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Day-Ahead Management of Smart Homes
Considering Uncertainty and Grid Flexibilities

Carlos Adrian Correa-Florez, Andrea Michiorri, M IEEE, Alexis Gerossier, Georges Kariniotakis, SM IEEE

Abstract—This paper presents an optimization model for Home
Energy Management Systems from an aggregator’s standpoint.
The aggregator manages a set of resources such as PV, elec-
trochemical batteries and Thermal Energy Storage by means of
Electric Water Heaters. The resources are managed in order to
participate in the day-ahead energy market, considering also local
flexibility needs. The resulting model is a mixed-integer linear
programming problem in which the aim is to minimize day-
ahead operation costs for the aggregator while complying with
DSO flexibility constraints in the form of maximum allowed net
power exchange and ramping limits. Three sources of uncertainty
are considered: day-ahead energy prices, PV production and load.
Kernel Density Estimator and a backward reduction algorithm
are used to create price scenarios and Robust Optimization is
used to model PV and load uncertainties. The obtained results
show the changes in the operation of the aggregator when grid
flexibilities are considered and the impacts on the operation costs.
In addition, a proposal for bidding in local flexibility markets is
shown.

Index Terms—Smart homes, Storage, Robust optimization,
Battery cycling, Uncertainty.

NOMENCLATURE

∧ Marker to identify central forecasts
h index for household, h = 1, 2, ..., N
s index for scenario, s = 1, 2, ..., S
t index for time step, t = 1, 2, ..., T
H̄h TES device maximum power [kW]
P̄ ch
h Battery’s maximum charging power [kW]
P̄ dch
h Battery’s maximum discharging power [kW]
X̄h Battery’s maximum SOC [kWh]
Ȳh TES device maximum SOC [kWh]
ηc Battery’s charging efficiency
ηd Battery’s discharging efficiency
Γ Robustness parameter
πt Spot price [EUR/kWh]
Xh Battery’s minimum SOC [kWh]
Y h TES device minimum SOC [kWh]
Ch Thermal capacitance of TES device
Dt,h Electrical load
Dq%

t,h q-th quantile Electrical load
Qt,h,s EWH load [kW]
Rh Thermal resistance of TES device
Ht,h EWH input [kW]
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P c
t,h Battery charging power [kW]
P d
t,h Battery discharging power [kW]
P pcc
t Maximum allowed power at the PCC [kW]
P g
t Day-ahead energy commitment in the wholesale mar-

ket [kWh]
ut,h Binary variable. Equals “1” if battery is charging, “0”

otherwise
Xt,h Battery SOC [kWh]
Yt,h SOC of TES device
z, q, y Dual and auxiliary variables of the robust counterpart

I. INTRODUCTION

In order to face the challenges raised by contemporary
power systems, new approaches featuring decentralized gen-
eration and coordination with demand side flexibility have
gained substantial attention in recent years. Some of these new
schemes are being developed in the medium and low voltage
grid, and most recently at building and home levels, leading
to the development of concepts such as Smart Residential
Buildings (SRB) and Home Energy Management Systems
(HEMS) [1].

The research presented in [2] analyzes a microgrid com-
posed by dispatchable units, one solar unit, one wind genera-
tor, one energy storage and adjustable loads. These resources
are optimally scheduled so that minimum cost is achieved,
while taking into account distribution net ramping in the
model. These constraints act as a service required by the utility,
leading to a cost increase in operation of the microgrid. How-
ever, this study disregards uncertainty and considers resources
and load from a broad perspective without detailing building-
or home-level integration.

Reference [3] presents a two-stage optimization problem
for day-ahead management of residential demand response
resources. The model includes thermal load and also electro-
thermal storage, which can generate or consume power. Al-
though this research does not consider batteries, renewable
energy integration or utility interactions, it proposes an inter-
esting model for generic electro-thermal technologies and their
aggregation for exploitation of storage capabilities.

The work presented in [4] also integrates electric and
thermal demand interaction, wind and solar generation, and
uses Model Predictive Control (MPC) to capture uncertainty in
renewable generation. Energy balancing is taken into account
to minimize the interaction with the grid.

Another recent study [5] presents a comprehensive approach
for the design and operation of an LV microgrid, taking into
account active and reactive power, electric vehicles, voltage
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constraints, electric and thermal loads, and minimizing the
system’s CO2 emissions. Although this work does not consider
uncertainties, batteries and other types of signals sent by
the utility, it establishes an interesting benchmark for future
microgrid studies.

The increasing attention in distributed resource manage-
ment, also pushes DSOs and TSOs to request flexibility based
on decentralized approaches. In the case of DSOs, local
balancing and RES generation matching, open the possibility
for local flexibility trading. These trends justify the need for
management tools that lead towards distribution-level active
management and integration of flexibility. Recommendations
for developing studies in this open field of research have been
pointed out by recent reviews on the subject [6].

In addition, in the smart grid context, uncertainty plays an
important role in the process of decision making. One common
practice to facilitate these optimization processes is Stochastic
Programming (SP), which typically aims to optimize over the
expectation of a number of predefined scenarios [7]. In this
group, a selection of scenarios with a certain probability must
be predefined and embedded into the optimization formulation.
In this group of proposals, two-stage optimization problems
can be found [3], [8]–[10] to identify an expected operation
value. The idea is to define a first stage (or here-and-now
decision) with variables and decisions that usually correspond
to the committed energy purchases in the DA market and
the generation commitment for conventional generation. Af-
ter this, a set of second (or recourse) decisions are made,
according to the realizations of the uncertain variables. For
the analyzed cases, the second-stage decisions are related to
the settings of the controllable devices, such as batteries, heat
storage, combined heat and power (CHP) plants and active
demand. This approach also has the advantage of simplicity
in its modeling, with a trade-off of increasing the number of
variables depending on the scenarios to be analyzed in the
second stage.

An alternative approach which has gained substantial atten-
tion in recent years is Robust Optimization (RO) [11], which
is an interval based optimization method. RO does not require
knowledge of the Probability Density Function (PDF) of the
uncertain variables, but instead requires moderate information,
i.e. an uncertainty set for each uncertain variable. RO will
provide a robust optimal solution that is feasible (immunized)
within the confidence interval. Although there is still little
research on exploiting RO capabilities in residential storage-
based energy systems, work has begun to be published in
recent years, specifically related to medium-size DG/microgrid
management. For instance, [12] presents a model for strategic
bidding in energy and ancillary markets for a microgrid
consisting of RES, a microturbine (MT), and a battery, in
which RO is used to include RES uncertainty and SO is
used to tackle price uncertainty. For bidding purposes in day-
ahead and real-time markets, reference [13] proposes a hybrid
stochastic/robust approach, in which RO captures uncertainty
in real-time prices, while stochastic optimization is used to
include wind and PV scenarios. Both approaches ( [12], [13])
assume deterministic demand.

Following in the path of the mentioned literature, this

research intends to join flexibilities of two types, i.e. the
flexibility given by home-level microgrid devices and their
management, and the flexibility needed by a local DSO/utility
at the Point of Common Coupling (PCC). Hence, the objec-
tive of the present paper is to contribute with a framework
to optimally manage residential flexibilities by integrating
several aspects such as: electric/thermal load and storage,
home/building level management, uncertainties in PV, load
and energy prices, and local DSO signals. These aspects are
analyzed from the standpoint of an aggregator participating in
the day-ahead and imbalance markets and taking into account
DSO flexibility requests. In particular, to the best of the
authors’ knowledge, home-level management with load, RES
and price uncertainty has not been addressed in combination
with utility grid requirements via active power management.
Additionally, the work presented here was performed within
the EU Horizon 2020 project SENSIBLE (Storage Enabled
Sustainable Energy for Buildings and Communities), as a part
of the use case ”Flexibility and demand side management in
market participation”.

The problem is cast into a hybrid stochastic/robust optimiza-
tion model to minimize costs, where the decisions correspond
to the DA import/export energy, the imbalances, and the
setpoints of home devices. This is to overcome the realizations
of PV/load modeled via RO and prices modeled with scenarios
in order to comply with electrical/thermal constraints and grid-
level flexibility requirements. Section II shows the framework
of the proposed model. Next, section III presents the details of
the mathematical formulation. Section IV presents the results
of the proposed approach and concluding remarks are outlined
in V.

II. DESCRIPTION OF THE TEST CASE

The proposed community microgrid is composed by a set of
houses from the Evora European demonstrator, some of which
are equipped with solar panels, li-ion batteries and heat-storage
devices. The considered system is connected to the main grid.
Each household comprises a total electrical base load to be
supplied and a thermal load that has to be met by an EWH,
which also stores energy in the form of heat.

The flexibility aggregator participates in the day-ahead and
imbalance markets to optimize its portfolio, while complying
with physical microgrid limitations and the signals sent from
the local DSO regarding flexibility products for load manage-
ment. Bidirectional power flows can occur at the PCC with the
local DSO grid. The DSO flexibility requirements in the PCC
are of two types: a) power flexibility, which imposes limits
or certain power exchange patterns according to grid needs at
specific times; b) ramping flexibility, which limits the net load
ramping seen by the local DSO (see upper part of figure 1).

The DSO and the aggregator establish communication to
send/receive information, while only the aggregator has com-
munication and control capabilities with devices at home level.
We suppose the existence of the necessary IT and communi-
cation platform, so that the aggregator controls devices at the
home level and decides over their set-points.

Decisions regarding DSO flexibility requirements and prod-
ucts at the PCC correspond to grid analysis concerning voltage
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limits, congestion management, equipment degradation, and
scheduled maintenance, among others. The definition of these
requirements and the market design of the payment of this
service are out of the scope of this paper.

To predict the electrical demand of individual households,
the model uses the demand during the previous week and
the outside temperature predicted for the next day and then
performs quantile smoothing spline fitting. After quantile
regression, a set of forecast quantiles is obtained. Instead of
a single-point value, 10%, 20%, . . . , 90% values are obtained
and respectively associated with a 10%, 20%, . . . , 90% chance
of measuring lower actual demand at the instant predicted.
For PV power forecasts, a quantile approach is also used,
using a conditional Kernel estimator based on irradiance-level
forecasts. After this, quantiles (10%-90%) and the median
(50%) for both demand and PV production are obtained in
order to be used as inputs for the model. For further details
readers are advised to review reference [14].

Electricity prices are taken from the ENTSOE database [15],
using data from the last three months prior to the day of
dispatch. To form the training set, the data during this period
on the same weekday are considered. This is done to consider
a realistic case in which an aggregator, when defining day-
ahead purchases, does not have the settled prices. With this
input, a Kernel Density Estimation (KDE) is performed to
obtain a non-parametric density function of prices. To perform
the KDE, the Python package scikit-learn [16] was used.

After the KDE is performed, random sampling is performed
to create price scenarios. Given that a large number of scenar-
ios may lead to high computational times, a scenario reduction
technique is implemented. In this work, backward reduction
algorithm based on Kantorovich Distance (KD) [17] is used
to obtain a reduced representative set.
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Fig. 1. Schematic diagram of the proposed framework

III. MATHEMATICAL MODEL

The proposed hybrid stochastic/robust optimization model
minimizes the DA expected operation cost, in which the cost
is associated with the day-ahead net exchange (P g

t ) expected
costs and the import/exports (I−t,s/I+t,s) imbalance as expressed
in equation (1), where subscripts t, s and h index time step,
scenario and household, respectively. Parameters πt, µ−t , -µ+

t ,
represent respectively spot price, negative imbalance cost, and
positive imbalance cost. In addition, ps is the probability of
scenario s.

minimize

S∑
s=1

ps

{
T∑

t=1

[
πt,sP

g
t + µ−t I

−
t,s − µ+

t I
+
t,s

]}
(1)

Next, the operational constraints describe the behavior of
the devices and balance the load of the proposed system.
Constraint (2) represents the power balance and includes the
robust counterpart for including electrical demand and PV
uncertainty in terms of net load (demand minus PV). This
constraint includes the robust parameter ΓD

t for controlling
conservatism of net demand uncertainty. Constraints (3)-(4)
are additional constraints of the robust counterpart that result
from strong duality theorem.

P g
t + I−t,s − I+t,s + ∆t

N∑
h=1

P d
t,h − P c

t,h −Ht,h =

Dnet
t + qDt + ΓD

t z
D
t ,∀t, ∀s

(2)

zDt + qDt ≥
1

2
(D̄net

t −Dnet
h )yDt ,∀t (3)

zDt , q
D
t ≥ 0, yDt ≥ 1,∀t (4)

Constraints (5) and (10) describe the energy state for batter-
ies and the TES, respectively, and Xt,s,h, Yt,s,h represent the
stored energy of these devices. Parameters ηc and ηd are the
charging and discharging power of the battery. Constraints (7)-
(8) ensure that charging and discharging of the batteries do not
occur at the same time. Constraints (10)-(12) are the resulting
robust counterpart of considering uncertainty in thermal load,
with Γth

t controlling thermal load conservatism.

Xt,h = Xt−1,h + ηcP c
t−1,h − P d

t−1,h/η
d,∀t, t 6= 1,∀h (5)

X1,h = XT,h,∀h (6)

0 ≤ P c
t,h ≤ P̄ c

h · ut,h, ut,h ∈ {0, 1} ,∀t, t 6= 1,∀h (7)

0 ≤ P d
t,h ≤ P̄ d

h · (1− ut,h),∀t,∀h (8)

Xh ≤ Xt,h ≤ X̄h,∀t, ∀h (9)

Yt,h = Yt−1,h + ∆tHt−1,h − Yt−1,h/RhCh−

∆t(
∧
Qt−1,h + qtht−1,h + Γth

t−1,hz
th
t−1,h),∀t, ∀h

(10)

ztht,h + qtht,h ≥
1

2
(Q90%

t,h −Q
10%
t,h )ytht,h,∀t,∀h (11)

ztht,h, q
th
t,h ≥ 0, ytht,h ≥ 1,∀t,∀h (12)

Y1,h = YT,h,∀h (13)

Y t,h ≤ Yt,h ≤ Ȳt,h,∀t,∀h (14)

0 ≤ Ht,h ≤ H̄t,h,∀t, ∀h (15)
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The grid flexibility constraints describe the requirements or
signals sent by the utility grid, in terms of net ramping (Rt)
and net allowed power exchanges. Constraints (16)-(19) model
the ramping flexibility, which represents the maximum allowed
net power change in consecutive time steps. Constraint (16)
ensures that the day-ahead commitment respects maximum
ramping, and in the same way, constraint (18) also includes
negative and positive imbalance exchanges in each scenario.
Constraints (17), (19) ensure continuity between the last and
first time steps of the operation day. Constraints (20)-(21)
model the maximum allowed power flexibility. Parameters
PPCCmin
t /PPCCmax

t are the min/max net power in the PCC.
These last two constraints are general enough to represent

any DSO signal in terms of net power exchange, as shown in
figure 1 (powercap, power requirement, load trajectory).

|P g
t − P

g
t−1| ≤ Rt,∀t, t 6= 1 (16)

|P g
1 − P

g
T | ≤ Rt (17)

|P g
t +I−t,s−I+t,s−(P g

t−1 +I−t−1,s−I
+
t−1,s)| ≤ Rt,∀t, t 6= 1,∀s

(18)

|P g
1 + I−1,s − I

+
1,s − (P g

T + I−T,s − I
+
T,s)| ≤ Rt,∀s (19)

PPCCmin
t ≤ P g

t ≤ P
PCCmax
t ,∀t (20)

PPCCmin
t ≤ P g

t + I−t,s − I+t,s ≤ P
PCCmax
t ,∀t, ∀s (21)

The previous model is the complete hybrid stochastic/robust
problem. When only one scenario for price is considered and
ΓD
t = Γth

t = 0, the model is the deterministic equivalent.
The next section describes and presents the results obtained

for deterministic and hybrid cases.

IV. RESULTS

A. Input data

The proposed algorithm is coded in Python. The electric
base load is generated following the logic explained in section
II for the 25 houses in the Evora demonstrator. The location
of the HEMS in the real-life distribution network and the
resources present in each house are shown in figure 2. The 25
houses correspond to two different LV rural networks, A and
B, comprising 16 and 9 households respectively and containing
the distribution of resources shown in the figure. In total, the
houses feature 25 PV panels, 16 BESSs and 15 EWHs. The
test case is composed by only the HEMS and the control
capabilities that an aggregator has over the device settings.
A normalized thermal load pattern is taken from [18].

The charging and discharging efficiency of the batteries is
assumed to be 95%. 15 batteries are rated 3kW / 3.3 kWh,
and the remaining battery is a 10kW / 20 kWh device. All
PV panels are rated 1.5 kWp. The rated power/energy for all
EWH is 1.5 kW / 3 kWh and thermal resistance/capacitance
are 568 (◦C/kW)/0.3483 (kWh/◦C) in line with [3].

HEMS in LV Network A 

Solar panel 

Battery  

Electric Water Heater 

Solar panel 

Battery 
Solar panel 

Electric Water Heater 

MV Network 

Location of 
HEMS in LV 
Network A 

Location of 
HEMS in LV 
Network B 

HEMS in LV Network B 

Fig. 2. Composition and location of the proposed 25-household HEMS

B. Test 1: Deterministic without DSO flexibility requirements

First, a deterministic analysis without considering DSO flex-
ibility requirements is carried out to determine the impact on
the cost, when using different sources of home-level flexibility.
The simulation in which no thermal storage or batteries are
considered is used as the base case for comparison purposes.
This base case supposes only PV and participation in the
day-ahead market to cover energy needs of the HEMS. The
day-ahead operation cost for the base case is: e19.41. Three
cases are run; case 1: only TES; case 2: only batteries; case
3: batteries and TES. The costs for each of the four cases
are e19.28, e18.67 and e18.54, respectively. When all types
of home flexibility are used, savings reach 4.5% when the
operation cost is compared to the base case.

From figure 3 it can be seen that inclusion of home flexi-
bilities tends to increase the variability of net power exchange
so as to manage devices in order to find a minimum cost.
For instance, the base case ( ) and case 1 ( ) show
moderate peaks, and extreme values occur at hours 9 and 17.
With this energy commitment, operation costs are guaranteed
to be minimum. However, when all types of flexibility are
included, such as TES and batteries (case 3 ( )), interac-
tions among devices increase and energy commitment also
changes in order to exploit storage capabilities. During hours
9, 14, 17 and 22, the net exchange increases, reaching 90
kW. This full exploitation of flexibilities without considering
upstream effects could jeopardize the utility grid, hence, it
becomes important to include grid flexibility requirements at
the PCC and analyze any impacts on the microgrid operation,
as described in the next subsection.

C. Test 2: Hybrid stochastic/robust model with DSO flexibility
requirements

The hybrid stochastic-robust optimization model described
in (1)-(21) is solved for the price scenarios described in
the previous section, considering all flexibilities provided by
the microgrid and also including different values for grid
flexibility requirements (PPCCmax

t and Rt). When DSO flex-
ibility requirements are present in the model, the energy
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Fig. 3. Day-ahead committed energy for base case ( ), case 1 ( ),
case 2 ( ) and case 3 ( ).

committed and the devices’ scheduling must adjust to comply
with maximum net power and ramping constraints. In this
hybrid case, the operation cost without considering flexibility
constraints is e24.92 (unconstrained case). Table I shows the
costs obtained for different combinations of PPCCmax

t and
Rt. For instance, when ramping is limited to 0.01 MW/h and
maximum power to 0.03 MW, the operation cost of the HEMS
is e25.49, which represents a 2.3% increase with respect to
the unconstrained case. This means that if the DSO sends this
signal, the HEMS aggregator would have to adjust its settings
and incur extra costs to satisfy the DSOs needs.

The different operation points lead to different committed
energy on the day-ahead market. For example, if Rt is
kept constant at 0.03 MW/h and PPCCmax

t assumes different
values, the energy that should be exchanged in the wholesale
market is shown in figure 4. While the changes in the oper-
ation cost range between e24.97 and e25.40, the changes in
committed energy are more evident so as to comply with the
different values of maximum power.

TABLE I
OPERATION COSTS FOR DIFFERENT VALUES OF FLEXIBILITY

REQUIREMENTS

PPCCmax
t

Rt 0.03 MW 0.05 MW 0.07 MW
0.01 MW/h 25.49 25.20 25.20
0.03 MW/h 25.40 24.99 24.97
0.06 MW/h 25.39 24.98 24.94
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Fig. 4. Day-ahead committed energy for PPCCmax
t = 0.03 MW ( ),

PPCCmax
t = 0.05 MW ( ), PPCCmax

t = 0.07 MW ( ) when
constant Rt = 0.03 MW/h

The day-ahead energy commitment for different allowed
ramping values and fixed PPCCmax

t = 0.05MW is shown

in figure 5. In this case, it can be seen that peaks are shaved
at the level of 50 kW, and that Rt = 0.06MW ( ) allows
more unconstrained ramping, as is the case for time frames
13h-14h-15h and 21h-22h-23h. In general, each case leads
to a different operation point and the operation cost ranges
from e24.98 to e25.20. It can be seen that operational costs
for the flexibility aggregator increase when flexibility needs
from utilities narrow their margins, which in turn signals the
remuneration that an aggregator should receive for providing
flexibility services to the grid.

5 10 15 20
−50
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50

time[h]

P
g t

[k
W

h]
Fig. 5. Day-ahead committed energy for Rt = 0.01 MW/h ( ), Rt =
0.03 MW/h ( ), Rt = 0.06 MW/h ( ) when constant PPCCmax

t =
0.05 MW

In addition, the signals from the utility force a reshaping of
the net load at the PCC, hence leading to an adjustment of the
devices’ settings.

D. Bidding on the local market

1) Demand bidding curves: Figure 6 shows the demand
bidding curves for two different hours. These piece-wise
curves show the hourly bids made by the aggregator for eco-
nomical operation when only wholesale market participation
is allowed and no other local flexibility market exists. The
curves are built using the hybrid stochastic/robust approach
by varying the day-ahead energy price at the specific hour.
The variations range from the 10% to the 90% percentile of
the price predicted by the KDE. It is important to note that
bids for hour 21 have higher associated prices given the history
of prices for these night-time frames.
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Fig. 6. Demand bidding curves for t = 14h (green), t = 21h (orange)

2) Local flexibility supplying curves: If a local market is
established to define the appropriate flexibility prices to be
provided by the aggregator at the PCC, then the construction of
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supplying bidding curves could give an idea of the appropriate
remuneration that the aggregator should receive for modifying
the net power exchange coming from a DSO signal. This
option is shown in figure 7. These curves measure the extra
cost of the aggregator’s operation when deviating from the
committed day-ahead energy. Hence, this price is the minimum
that should be paid to the aggregator if the DSO requires
flexibility.
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0.2
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in
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pr
ice

 [E
UR

]

Fig. 7. flexibility supply bidding curves for t = 14h (green), t = 21h (orange)

For instance, the scheduled power purchase for t=21 (or-
ange) is 19.5 kW, hence if this is the flexibility required by
the DSO, there is no deviation for the aggregator and no
remuneration takes place (zero bidding price). However, if
flexibility starts to increase, it can be seen that payments to
the aggregator should be made, given the required deviation
from the original scheduling.

V. CONCLUSIONS

The proposed approach presents a mathematical model to
include local flexibility constraints in the form of maximum
allowed net power exchange at the PCC and also ramping
limits. The simulations analyze different values and combina-
tions of flexibility needs to determine the appropriate changes
in the aggregator’s schedule to achieve minimum operation
costs while complying with the DSO’s flexibility constraints.

For the stochastic/robust case and flexibility values ana-
lyzed, the operation cost for the aggregator increases up to
2.3% with respect to a base case in which no DSO flexibility
signals are considered. This information is useful to determine
potential remuneration for the aggregator for providing local
flexibility services, given that scheduling of resources has to
change to provide the needed flexibility.

These adjustments in the operation of HEMS allow an
aggregator to participate in the electricity market while co-
operating with the local DSO to enhance network operation
and promote decentralization of the electrical system.
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