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Abstract—The growing number of electric vehicles (EV) is
challenging the traditional distribution grid with a new set of
consumption curves. We employ information from individual
meters at charging stations that record the power drawn by an
EV at high temporal resolution (i.e. every minute) to analyze
and model charging habits. We identify 5 types of battery
that determine the power an EV draws from the grid and its
maximal capacity. In parallel, we identify 4 main clusters of
charging habits. Charging habits models are then used for two
applications: short-term forecasting and long-term simulation.
We start by forecasting day-ahead consumption scenarios for
a single EV. By summing scenarios for a fleet of EVs, we
obtain probabilistic forecasts of the aggregated load, and observe
that our bottom-up approach performs similarly to a machine-
learning technique that directly forecasts the aggregated load.
Secondly, we assess the expected impact of the additional EVs
on the grid by 2030, assuming that future charging habits follow
curren behavior. Although the overall load logically increases,
the shape of the load is marginally modified, showing that the
current network seems fairly well-suited to this evolution.

Index Terms—electric vehicle, forecasting model, scenario gen-
eration, probabilistic evaluation.

I. INTRODUCTION
A. Context

The car stock of electric vehicles (EVs) — electric battery
and plug-in hybrids — reached 2 million units worldwide in
2016, accounting for 1.1% of the global car market share [1].
This share is expected to rapidly increase over the next 15
years. Charging an EV battery requires a large amount of
energy in a small amount of time. In a typical US household,
EV charging requires more power than any other appliances
(e.g. stoves and dryers) and is solicited just as often (daily
or more). EVs are therefore important appliances to model
correctly in order to manage electric household consumption.
The increasing number of EVs connected to the grid, coupled
with their high power requirement, is challenging the current
electrical network with higher overall consumption and addi-
tional peaks.

The Nordic EV Outlook 2018, published by Nordic Energy
Research [2], gives insight into the EV market in Nordic coun-
tries (i.e. Denmark, Finland, Iceland, Norway and Sweden).
In particular, the authors provide feedback from the industry
in Norway, where the market share of EVs is high (1.9%),
pointing out that the electrical grid experiences periodic issues
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in densely populated urban environments and recreational
regions. This is attributed to the number of EVs charging
on the grid. The Norwegian energy market regulator suggests
that adding an average of 1 kW to the household peak load
may result a 4% overloading of the transformers [3]. In
Denmark, 20% EV penetration is believed to cause major grid
overloading and under-voltage situations [4], while in the UK,
a 20% level of penetration is likely to increase the daily peak
load by 36% [5].

EVs are used in a multitude of contexts, including. profes-
sional and leisure usage, meaning that the modeler is faced
with a high and challenging variety of charging situations.
Due to its nature, an EV can be charged at different places
— at home or at work — which rules out a traditional switch-
on appliance model. Researchers, such as Bae and Kwasinski,
have proposed spatial models to account for different charging
stations [6].

Modeling EV charging patterns is a useful tool for several
types of study, such as power flow analyses of distribution
grids [7], management of smartgrids [8], bottom-up simu-
lations of demand [9], forecasting of charging stations [6],
and stabilization of the power system [10]. Furthermore, EV
charging involves a controllable load comparable to a washing
machine or water heater. As such, EVs offer advantageous
flexibility for demand response purposes, for instance, shifting
charging cycles when electric demand is low. EV flexibility
could be an important input for flexibility models, either at
household level [11] or at the aggregated level [12]. Another
promising perspective involves injecting the electricity stored
in EVs’ batteries back into the grid, with so-called “vehicle-
to-grid” projects [13].

B. Objective

In this study, we use data measured at high-time resolution
(i.e. every minute) showing the power drawn from the grid
at the charging station. Each charging station is associated
with a single privately owned EV. With this data, the charging
habits of each EV user are modeled in a probabilistic way. This
model is described in Section II. The charging habits model
is then used for two applications: short-term forecasting and
long-term simulation for prospective studies.



In Section III, we generate forecasting scenarios of an
EV’s consumption profile for the next day. Although our
model forecasts a single EV, we validate the scenarios at the
aggregated level, i.e. for a fleet of several EVs. We observe
that scenarios result in accurate probabilistic forecasts of the
fleet’s aggregated consumption. In particular, we show that our
bottom-up forecasting has performs similarly to an advanced
machine-learning method that directly forecasts the fleet’s
aggregated consumption.

In Section IV, we simulate the impact of EVs on the grid
in future years. The International Energy Agency (IEA) [14]
anticipates a high penetration — around 30% — of EVs in
2030. Employing the four clusters of identified charging habits,
we are able to extrapolate the consumption required by a large
number of EVs. We show that current charging habits are
sufficiently varied so as not to cause major issues on the total
electrical load of a region.

C. Data Description

A set of 46 privately owned EVs located in Austin, Texas,
is selected. Austinites are known to be very climate conscious
and supportive of green policies [15], as exemplified by the
Pecan Street project run by the University of Texas [16]. The
Pecan Street platform provides us with the electric consump-
tion of each EV recorded every minute of the year in 2015. In
our dataset, electric consumption related to EVs is responsible
for approximately 15% of total household consumption.

II. THE EV CHARGING MODEL
A. Processing the EV Time Series

An example of the power drawn by an EV during 36
successive hours is visible in Fig. 1. The power drawn is
either null, when the EV is not charging, or close to a specific
nominal power, when the EV is charging. Based on this this
visual inspection, which corresponds to the charging curve
measured on a lithium-ion battery by Madrid et al. [17], we
model a charging period with a block comprising 3 parameters:

e Nominal power: power demanded from the grid is con-
stant during the whole charging period.
e Duration of the charging block.

Power (kW)
~
1
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Fig. 1. Power drawn every minute by an EV during 36 successive hours.
Power is null when the EV is not charging, and close to a nominal power
when charging.

o Start-up time: moment the day when EV charging starts
(between 1 and 60 x 24).

Real measurements do not generate perfect blocks. There is
a steep ramp up to the nominal power; this ramp usually
lasts less than 15 minutes. The power of the time series
fluctuates slightly around a nominal value, translating a noisy
phenomenon. This fluctuation is negligible compared to the
nominal power, as can be seen on Fig. 1. Our hypothesis of
perfect charging blocks simplifies these two facts.

Our observations indicate that nominal power is always the
same for a particular EV as long as there is no technological
replacement (i.e. battery and charging station). Such replace-
ments occur for 2 of our 46 EVs in the Austin dataset (nominal
power goes from 3.5 to 6.5 kW), requiring a minor adjustment
in later modeling.

On the other hand, the duration and start-up time are not
fixed. Charging blocks almost never start at the exact same
time each day, and do not have the same duration, both
of which depend on the unknown user’s habits. A realistic
depiction of these habits is to describe these two parameters
(duration and start-up time) in a probabilistic way. Therefore,
an analysis of these parameters is required, meaning that we
need to detect charging blocks on the measured power time
series.

B. Detection of Charging Blocks

We implemented the following procedure to automatically
detect the charging blocks of an EV user from the power time
series:

e Detecting nominal power. The density of all of the strictly
positive values is estimated, and the maximum of this
density function (i.e. the statistical mode) is retrieved as
the nominal power.

o Transforming time series in perfect charging blocks. The
raw time series is transformed into a simpler series of 2
values, either 0 when power is below a threshold fixed at
50% of nominal power, or 1 when it is above.

e Pre-processing the simple time series. The time series
obtained is then refined to account fo measurement errors.
Missing values are filled in, and any remaining blocks that
are too short (less than 20 minutes) are removed.

o Detecting duration and start-up time. All timestamps are
processed in order to list all durations and associated
start-up times in the time series. The day of the year
on which the charging blocks occurred is also recorded
for forecast applications.

The whole procedure runs fast on an average laptop: less than
30 seconds for the 500,000 data points of one EV yearly time
series.

C. Charging Habits Analysis

Once the charging blocks parameters are detected, an anal-
ysis of the users’ charging habits is possible. An interesting
representation is to superimpose every charging block of the
year on a graph with the z-axis representing the start-up time,
and the y-axis representing the duration of the block. In order



TABLE I

DETECTED CHARACTERISTICS OF EVS

Nominal power (kW) | Max charging duration (min) | Battery capacity (kWh) | Number of EVs
1.5 760 19 1
35 120 7 2
33-37 210 - 240 12-16 35
6.6 150 17 4
62-74 480 — 600 53-171 4

to compare users’ habits, durations are normalized by the
maximal duration observed — so that normalized duration is
between 0 and 1. The maximal duration observed translates
into the capacity of an EV’s battery. Table I lists these maximal
charging durations, the nominal power of the EVs, and an
estimation of the battery capacity. Estimations of capacity
match the battery characteristics provided by manufacturers
— such as the Nissan Leaf with a 16 kWh battery, and Tesla
Model S with a 60 kWh battery. We also note that the nominal
powers used to charge vehicles match the power outputs of
levels 1 and 2, i.e. slow private EV chargers described in
the Nordic EV Outlook 2018 [2]. We logically observe no
fast chargers (> 22 kW and < 150 kW) in our dataset, since
these are mostly public and almost negligible compared to
slow private chargers [2], although numbers are growing [18].

From the charging blocks detected, we can detail the number
of charging cycles for each day and each EV. Data show that,
on average for the 365 days of the year and one EV, there
are 150 days with no cycle at all, 158 with only 1 cycle, and
57 with 2 or more blocks. Furthermore, considering only days
with more than 2 charging blocks, the main block accounts
for more than two thirds of the daily energy requirements.
This shows that the main blocks are of paramount importance.
Visually, the characteristics of a main block and any residuals
blocks (i.e. second block, third block of the day, etc.) are
almost indiscernible. We ascertain this observation with a
statistical test comparing the estimated density function in the
2D plan (duration X start-up time) for the main blocks and
residual blocks separately'. For more than half of the EVs in
the dataset, p-values are below 0.01. Considering these results
and the fact that we observe fewer residual charging blocks,
which hinders an accurate statistical model, we consider in the
following that main and residual charging blocks come from
the same distribution duration x start-up time.

Similar tests are conducted to determine whether weekdays
and weekends follow different patterns. Surprisingly, for all
EVs, we identify no statistical difference (p-value always be-
low 0.01) in charging habits between weekdays and weekends.
This is however in agreement with a visual inspection of
the charging blocks’ characteristics, where no clear difference
stands out. It is also in line with the very low intra-week
variations of the electrical load in Texas. However, despite
similar on weekdays and weekends — EV users charge at the
same time and for the same duration — we observe notable

lusing package ks available on R software [19].

differences in the number of times that they charge their EVs
each day of the week, e.g. some users almost never charge
during the weekend.

D. Charging Habits Clustering

By making specific analysis of every user’s charging habits,
we can accurately describe the associated EV’s consumption
profile. However, to carry out long-term forecasting requires
extending these specific habits to a larger scale. We therefore
aim to cluster the charging habits to extract meaningful
information that can be extended more generally.

First, we estimate the 2-dimensional density function for
each EV with a kernel density estimator method: a bandwidth
matrix common to all EVs was chosen and obtained with a
cross-validation method [20]. Then, we compare density func-
tions of 2 EVs by computing the integrated square differences
on the density support. Such values define proximity between
two charging habits. Finally, thanks to a hierarchical clustering
based on the Ward linkage method [21], we retrieve 4 habit
clusters from our set of 46 EVs. These clusters represent
the charging habits (start-up and duration of charging blocks)
regardless of the characteristics of the vehicles, i.e. regardless
of the EV’s nominal power and total energy capacity. Table II

TABLE II
DETAILS ON CLUSTERS FOUND
Cluster Charging period Number of EVs
1 Night 24
2 Evening 9
3 Throughout the day 9
4 Late evening 4

details the 4 clusters identified. The first cluster gathers most
frequent charging patterns, where EVs are charged during the
night and in the morning (52% of the users). We represent
the 2-dimensional density function on Fig. 2 : the green levels
represent the density function estimated for all 24 users of
the cluster, and the points denote the charging blocks of one
of the users. This density indicates that most charging cycles
occur before 12:00, and that cycles tend to last longer when
started earlier in the night. The second cluster gathers users
charging in the evening, presumably when people come back
from work (20%). The third cluster gathers users charging
throughout the day, but mostly at night-time (20%). The fourth
cluster gathers users charging in the late evening so that their
vehicle is charged at a precise moment — such as 03:00 (9%).
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Fig. 2. Representation of the charging patterns for cluster 1: the two
dimensional density function estimated for the 24 EVs in cluster 1 (filled
contour) and points representing the charging block a specific EV in the
cluster. On the x-axis is the normalized duration, i.e. the charging duration
normalized by maximal duration observed for this EV. On the y-axis is the
hour of the day.

No statistical link is observed linking the characteristics of the
battery and the charging patterns. Although this is in part due
to the fact that most batteries are similar, we assume that the
two aspects (Tables I and II) are independent.

III. DAY-AHEAD FORECASTING SCENARIOS OF DAILY
CONSUMPTION PROFILES

A. Scenarios of a Single EV

For a specific EV, charging habits detected from the time
series data allow us to forecast daily profile scenarios. This
forecasting process is done in 3 steps:

1) Forecast number of charging blocks for next day;

2) Forecast possible patterns (normalized duration X start-
up time) for each block;

3) Use characteristics of the EV (maximal duration and
nominal power) to obtain a consumption profile.

For step 1), the forecasting model used is a probabilistic
random forest, which provides a convenient way to draw
random numbers of charging blocks according to forecast
probabilities”. The following inputs are used : weekday, num-
ber of blocks 1 day ago, number of blocks 7 days ago, median
number of blocks during the 7 previous days, mean temper-
ature of the previous day. These inputs have been selected
based on standard inputs for household demand forecasting
and empirical tests. Parameters of the forest — number of
splits for each tree and minimal size of the branches — are
carefully tuned on a grid with a cross-validation approach.
For step 2), we draw patterns (normalized duration X start-
up time) according to the 2D distribution observed. Forecast
charging blocks are drawn from previous ones weighted by
a decreasing exponential parameter A, so that former blocks
are forgotten. A 2D Gaussian noise, with observed covariance,
is added to the block drawn. Checks are operated to rule out
impossible situations: overlapping blocks, negative durations
and so on.

2using package ranger available on R software [22].

It is difficult to assess the quality of forecast scenarios
for an individual EV. Standard statistical indices (such as
Mean Absolute Error) are not adapted to such 2-level time
series, where the start-up times of charging blocks are highly
uncertain. Forecasting methods relying on such indices lead
to flat forecasts with no charging block: indeed, a correctly
forecast but wrongly timed charging block — e.g. starting
at 08:00 instead of 10:00 — would be subject to a “double
penalty” [23].

B. Bottom-Up Forecast of the Aggregated Fleet

Instead of evaluating forecasting performance at the indi-
vidual level, the aggregated fleet consumption is forecast for
the next day with a bottom-up approach. Each EV consump-
tion profile is forecast with the 3-step method described in
Section III-A, and the sum of all of the individual scenarios
generates a forecast scenario for the aggregated profile. Such
a day-ahead forecast is represented in Fig. 3 where the
aggregated profile can be clearly seen as a sum of the 46
individual EVs profiles.

30—
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Fig. 3. Day-ahead scenario forecast of a fleet of 46 EVs on Saturday 12th
December 2015. The orange dashed line shows the actual consumption to be
forecast. Each individual scenario is represented by a filled area.

To assess forecasting performance, we generate S sce-
narios, and turn these scenarios into probabilistic fore-
casts at each instant by computing quantiles at levels
7 € {0.05,0.10, ...,0.95}.

We compare our method with two benchmarking forecasting
models that do not model individual EVs but consider only the
aggregated consumption. First, a persistence model using the
value of the aggregated consumption at the same minute on
the previous day as a forecast point’. Second, an advanced
benchmark is a gradient tree boosting model (GTB)* using
5 standard inputs: minute of the day, weekday, temperature
forecast, consumption 1 day ago, median consumption during
the 7 previous days [25]. Parameters are carefully tuned
(number of trees, shrinkage parameter, and tree width) and
probabilistic forecasts are made using a pinball loss with
quantile levels 7 € {0.05,0.10, ...,0.95}.

We evaluate the forecasting quality of the 3 models with
two standard indices: MAE (Mean Absolute Error) for deter-
ministic forecasts and CRPS (Continuous Ranked Probability

3no probabilistic framework is proposed with this model.
4using package gbm available on R software [24].



Score) for probabilistic forecasts. Indices are estimated over
a training set of 6 months and reported on Table III. Thanks
to this score, we select two meta-parameters of our bottom-
up forecasts: forgetting parameter A = 50 days and number
of scenarios S = 400. Results show that our bottom-up
deterministic forecasts, in addition to the decomposition of
the aggregated consumption profile, greatly outperform the
persistence model, and perform similarly to the advanced
GTB benchmark. Concerning the probabilistic framework, our
bottom-up model is more efficient (i.e. lower CRPS) than
GTB. In particular, it is especially efficient to forecast the
lower tail of the distribution.

TABLE III
INDICES OF TWO BENCHMARKING METHODS AND OUR BOTTOM-UP
APPROACH
Index Persistence | GTB | Bottom-up
MAE (kW) 6.24 4.86 4.87
CRPS (kW) — 3.63 3.59

IV. LONG-TERM IMPACT OF HIGH PENETRATION OF EVS
A. Hypotheses

Our dataset describes EV charging habits in Austin, Texas.
We want to extend the study area to a larger region. Therefore,
we focus on the South Central region of Texas. The main
Texan Distribution System Operator, ERCOT (Electric Reli-
ability Council Of Texas), defines this region as a weather
zone covering 25 contiguous counties, comprising two major
cities, Austin and most of San Antonio. According to the Texas
Demographic Center, the total population of the 25 counties
was 4.8 million in 2017, meaning that there are about 3.4
million vehicles. According to the 2017 National Household
Travel Survey, the current market share for EVs in Texas is
around 1.9%, meaning that the current number of EVs — or
hybrid EVs — is around 65 thousand in the South Central
zone of Texas.

Considering a 1% immigration scenario in the future, the
Texas Demographic Center forecasts that there should be
around 6.5 million people by 2030, and thus around 4.6
vehicles®. In addition, the IEA’s EV30@30 Campaign has set
an ambitious goal of a 30% EV penetration rate by 2030. This
would result in around 1.4 million EVs by 2030, which means
there would be around 1.3 million additional EVs compared to
the natural increase of EVs due to population growth over the
period. A 30% market share is higher than that predicted in
the detailed study by Musti and Kockelman in 2011 focusing
on the city of Austin [26]. These authors estimate the market
share to be 19% in 2034 under a favorable feebate scenario.

B. Simulation

ERCOT manages electricity representing 90% of the Texan
load. The company openly publishes its hourly load curve by

Sconsidering that the average number of vehicles per person remains the

same.

weather zone®. Without any major technological changes, the
load curve should have approximately the same shape in 2030,
but at a higher level due to population growth. For a Tuesday
in March, Fig. 4 shows the actual load curve in gray, and the
expected future load in black.

However, as we estimated, there should be 1.3 million new
EVs charging on the grid in 2030, which will impact the load
curve. We simulate all of this additional load by generating
scenarios for each EV. We consider 2 possible evolution paths
for EVs:

1) Habits and characteristics of EVs remain the same
(sample from complete Table I and Table II)

2) Habits remain the same but characteristics evolve (sam-
ple from last 2 lines of Table I and complete Table II)
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Fig. 4. Load curves in South Central zone of Texas in a typical Tuesday in
March. The grey solid line represents the load measured in 2017; the black
dashed line represents the expected load in 2030 with the same EV market
share (1.9%); the orange dotted line represents the expected load with a 30%
EV market share and same EV characteristics as today; the blue mixed line
represents this expected load with larger batteries in EVs.

The first evolution path assumes that the habits of future
users will fall into the 4 clusters found in Section II-D,
and that the EVs’ characteristics will remain the same. The
second path considers the future evolution of EV chargers
and batteries. Although fast or ultra-fast chargers are planned
to be deployed (nominal power above 22 kW), these are
expected to remain public, and public chargers are rarely used
compared to private chargers due to consumer preferences.
Currently, in the Nordic region, fast chargers represent less
than 1% of the total charging load [27], and the growth rate
of private chargers is far greater than that of public chargers
[2]. However, private chargers may all reach a nominal power
of 6.6 kW. We therefore retain only the last two characteristics
of Table I with half of the future batteries of 17 kWh capacity
and half in the 53-71 kWh range capacity. Evolution 1 is
represented by the orange line, and evolution 2 by blue line
in Fig. 4.

Simulation shows that even when a high number of EVs
are added to the grid by 2030, their charging only moderately

This curve can be found on their website http://www.ercot.com/gridinfo/
load/load_hist/



impacts the shape of the load curve at the regional scale of
South Central Texas. The overall load is naturally higher with
the additional EVs, especially in scenario 2 with larger batter-
ies, but the current charging habits do not cause unmanageable
peaks or unstable variability for the load. Both simulations
even show that, with the additional EVs, the load curve would
be smoothed out during the night, diminishing the intra-day
variation. With adequate planning, there should be no major
problem with such market share growth. However, since there
could be issues at a local scale, some kind of coordination is
required to smart-charge the EVs [5], for instance by optimally
scheduling the charging of EV fleets [28], or through targeted
price incentives [29].

V. CONCLUSION

In this paper, we model the consumption profile of EVs
from raw power measurements. Based on minute-by-minute
power measurements,, an algorithm is developed to retrieve
each charging block during which an individual charges his
or her vehicle. Thanks to this detection, a probabilistic model
is proposed to describe the charging habits of the user. From
the measurements, we detect 5 kind of plugs and EV batteries
determining the power drawn from the grid and the battery
capacity. Furthermore, we identify 4 major types of charging
habits depending on the duration and start-up time of charging.

Probabilistic models of charging habits can be used to
forecast the consumption profiles of single EVs for the next
day through scenarios. By adding the scenarios of multiple
EVs, models produce bottom-up probabilistic forecasts of the
aggregated consumption of a fleet of EVs. A performance eval-
uation assesses that this method is as efficient as the advanced
machine-learning method, but decomposes the aggregated load
into single EV consumption profiles.

Since the market share of EVs is expected to greatly
increase in the next 15 years, we evaluate the impact of the
additional load on the total electrical load in a region in
Texas with a population of around 5 million. Based on the
4 types of charging habits identified on our reduced dataset,
we simulate the future load expected in 2030 with and without
the EV market share increase, and show that it seems to only
moderately impact the shape of the load curve. However, the
future of EVs is uncertain, especially concerning the battery
capacity and deployment of fast chargers, which may lead
to complications for the grid, requiring carefully coordinated
charging planning for a large number of vehicles.
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