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Abstract. The acidic compounds such as Mercaptans, H2S and COS are commonly present in the liquid LPG
streams in the south Pars gas processing plant. Sulfur contaminants not only lead to odor problems but can
form objectionable oxides on combustion and cause environmental pollution. In present study, Support Vector
Machine (SVM) is employed to develop an intelligent model to predict the sulfur content of propane and butane
products of Liquefied Petroleum Gas (LPG) treatment unit of south Pars gas processing plant of Assaluyeh/
Iran. A set of seven input/output plant data each consisting of 365 data has been used to train, optimize, and
test the model. Model development that consists of training, optimization and test was performed using ran-
domly selected 70%, 15%, and 15% of available data respectively. Test results from the SVM developed model
showed good compliance with operating plant data. Squared correlation coefficients for developed models are
0.97 and 0.99 for propane and butane sulfur content, respectively. According to the results of the present case
study, SVM could be regarded as a reliable accurate approach for modeling the sulfur content of LPG treat-
ment unit of a natural gas processing plant.

1 Introduction

Liquefied Petroleum Gas (LPG) referred to predominately
propane or butane, either separately or in mixtures, which
is maintained in a liquid state under specific pressure/tem-
perature within the confining vessel (Santos et al., 2016).
LPG is a valuable energy source that is used worldwide
for numerous business applications in industry and trans-
portation. The largest market for LPG is the domes-
tic/commercial market, followed by the chemical industry
where it is used as a petrochemical feedstock and the agri-
culture industry (Safadoost et al., 2014).

Valuable LPG is a natural gas processing by-product in
south Pars gas complex refineries and stored as a liquid in
atmospheric pressure tank. LPG delivered to customers as
single-phase pressurized liquid products and should meet
some specifications for sales as it is shown in Table 1
(Moaseri et al., 2013; Asil and Shahsavand, 2014). LPG is
treated to reduce total sulfur content to meet sweetness
specifications. Sulfur may be presented as hydrogen sulfide,
carbonyl sulfide, carbon disulfide and mercaptan. All forms
may be present in the same liquid. Sulfur contaminants
not only lead to odor problems but can form objectionable
oxides on combustion and cause environmental pollution
(Safadoost et al., 2014; Mahdipoor and Ashkezari, 2016).
H2S absorption into NaOH solution is one of the main
methods to for H2S removal (Bashipour et al., 2017; Sharifi

and Omidbakhsh Amiri, 2017). The treatment process for
removal of H2S, mercaptan and elemental sulfur follows
techniques and philosophies that have been well defined
over years and will discussed in details in subsequent
section.

H2S absorption into NaOH solution is one of the main
methods to produce sodium sulfide (Na2S) and H2S removal.
Other methods to produce Na2S are reduction of sodium
sulfate (Na2SO4) by solid carbonaceous materials, reduction
of Na2SO4 by gaseous reducing agents, exchange decompo-
sition of barium sulfide (BaS) with sodium sulfate, carbon-
ate, and hydroxide as well as an electrolytic method

Notable attempts to develop accurate practical models
for complicated chemical processes have been carried out
with the aim of minimizing operational costs. In recent
years, application of modeling methods which deal with
input/output data of industrial plants have received consid-
erable attention. Support Vector Machine (SVM) has been
emerged as a proven technology which offers an alternative
way to address problems with no specific relationship
between input and output parameters. The main advantage
of such models over existing approaches is the capability
of learning and generalizing data, fault tolerance and inher-
ent contextual information processing in addition to fast
computation potential (Raynal et al., 2016). Such character-
istics make them perfect candidates for applications where
the complexity of the data or task demands high computa-
tional costs (Haghbakhsh et al., 2012; Adib et al., 2013,
2015; Moradi et al., 2016).* Corresponding author: hooman.adib@yahoo.com
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In this study, SVM model is developed to determine the
output variables of south Pars natural gas processing plant.
Since the purpose of the process is to reduce the sulfur con-
tent of propane and butane product of LPG treatment unit
of south Pars gas processing plant of Assaluyeh, the input
parameters are amine, caustic and feed flowrate of this unit
and the output variables are total sulfur of propane and
butane of this unit. A large dataset of these variables are
gathered from the plant and introduced to the algorithm.
The models are then compared to actual plant data and
with each other and then the accuracy of the models is
assessed through calculation of Average Absolute Deviation
Percent (ADD%).

2 Process description

The acidic compound, Mercaptans, H2S and COS are com-
monly present in the liquid LPG streams in the south Pars
gas processing plant. Due to the nature of the upstream
process unit, the liquid butane stream will typically contain
mainly Mercaptans. However, the liquid propane stream
will typically contain Mercaptans and reasonable amount
of H2S and COS. Sulfur compound concentration in LPG
is shown in Table 2.

Liquid propane is treated first in an amine treating unit
to remove H2S and COS to acceptable level. In the amine
unit, H2S and COS are removed from propane using 21%
of DEA (Di-Ethanol-Amine) solution as solvent. Amine
solvents are very often used for natural gas deacidification
purposes as they can be adapted to various specifications
and to a wide range of feed gas compositions (Magné-Drisch
et al., 2016). Amine section consists of an extractor column
for H2S removal and a COS removal section with mixer-
settlers. As indicated in Figure 1 the propane feed originat-
ing from the H2S extraction column is led to three
mixer-settler combination in series which will remove
COS from the propane stream. This line up together with
sufficient mixing and resistance time in two stages enables
maximum COS removal. Expected H2S and COS levels in
propane are 1–2 ppm wt. H2S sulfur and 1–2 ppm wt.
COS sulfur. Then propane routed to caustic extraction
section for mercaptan removal.

Both propane and butane are fed to a caustic extraction
column for removal of mercaptan. In both extractor column

for propane and butane, the LPG streams are contacted
counter-currently with caustic in a column filled random
packing. The rich caustic coming from both extractors is
combined and sent to the regeneration section. The extrac-
tors are designed for maximum achievable mercaptan
removal. The overall reaction for extraction and regenera-
tion for the Mercaptans (R-SH) is expressed below:

R� SH Mercaptanð Þ þ NaOH Causticð Þ
! R� SNa Mercaptideð Þ þ H2O ð1Þ

R� SNa Mercaptideð Þ þO2

! RSSR Desulfide�Oilð Þ þ NaOH ð2Þ

Caustic process flow diagram is shown in Figure 2.
Amine and caustic flow rate are two important variables

which affect the total sulfur in LPG product. Amine extrac-
tor column run with a flow of amine solvent which is well in
excess of the minimum required for H2S removal. This is
because the minimum solvent rate is more typically set by
minimum flows for wetting and providing interfacial surface
area. Also in mixer-settler, to ensure sufficient contact
between liquid hydrocarbon and the solvent, the volumetric
ratio between liquid hydrocarbon and the solvent must not
be changed noticeably. The lower solvent flowrate will
result in poor COS extraction and a much higher ratio
may lead to a reversed phase mixture. In caustic extraction
section, an increase in the caustic circulation flow rate leads
to a reduction of mercaptan sulfur in LPG but disulfide oil
level in the LPG will increase. On the reverse, a reduction in
caustic circulation flow rate means a reduction in disulfide
oil but the mercaptan sulfur in LPG will increase. This
means that there is an optimum caustic circulation flow
rate in order to minimize the total LPG sulfur.

3 Support vector machine

Support Vector Machine introduced first by Vapnik (1998),
like Artificial Neural Networks (ANN), is an intelligent
learning approach equipped learning algorithm that
analyzes data and find patterns of input/output data.
Support Vector Machine training procedure converges to
optimum output results faster and it is not need to control
model parameters (Cortes and Vapnik, 1995; Pelckmans
et al., 2002; Suykens et al., 2002; Curilem et al., 2011).
For detailed information about the SVM refer to our

Table 2. Sulfur compound concentration in LPG of south
Pars gas processing plant.

Compounds Propane Butane

H2S 0.1619 mol.% <0.01 ppm
COS 150–1000 ppm –
Methyl Mercaptan 0.0580 mol.% 0.1623 mol.%
Ethyl Mercaptan 0.0008 mol.% 0.9050 mol.%

Table 1. LPG product specifications.

Properties Commercial
propane

Commercial
butane

Vapor pressure at
100 �F

Max. 200 psig Max. 70 psig

Total sulfur content Max. 30
(ppm wt.)

Max. 30
(ppm wt.)

Ethane composition Max. 2 vol.% Max. 0.08 vol.%
Propane composition Min. 96 vol.% Max. 2 vol.%
Butane composition Max. 2 vol.% Min. 97 vol.%
C5+ Max. 0.05 vol.% Max. 1 vol.%
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previous work (Haghbakhsh et al., 2012; Adib et al., 2013,
2015; Moradi et al., 2016).

Pattern recognition or classification can be performed
by SVM in a data set consisting of N data
point xk; ykf gk ¼ 1; 2; . . . ;N where xk is a p-dimensional
vector and yk can get one of the two values, either +1 or
�1 (i.e., yk 2 fþ1;�1gÞ indicating the class to which the
point xk belongs. In their basic form, they learn a linear
hyperplane that separates a set of positive samples from a
set of negative samples with maximum margin. Consider
Figure 3 which shows two possible splitting hyperplanes

and their related margins. Both hyperplanes can appropri-
ately categorize all the given data. However, we expect the
hyperplane with the larger margin to be more accurate in
classifying new data than the hyperplane with the smaller
margin. This is the reason that SVM searches for the hyper-
plane with the largest margin (Zaidi, 2015).

A separating hyperplane can be written as w Æ x – b = 0
(Agarwal et al., 2008; Yélamosa et al., 2009), where w is the
normal vector to the hyperplane and b represents the offset
of the hyperplane from origin that is referred to as bias.
The offset along the vector w from the origin can be

Fig. 1. Amine process flow diagram.

Fig. 2. Caustic extraction section.
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determined by b/||w||. As shown in Figure 4, for the cases
that the training data are linearly separable, two hyper-
planes can separate the data in a way that there are no data
points between them. Obviously these hyperplanes can be
described as:

w � xk � b ¼ 1; ð3Þ

w � xk � b ¼ �1: ð4Þ
By using geometry, one can show that distance between

these two hyperplanes is 2/||w||, so the problem of ||w||

minimization is required to maximize hyperplane margin.
It is also required to prevent data points from falling into
the margin, and other necessary constraints are imposed
as (Yélamosa et al., 2009):

w � xk � b � 1 forxk of the first class; ð5Þ

w � xk � b � �1 forxk of the second class ð6Þ

that can be rewritten as (Yélamosa et al., 2009):

yi w � xk � bð Þ � 1 for all 1 � k � N : ð7Þ

Constraint minimization of ||w|| is thus required to
develop an ideal classifier. Such minimization problem is
difficult to solve, however it is possible to substitute 0.5
||w||2 instead of ||w|| in problem. Chiang et al. (2004)
showed that minimization problem can be formulated as:

min
w;b

max
a�0

1
2
jwj jj2 �

XN

i¼1

ai yi w � x� bð Þ � 1ð Þ
( )

; ð8Þ

where ai is Lagrangian multiplier that helps in finding the
local minimum or maximum of a function (Mehdizadeh
and Movagharnejad, 2011). The problem of equation (8)
can be solved by standard quadratic programming tech-
niques that results in finding normal vector to the hyper-
plane as presented in equation (9):

w ¼
Xn

k¼1

aiyixi: ð9Þ

Input/output SVM model with the general form of
y = f(x) takes the form of equation (11) in feature space
(Eslamimanesh et al., 2012; Kulkarni et al., 2005):

f xð Þ ¼
XN

k¼1

ai � K x;xkð Þ þ b ð10Þ

Fig. 4. Hyperplane definition.

Fig. 3. Support vector machine classification.
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where f(x) represents output vector and K(x, xk) is the
kernel function calculated from the inner product of
the two vectors x and xk in the feasible region built by
the inner product of the vectors U(x) and U(xk) as follows
(Eslamimanesh et al., 2012):

Kðx;xkÞ ¼ UðxÞT �U xkð Þ: ð11Þ

Among choices for Kernel function the Radial Basis
Function (RBF) Kernel that is used extensively (Zhao,
2009; Ding et al., 2012) has been applied in this work that
is presented in equation (12),

K x; xkð Þ ¼ exp
�jjxk � xjj2

r2

 !
ð12Þ

where r is kernel parameter to be determined by an
external optimization algorithm during the internal
SVM calculations. Bias, b, is usually determined by using
primal constraints as (Kulkarni et al., 2005):

b ¼ � 1
2

� �
max

i;yi¼�1f g

Xm

j2 SVf g
yjajKðxi; xjÞ

 !" #

þ min
i;yi¼�1f g

Xm

j2 SVf g
yjajK xi; xj

� �
 !

: ð13Þ

Lagrangian multipliers, ai, can be calculated by solving
following quadratic programming problem (Terzica et al.,
2010):

x að Þ ¼
XN

i¼1

ai �
1
2

XN

i;j¼1

aiajyiyjK xi; xj

� �
: ð14Þ

Subject to constraints

0 � ai � ci ¼ 1; :::; N ;

where c is regularization parameter and controls the
tradeoff between complexity of the SVM model and the
number of non-separable points. This compact formula-
tion of quadratic optimization has been proved to have
a unique solution (Agarwal et al., 2008). In conclusion,
the SVM takes the form of the constrained optimization
problem of equation (15) in order to obtain the optimum
value of c (Vapnik, 1998; Zanghirati and Zanni, 2003;
Agarwal et al., 2008):

min
x;b;ni ;n

�
i

1
2 jjx2jj þ c:

PN

i¼1
ni; n

�
i

� �
: ð15Þ

Subject to

yi � xT xi � b � eþ ni 8t ¼ 1; . . . ;N

xT xi þ b� yi � eþ n�i 8t ¼ 1; . . . ;N

n � 0 8t ¼ 1; . . . ;N

n�i � 0 8t ¼ 1; . . . ;N

where e is the precision threshold and ni, n�i represent the
slack variables with nonnegative values to ensure feasible
constraints. The first term in equation (15) represents

model complexity while the second term represents the
model accuracy or error tolerance. The Mean Square
Error (MSE) and Mean Absolute Error (MAE) as defined
by equations (16) and (17) are used to calculate prediction
error of the developed SVM model.

MSE ¼

Pn

i¼1
Oi � T ið Þ2

n
; ð16Þ

MAE ¼ 1
n

Xn

i¼1

Oi � T ij j; ð17Þ

where Oi is the simulation results of SVM model, Ti
represents real time plant data of the natural gas sweeten-
ing plant and n denotes the number of the data used for
model evaluation. Figure 5 presents the SVM model algo-
rithm in flowchart format.

4 Results and discussion

4.1 Data analysis

The gas processing plant under study in this work, is
located in south Pars gas field, in Asaluyeh/Iran. A data
set of seven series of input/output data is collected from
the LPG treatment unit. Each data series consists of
365 data points of the plant under normal operating condi-
tions in span of one year. All data series are scattered in a
wide range for which the maximum and minimum numeri-
cal values are presented in Table 3. In order to estimate
qualitative correlations between these input/output plant
data, Figures 6 and 7 are depicted for better visualization.
Figures 8–10 show sulfur content of LPG products, which
are output variable of the LPG treatment unit, versus caus-
tic, amine and LPG flowrate of this unit.

Since the input data cannot be changed systematically
during normal plant operation, it is difficult to find relevant
relationships between input and output variables. There-
fore, data mining is performed to demonstrate the effect
of varying inputs on process outputs (Adib et al., 2013).
Figures 11 and 12 illustrate some of the input/output data
for the LPG treatment unit. As can be seen in Figure 11,
the two vertical axes show the ratio of amine and caustic
flowrate to propane flowrate of LPG treatment unit. By
increasing the amine and caustic flowrate to extractor col-
umn, total sulfur of propane decreases significantly. In this
case, the lower solvent flowrate will result in poor COS
extraction and a much higher ratio may lead to a reversed
phase mixture. Therefore, for mercaptan removal the
optimum ratio could be regarded as 0.12, and for amine
extractor the same ratio could be regarded as an applicable
ratio. As indicated in Figure 12, this ratio could be set as
0.65 for the ratio of the caustic to butane flow rate of
LPG treatment unit.

4.2 Model parameters

In SVM model, the two key parameters are regularization
parameter (c) and kernel parameter (r2) which determines
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the tradeoff between the fitting error minimization and the
smoothness of the estimated function. Optimum numerical
values of these two parameters are calculated using
Genetics Algorithm which is applied in the SVM Matlab
codes. The details of GA optimization procedure are
presented by Adib et al. (2013). The optimization proce-
dure has been repeated several times in order to guarantee
that the developed model’s parameters are very close to
optimum results. The optimum values of c and r2 were
reported in Table 4.

4.3 Model validation

The operating plant data collected over the span of one year
is used in this case study. Since the developed model is
based on normalized data, it is essential to map input data
to its normalized form before the running of the model. The
output results of the model should also be changed to its
real values for output results to be compared with natural
gas processing plant data. Training, optimization and test-
ing are three different subsets of data which are required to

Fig. 5. Schematic flowchart of SVM algorithm.
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perform model development. To develop a model for sulfur
content of propane and butane of this natural gas process-
ing plant, a 2.40 GHz processor accompanied by 4G RAM

is provided and the model development is programmed in
Matlab environment and takes about 5 h to get global
optimum results. According to the obtained results it seems
that the optimum model result is achieved; however, to
guarantee the model reliability, the input variables of test
data subset are entered to the developed model and model
predictions are validated against plant data. The results of
model validation for total sulfur are depicted in Figures 13
and 14. These two figures represent total sulfur of LPG
products operating data for output variables versus SVM
model prediction results. As can be seen SVM model
performed acceptable agreement with the real plant data.
However, it can be seen from this figure that some predicted
output have much higher deviation from the real plant
data. Such deviations could be due to some inherent noise
of real plant data that can be alleviated if the learning pro-
cedure is equipped with some proper noise filtering routines.
No filtering tool is used in this study to expose reliability of
model prediction for industrial applications.

Table 3. The range of operating plant data used for model development.

Measured Parameters Min Max

Inputs:
Caustic(NaOH) flowrate to propane extractor column (kg/h) 1179 4003
DEA (Di-Ethanol-Amine) flowrate (kg/h) 1098 5115
Caustic flowrate to butane extractor column (kg/h) 972 1954
Propane feed gas flowrate (kg/h) 18 917 35 509
Butane feed gas flowrate (kg/h) 10 619 22 966

Outputs:
Propane total sulfur (ppm wt.) 5 31
Butane total sulfur (ppm wt.) 9 60

Fig. 6. Model parameters of propane 3D graph.

Fig. 7. Model parameters of butane 3D graph.

Fig. 8. 3D illustration of caustic and amine flowrate for propane
sulfur content.
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To quantify the difference between these two models
Average Absolute Deviation Percent (AAD%), as defined
by equation (18), is used:

AAD% ¼ 100
n

Xn

i¼1

yi � xi

yi

����

���� ð18Þ

where yi, xi, and n represent operating plant data,
model predictions and number of operating plant data
point used to calculate AAD% respectively. Summary of
calculated AAD% for SVM based model prediction of this
natural gas processing plant is presented in Table 5.

Fig. 9. 3D illustration of caustic and propane flowrate for
propane sulfur content.

Fig. 10. 3D illustration of caustic and amine flowrate for
butane sulfur content.

Fig. 11. Effect of amine and caustic flowrate on sulfur content
of propane.

Fig. 12. Effect of caustic flowrate on sulfur content of butane.

Table 4. The optimum values of the SVM model
parameters for output variables.

Parameters c r2

Propane total sulfur 2.065 1.378
Butane total sulfur 2.567 1.468

Fig. 13. Comparison between simulation results and real total
sulfur of propane.
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Also, Table 6 reports accuracy of developed models
in terms of MSE, MAE and squared correlation coeffi-
cient (R2) between the operating plant data and SVM
prediction results. A SVM based model is optimum if R2,
MAE and MSE are found as close as possible to 1, 0, and 0,
respectively.

As indicated, SVM model prediction results show
acceptable compatibility with the actual plant data. There-
fore, SVM could be regarded as a strong tool for prediction
output parameter of a natural gas processing plant.

5 Conclusion

This study demonstrates the applicability of SVM to
develop accurate input/output model for total sulfur con-
tent of LPG treatment unit of south Pars natural gas pro-
cessing plant. The plant itself is a very complex one in
natural gas industries and the real time data used is a
valuable test that allows reliable evaluation of SVM model.
As indicated in these two models, SVM model prediction
results show more compatibility with the actual plant data.
The kernel parameters for developed model are determined
and model predictions are compared with real plant data of
amine and caustic extractor columns. The numerical values
of AAD% calculated for output variables showed a great
importance if the predicted data are to be used for monitor-
ing and/or control purposes. This study reveals the
applicability and reliability of SVM as a modeling tool in
oil and gas industries. Such approaches for oil and gas
industries are perfect candidates for applications where
the complexity of the data or task demands high computa-
tional costs

Acknowledgments. The authors are grateful to South Pars Gas
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tance and support.
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Magné-Drisch J., Gazarian J., Gonnard S., Schweitzer J.M.,
Chiche D., Laborie G., Perdu G. (2016) COSWEETTM: a new
process to reach very high COS specification on natural gas
treatment combined with selective H2S removal, Oil Gas Sci.
Technol. - Rev. IFP Energies nouvelles 71, 40,
https://doi.org/10.2516/ogst/2015038.

Mahdipoor H., Ashkezari A. (2016) Feasibility study of a sulfur
recovery unit containing mercaptans in lean acid gas feed, J.
Nat. Gas. Sci. Eng. 31, 585–588, https://doi.org/10.1016/
j.jngse.2016.03.045.

Mehdizadeh B., Movagharnejad K. (2011) A comparative study
between LS-SVM method and semi empirical equations for
modeling the solubility of different solutes in supercritical
carbon dioxide, Chem. Eng. Res. Des. 89, 2420–2427,
https://doi.org/10.1016/j.cherd.2011.03.017.

Moaseri E., Mostaghisi O., Shahsavand A., Bazubandi B.,
Karimi K., Ahmadi J. (2013) Experimental study and techno-
economical evaluation of Khangiran sour natural gas conden-
sate desulfurization process, J. Nat. Gas Sci. Eng. 12, 34–42,
https://doi.org/10.1016/j.jngse.2013.02.001.

Moradi N., Adib H., Sabet A., Adhami M., Adib M. (2016)
Toward an intelligent approach for H2S content and vapor
pressure of sour condensate of south Pars natural gas
processing plant, J. Nat. Gas Sci. Eng. 28, 365–371,
https://doi.org/10.1016/j.jngse.2015.12.006.

Pelckmans K., Suykens J.A.K., Van Gestel T., De Brabanter D.,
Lukas L., Hamers B., De Moor B., Vandewalle J. (2002) LS-
SVMlab: a Matlab/C toolbox for least squares support vector
machines, KU Leuven, Leuven, Belgium.

Raynal L., Augier F., Bazer-Bachi F., Haroun Y., Pereira da Fonte
C. (2016) CFD applied to process development in the oil and gas
industry – a review, Oil Gas Sci. Technol. - Rev. IFP Energies
nouvelles 71, 42, https://doi.org/10.2516/ogst/2015019.

Safadoost A., Davoodi M., Mansoori A. (2014) Preventing
corrosion and tube failure in sulfur condenser during normal
operation, startup, and shutdown of the south Pars gas
processing plant (case study), J. Nat. Gas. Sci. Eng. 19,
105–115, https://doi.org/10.1016/j.jngse.2014.05.003.

Santos J., Lobato A., Cunha A., Silva G., Santos L. (2016)
Comparison of different processes for preventing deposition of
elemental sulfur in natural gas pipelines: A review, J. Nat.
Gas. Sci. Eng. 32, 364–372, https://doi.org/10.1016/j.jngse.
2016.04.045.

Sharifi A., Omidbakhsh Amiri E. (2017) Effect of the tower type
on the gas sweetening process, Oil Gas Sci. Technol. - Rev.
IFP Energies nouvelles 72, 24, https://doi.org/10.2516/ogst/
2017018.

Suykens J.A.K., Gestel T.V., Brabanter J.D., Moor B.D.,
Vandewalle J. (2002) Least Squares Support Vector Machines,
World Scientific, Singapore.

Terzica J., Nagarajahb C.R., Alamgira M. (2010) Fluid level
measurement in dynamic environments using a single ultrasonic
sensor and Support Vector Machine (SVM), Sensor Actuator.
161, 278–287, https://doi.org/10.1016/j.sna.2010.05.005.

Vapnik V.N. (1998) Statistical Learning Theory, Wiley, New
York.
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