new native Scicos block running the gener-
ated C code is created by Scicos and connected to the Sci-
cos part of the original model in place of the Modelica
blocks. Scicos then performs the simulation of the result-
ing model.

4 Working with Acausal Models
Although supported Simulink models are limited to ex-
plicit input-output blocks, one should not conclude that
our tool chain only deals with “causal” modeling. In-
deed, Scicos provides a powerful editor (written in Nsp’s
language) by means of which imported Simulink mod-
els can be graphically connected to Modelica “acausal”
models. This allows, for instance, control models writ-
ten in Simulink to be imported in Nsp and connected
to Modelica models (handled by Modelicac). Complete
models featuring both “causal” and “acausal” aspects can
then be simulated and possibly exported as Modelica
code (Figure 1 and Figure 8 show examples of Model-
ica “acausal” models with control and displays modeled
as block-diagrams).

5 Conclusion and Future Work
In this paper we have shown that NSP can be used as a
powerful environment to translate, possibly edit, and sim-
ulate some Simulink models. The tool chain comprises
two external tools, namely Simport and Modelicac, and
the Scicos toolbox with its hybrid Scicos-Modelica library
Coselica.

This addition to NSP allows users to simulate many
Simulink models with few changes, if any. Moreover,
original models can be edited after translation, and pos-
sibly connected to native Scicos models, or to Modelica
models. This opens many interesting perpectives for users
willing to run heterogeneous models at a very high level,
using the graphical editor provided by Scicos as the sole
GUI.

Several enhancements can be made to this preliminary
work. The most significant enhancement would probably
consists in enriching the Scicos to Modelica translation
table, to allow more Simulink models to be translated au-
tomatically.

6 Acknowledgements
We would like to thank Ramine Nikoukhah from Altair for
his considerable help in the design and implementation of
the tools we used, in particular Scicos of course, but also
Modelicac and Simport.

References
Altair Activate. Multi-Disciplinary System Simulation.

URL https://solidthinking.com/product/
activate.

Stephen Campbell, Jean-Philippe Chancelier, and Ramine
Nikoukhah. Modeling and Simulation in Scilab/Scicos.
Springer, 2006. ISBN: 978-0-387-27802-5.

Jean-Philippe Chancelier, Fraņois Delebecque, Clément Fran-
chini, Ramine Nikoukhah, and Pierre Weis. Simport: A
Simulink Model Importer for Scicos. In The 3rd International
Workshop on Simulation at the System Level, École Normale
Supérieure de Cachan, France, 2015.

Jean-Philippe Chancelier, Fraņois Delebecque, Clément Fran-
chini, Ramine Nikoukhah, and Pierre Weis. Simport. In
ISC’2016 Bucharest, 2016.

Mike Dempsey. Automatic translation of simulink models into
modelica using simelica and the advancedblocks library. In
Proceedings of the 3rd International Modelica Conference,
Linköping, Sweden, pages 115–124, 2003.

Modelica. The modelica language specification. URL https:
//modelica.org/documents.

Ramine Nikoukhah and Sébastien Furic. Towards a full inte-
gration of modelica models in the scicos environment. In
Proceedings of the 7th International Modelica Conference,
Como, Italy, pages 641–645, 2009.

Ramine Nikoukhah and Masoud Najafi. Initialization of mod-
elica models in scicos. In Proceedings of the 6th Interna-
tional Modelica Conference, Bielefeld, Germany, pages 37–
46, 2008.

Nsp. A Numerical computing environment (GPL). URL
http://cermics.enpc.fr/~jpc/nsp-tiddly/
mine.html.

Dirk Reusch. Coselica toolbox für scicoslab. URL
http://www.kybdr.de/software#coselica_
toolbox_fuer_scicoslab.

Scicos. Block diagram modeler/simulator. URL http://
www.scicos.org/.

ScilabGtk. Gtk+ version of Scilab. URL http://www.
scilabgtk.org.

Simulink. System modeling and simulation. URL https://
www.mathworks.com/products/simulink.html.

https://solidthinking.com/product/activate
https://solidthinking.com/product/activate
https://modelica.org/documents
https://modelica.org/documents
http://cermics.enpc.fr/~jpc/nsp-tiddly/mine.html
http://cermics.enpc.fr/~jpc/nsp-tiddly/mine.html
http://www.kybdr.de/software#coselica_toolbox_fuer_scicoslab
http://www.kybdr.de/software#coselica_toolbox_fuer_scicoslab
http://www.scicos.org/
http://www.scicos.org/
http://www.scilabgtk.org
http://www.scilabgtk.org
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

	Introduction
	Involved Tools
	Nsp, a Programming Environment for Numerical Applications
	Scicos, a Block Diagram Modeler and Simulator
	Modelicac, a Simple Yet Useful Modelica Compiler
	Simport, a Simulink Model Importer for Scicos
	Capabilities
	Capabilities
	Simulink block translation
	Simport generated code
	Example
	Limitations

	Translation from Simulink to Modelica
	Translation from Modelica to C

	Working with Acausal Models
	Conclusion and Future Work
	Acknowledgements

